

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Homogeneous selections from hyperplanes

Journal of Combinatorial

Theory

Imre Bárány^{a,b}, János Pach^{a,c}

^a Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary ^b Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England, United Kingdom

^c Chair of Combinatorial Geometry, EPFL-SB-MATHGEOM-DCG, Station 8, CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 4 August 2011 Available online 11 November 2013

Keywords: Hyperplanes Hypergraphs Intersecting simplices

ABSTRACT

Given d + 1 hyperplanes h_1, \ldots, h_{d+1} in general position in \mathbb{R}^d , let $\triangle(h_1, \ldots, h_{d+1})$ denote the unique bounded simplex enclosed by them. There exists a constant c(d) > 0 such that for any finite families H_1, \ldots, H_{d+1} of hyperplanes in \mathbb{R}^d , there are subfamilies $H_i^* \subset H_i$ with $|H_i^*| \ge c(d)|H_i|$ and a point $p \in \mathbb{R}^d$ with the property that $p \in \triangle(h_1, \ldots, h_{d+1})$ for all $h_i \in H_i^*$.

© 2013 Elsevier Inc. All rights reserved.

1. The main result

Throughout this paper, let H_1, \ldots, H_{d+1} be finite families of hyperplanes in \mathbb{R}^d in general position. That is, we assume that (1) no element of $\bigcup_{i=1}^{d+1} H_i$ passes through the origin, (2) any *d* elements have precisely one point in common, and (3) no d+1 of them have a nonempty intersection. A *transversal* to these families is an ordered (d+1)-tuple $h = (h_1, \ldots, h_{d+1}) \in \prod_{i=1}^{d+1} H_i$, where $h_i \in H_i$ for every *i*. Given hyperplanes $h_1, \ldots, h_{d+1} \subset \mathbb{R}^d$ in general position in \mathbb{R}^d , there is a unique simplex denoted by $\Delta = \Delta(h_1, \ldots, h_{d+1})$ whose boundary is contained in $\bigcup_{i=1}^{d+1} h_i$. Clearly, this simplex is identical

to the convex hull of the points

$$v_i = \bigcap_{j \neq i} h_j, \quad i \in [d+1], \tag{1.1}$$

where, as in the sequel, [n] stands for the set $\{1, 2, ..., n\}$. Our main result is the following.

E-mail addresses: barany@renyi.hu (I. Bárány), pach@renyi.hu (J. Pach).

^{0095-8956/\$ -} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jctb.2013.10.001

Theorem 1.1. For every $d \ge 1$ there is a constant c(d) > 0 with the following property. Given finite families H_1, \ldots, H_{d+1} of hyperplanes in \mathbb{R}^d in general position, there are subfamilies $H_i^* \subset H_i$ with $|H_i^*| \ge c(d)|H_i|$ for $i = 1, \ldots, d+1$ and a point $p \in \mathbb{R}^d$ such that p is contained in $\triangle(h)$ for every transversal $h \in \prod_{i=1}^{d+1} H_i$.

It follows from the general position assumption that the simplices $\triangle(h)$ in Theorem 1.1 also have an *interior* point in common.

It will be convenient to use the language of hypergraphs. Let $\mathcal{H} = \mathcal{H}(H_1, \ldots, H_{d+1})$ be the complete (d + 1)-partite hypergraph with vertex classes H_1, \ldots, H_{d+1} . We refer to \mathcal{H} as the hyperplane hypergraph, or *h*-hypergraph associated with the hyperplane families H_1, \ldots, H_{d+1} . The hyperedges of \mathcal{H} are the transversals of the families H_1, \ldots, H_{d+1} . Our main result can now be reformulated as follows.

Theorem 1.2. For every positive integer d, there is a constant c(d) > 0 with the following property. Every complete (d + 1)-partite h-hypergraph $\mathcal{H}(H_1, \ldots, H_{d+1})$ contains a complete (d + 1)-partite h-subhypergraph $\mathcal{H}^*(H_1^*, \ldots, H_{d+1}^*)$ such that $|H_i^*| \ge c(d)|H_i|$ for all $i \in [d + 1]$ and $\bigcap_{h \in \mathcal{H}^*} \Delta(h) \ne \emptyset$.

In some sense, our theorem extends the following recent and beautiful result of Karasev [7].

Theorem 1.3. (See [7].) Assume r is a prime power and $t \ge 2r - 1$. Let \mathcal{H} be a complete (d + 1)-partite h-hypergraph with partition classes of size t. Then there are vertex-disjoint hyperedges (transversals) h^1, \ldots, h^r of \mathcal{H} such that $\bigcap_{i=1}^r \Delta(h^j) \ne \emptyset$.

Two hyperedges (transversals) h and h' of \mathcal{H} are vertex-disjoint if h_i and h'_i are distinct for each i. Our Theorem 1.1 implies a weaker version of Karasev's theorem. Namely, the same conclusion holds with arbitrary r and $t \ge r/c(d)$. Since c(d) will turn out to be doubly exponential in d, our result is quantitatively much weaker than the bound $t \ge 4r$ that follows from Karasev's theorem for any r.

Karasev's result is a kind of dual to Tverberg's famous theorem [10]. In the same sense, our result is dual to the homogeneous point selection theorem of Pach [9] (see also [8]), which guarantees the existence of an absolute constant $c_d > 0$ with the following property. Let X_1, \ldots, X_{d+1} be finite sets of points in general position in \mathbb{R}^d with $|X_i| = n$ for every *i*. Then there exist subsets $X_i^* \subset X_i$ of size at least $c_d n$ for every $i \in [d+1]$ and a point $p \in \mathbb{R}^d$ such that $p \in \operatorname{conv}\{x_1, \ldots, x_{d+1}\}$ for all transversals $(x_1, \ldots, x_{d+1}) \in \prod_{i=1}^{d+1} X_i^*$. Here the assumption that the sets X_i are of the same size can be removed (see e.g. [5]).

To establish Theorem 1.2, we need some preparation. Let h and h' be two edges of the hypergraph $\mathcal{H} = \mathcal{H}(H_1, \ldots, H_{d+1})$. As in (1.1), let v_i (and v'_i) denote the vertex of $\triangle(h)$ (and $\triangle(h')$) opposite to the facet contained in h_i (and h'_i , respectively). The *edges* h and h' are said to be of the *same type* if, for each $i \in [d+1]$, the vertices v_i and v'_i are not separated by either of the hyperplanes h_i and h'_i . We say that the *h*-hypergraph \mathcal{H} is homogeneous if every pair of its edges is of the same type.

The heart of the proof of Theorem 1.2 is the following "same type lemma" for hyperplanes.

Lemma 1.4. For any $d \ge 1$, there exists a constant b(d) > 0 with the following property. Every complete (d + 1)-partite h-hypergraph $\mathcal{H}(H_1, \ldots, H_{d+1})$ contains a complete (d + 1)-partite subhypergraph $\mathcal{H}^*(H_1^*, \ldots, H_{d+1}^*)$ with $|H_i^*| \ge b(d)|H_i|$ for all $i \in [d + 1]$ which is homogeneous.

The rest of this note is organized as follows. In Section 2, we deduce Theorem 1.2 from Lemma 1.4. In Sections 3 and 4 we present two proofs for Lemma 1.4. The first proof, which provides a better estimate for the value of the constant b(d), uses duality and is based on a same type lemma for points, due to Bárány and Valtr [2] (see also [8]). The second proof is shorter, but it utilizes a far reaching generalization of the same type lemma to semi-algebraic relations of several variables, found by Fox, Gromov, Lafforgue, Naor, and Pach [5], see also Bukh and Hubard [4] for a quantitative form. The same result for binary semi-algebraic relations was first established by Alon, Pach, Pinchasi, Radoičić, and Sharir [1].

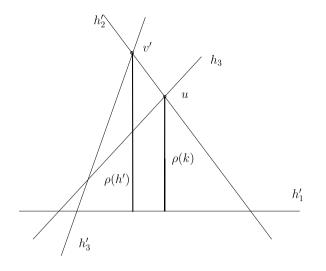


Fig. 1. Illustration for Theorem 1.2, d = 2.

2. Proof of Theorem 1.2

In this section, we deduce Theorem 1.2 from Lemma 1.4. The proof of the lemma is postponed to the last two sections.

Let \mathcal{H}^* denote the complete (d + 1)-partite subhypergraph of \mathcal{H} whose existence is guaranteed by the lemma. For a fixed $h = (h_1, \ldots, h_{d+1}) \in \mathcal{H}^*$, let h_i^+ denote the half-space bounded by h_i that contains vertex v_i of $\Delta(h)$, for $i \in [d + 1]$. The lemma implies that, for every hyperedge $k = (k_1, \ldots, k_{d+1}) \in \mathcal{H}^*$ and for every i, the half-space h_i^+ contains the vertex u_i of $\Delta(k)$ opposite to hyperplane k_i . To prove the theorem, it suffices to establish the following claim:

$$\bigcap_{h\in\mathcal{H}^*} \triangle(h) \neq \emptyset$$

For $h = (h_1, \ldots, h_{d+1}) \in \mathcal{H}^*$, let $\rho(h)$ denote the distance between h_1 and $v_1 = \bigcap_2^{d+1} h_j$, and let $h' \in \mathcal{H}^*$ be the edge for which $\rho(h)$ is minimal. By the general position assumption, we have $\rho(h') > 0$. Set $v' = \bigcap_2^{d+1} h'_j$. We show that $v' \in \Delta(h)$ for every $h \in \mathcal{H}^*$, which implies the claim. To see this, we have to verify that $v' \in h_i^+$ for every $h \in \mathcal{H}^*$ and for every i. This is trivial for i = 1. Suppose that $i \ge 2$. By symmetry, we may assume that i = d + 1. We have

This is trivial for i = 1. Suppose that $i \ge 2$. By symmetry, we may assume that i = d + 1. We have to show that $v' \in h_{d+1}^+$ for every $h_{d+1} \in H_{d+1}^*$. Assume to the contrary that $v' \notin h_{d+1}^+$ for some $h_{d+1} \in H_{d+1}^*$. Setting $k = (h'_1, \dots, h'_d, h_{d+1})$, we

Assume to the contrary that $v' \notin h_{d+1}^+$ for some $h_{d+1} \in H_{d+1}^*$. Setting $k = (h'_1, \ldots, h'_d, h_{d+1})$, we clearly have $k \in \mathcal{H}^*$. The simplices $\triangle(k)$ and $\triangle(h')$ share the vertex $v_{d+1} = \bigcap_{1}^{d} h'_i$. As $v_{d+1} \in h_{d+1}^+$, by the construction, $v' \notin h_{d+1}^+$ implies that h_{d+1} intersects the segment $[v_{d+1}, v']$ in a point u in its relative interior, see Fig. 1. On the other hand, we know that $u = \bigcap_{2}^{d+1} k_i$ is the vertex of $\triangle(k)$ opposite to $h'_1 = k_1$. Thus, u is closer to $h_1 = k_1$ than v' is. Therefore, we obtain that $\rho(k) < \rho(h')$, contradicting the definition of h'.

It follows from the above proof that Theorems 1.2 and 1.1 hold with c(d) = b(d).

3. A same type lemma for hyperplanes – First proof of Lemma 1.4

Before turning to the proof of Lemma 1.4, we need some preparation. A collection of $m \ge d + 1$ finite sets of points, $X_1, \ldots, X_m \subset \mathbb{R}^d$, is said to be *strongly separated* if every hyperplane intersects at most *d* of the sets conv X_i , $i \in [m]$. This property can be rephrased in several equivalent forms; see, e.g., [6,2,9,8].

Proposition 3.1. A collection of finite point sets X_1, \ldots, X_m in \mathbb{R}^d with $m \ge d + 1$ is strongly separated if and only if every d + 1 of them are strongly separated.

Proposition 3.2. A collection of finite sets X_1, \ldots, X_{d+1} in \mathbb{R}^d is strongly separated if and only if for every subset $I \subset [d+1]$ the sets $\bigcup_{i \in I} X_i$ and $\bigcup_{i \in [d+1] \setminus I} X_i$ can be strictly separated by a hyperplane.

Two transversals (x_1, \ldots, x_m) and $(y_1, \ldots, y_m) \in \prod_{i=1}^m X_i$ are said to be of the same type if the orientations of the simplices $\operatorname{conv}\{x_{i_1}, \ldots, x_{i_{d+1}}\}$ and $\operatorname{conv}\{y_{i_1}, \ldots, y_{i_{d+1}}\}$ are the same for all $1 \leq i_1 < i_2 < \cdots < i_{d+1} \leq m$. In other words, the signs of the determinants of the matrices

$$\begin{pmatrix} x_{i_1} & x_{i_2} & \dots & x_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{pmatrix} \text{ and } \begin{pmatrix} y_{i_1} & y_{i_2} & \dots & y_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

are the same.

Proposition 3.3. A collection of finite sets $X_1, ..., X_m$ in \mathbb{R}^d with $m \ge d + 1$ is strongly separated if and only if every pair of transversals of X_i ($i \in [m]$) are of the same type.

As usual, we say that a set of points $X \subset \mathbb{R}^d$ is in *general position* if no d + 1 elements of X lie on a hyperplane. We need the same type lemma of Bárány and Valtr [2] for points.

Theorem 3.4. (See [2].) For every positive integer d and every $m \ge d + 1$, there is a constant c(d, m) > 0 with the following property. Let X_1, \ldots, X_m be a collection of pairwise disjoint finite point sets in \mathbb{R}^d such that their union is in general position. Then there exist subsets $X_i^* \subset X_i$ with $|X_i^*| \ge c(d, m)|X_i|$ for all $i \in [m]$ such that the collection X_1^*, \ldots, X_m^* is strongly separated.

Now we turn to the proof of Lemma 1.4. We use the standard duality between points $a \in \mathbb{R}^d \setminus \{0\}$ and hyperplanes $h \subset \mathbb{R}^d$ with $0 \notin h$. Every hyperplane not passing through the origin 0 is of the form

$$h = \{ x \in \mathbb{R}^d \colon a \cdot x = 1 \},\tag{3.1}$$

with a unique $a \in \mathbb{R}^d \setminus \{0\}$. Conversely, every $a \in \mathbb{R}^d \setminus \{0\}$ gives rise to a unique hyperplane h via (3.1). By the general position assumption, no element of $\bigcup_{i=1}^{d+1} H_i$ passes through the origin. For any $i \in [d+1]$, let A_i denote the set of points dual to the hyperplanes in H_i via the standard duality (3.1).

Applying Theorem 3.4 to the sets $A_0 = \{0\}, A_1, \ldots, A_{d+1}$, we obtain a collection of subsets $A_0^* = \{0\}, A_1^* \subset A_1, \ldots, A_{d+1}^* \subset A_{d+1}$ with $|A_i^*| \ge c(d, d+2)|A_i|$ for all $i \in [d+1]$ such that all (d+2)-transversals of them are of the same type. The sets of hyperplanes dual to the elements of A_1^*, \ldots, A_{d+1}^* , denoted by H_1^*, \ldots, H_{d+1}^* , form a complete (d+1)-partite h-hypergraph $\mathcal{H}^*(H_1^*, \ldots, H_{d+1}^*)$, which is a subhypergraph of the original hypergraph \mathcal{H} .

Claim 3.5. The h-hypergraph \mathcal{H}^* is homogeneous.

Proof. We show that, given $h_i \in H_i^*$ and $h_j, k_j \in H_j^*$ (where $j \neq i$), h_i does not separate the points $v = \bigcap_{j \neq i} h_j$ and $u = \bigcap_{j \neq i} k_j$. By symmetry, it suffices to prove this in the case i = d + 1.

Consider the simplices $\triangle_0 = \triangle(h_1, \dots, h_{d+1}), \ \triangle_1 = \triangle(k_1, h_2, \dots, h_{d+1}), \ \triangle_2 = \triangle(k_1, k_2, h_3, \dots, h_{d+1}), \ \dots, \ \triangle_d = \triangle(k_1, \dots, k_d, h_{d+1}).$ Let u_i be the vertex opposite to h_{d+1} in \triangle_i . We have $u_0 = v$ and $u_d = u$. Obviously, it is sufficient to verify that h_{d+1} does not separate u_{i-1} and u_i for $i \in [d]$, see Fig. 2.

Again, by symmetry, it is enough to consider the case i = 1. Assume that h_1 and k_1 are given by the equations $a_1 \cdot x = 1$ and $a'_1 \cdot x = 1$, respectively. Set $a(t) = (1 - t)a_1 + ta'_1$ for $t \in [0, 1]$ and let h(t) be the hyperplane with equation $a(t) \cdot x = 1$, and let $\triangle(t)$ be the corresponding simplex (if it exists, which is not entirely clear at the moment) with vertex u(t) opposite to h_{d+1} .

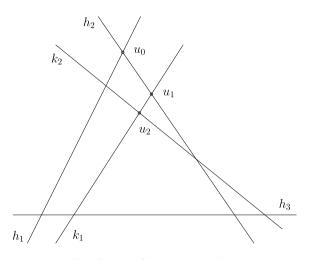


Fig. 2. Illustration for Claim 3.5, case d = 2.

We move h_1 to k_1 by the homotopy h(t) and check how u(t) behaves. The common vertex of \triangle_0 and \triangle_1 is $z = \bigcap_{i=1}^{d+1} h_i$. The segment $[z, u_0]$ is an edge of \triangle_0 . We define the half-line $L = \{z + \lambda(u_0 - z): \lambda > 0\}$.

We will show that $h(t) \cap L$ is a single point for every $t \in [0, 1]$. This will complete the proof, because $h(0) \cap L = u_0$, $h(1) \cap L = u_1$, and L lies completely on one side of h_{d+1} . Suppose the contrary and let $T \in [0, 1]$ be the smallest $t \in [0, 1]$ such that for all $\tau \in [0, t)$, $h(\tau) \cap L$ is a single point but $h(t) \cap L$ is not. (General position implies that T > 0.) This can happen in two different ways: either h(T) contains z or h(T) becomes parallel to L.

Case 1. $z \in h(T)$. Then the equations

$$a(T) \cdot x = 1,$$
 $a_2 \cdot x = 1,$..., $a_{d+1} \cdot x = 1$

have a common solution, namely z. The points $a(T) \in \operatorname{conv} A_1^*, a_2 \in A_2^*, \ldots, a_{d+1} \in \operatorname{conv} A_{d+1}^*$ lie on the same hyperplane, namely on $\{x: x \cdot z = 1\}$. But this is impossible, as A_1^*, \ldots, A_{d+1}^* satisfy Theorem 3.4.

Case 2. h(T) is parallel to L or, equivalently, to $u_0 - z$. Then $u_0 - z$ is a solution of the equations

 $a(T) \cdot x = 0, \qquad a_2 \cdot x = 0, \qquad \dots, \qquad a_d \cdot x = 0,$

and also to $a_0 \cdot x = 0$ where $a_0 = 0$. Therefore, the points $a_0 \in A_0^*$, $a(T) \in \operatorname{conv} A_1^*$, ..., $a_d \in \operatorname{conv} A_d^*$ lie on the same hyperplane, namely on the one with equation $x \cdot (u_0 - z) = 0$. This is again impossible. \Box

In view of the above arguments, in Lemma 1.4 and in Theorems 1.1 and 1.2, one can take $c(d) = b(d) = c(d, d+2) = 2^{-(d+1)2^d}$, where c(d, d+2) comes from Theorem 3.4.

4. Semi-algebraic relations – Second proof of Lemma 1.4

A real semi-algebraic set in \mathbb{R}^d is the locus of all points that satisfy a given finite Boolean combination of polynomial equations and inequalities in the *d* coordinates. We say that the *description complexity* of such a set is at most *s* if in some representation the number of equations and inequalities is at most *s* and each of them is of degree at most *s*. Such a representation is usually called *quantifier-free*. Note that semi-algebraic sets can also be defined using quantifiers involving additional variables, but these quantifiers can always be eliminated (see [3]).

Let H_1, \ldots, H_m be families of semi-algebraic sets of constant description complexity, and let R be an *m*-ary relation on $\prod_{i=1}^{m} H_i$. We assume that R is also semi-algebraic, in the following sense. We associate each $h \in H_i$ with a point $\overline{h} \in \mathbb{R}^{d_i}$ (say, with the point whose coordinates are the coefficients of the monomials in the polynomial inequalities defining h). We say that R is a semi-algebraic m-ary relation if its corresponding representation

$$\overline{R} = \left\{ (\overline{h}_1, \dots, \overline{h}_m) \in \mathbb{R}^{d_1 + \dots + d_m} \mid h_1 \in H_1, \dots, h_m \in H_m \ (h_1, \dots, h_m) \in R \right\}$$

is a semi-algebraic set.

We need the following result of Fox et al. [5]. Its proof is based on the case m = 2, established by Alon et al. [1].

Theorem 4.1. Let $\alpha > 0$, let H_1, \ldots, H_m be finite families of semi-algebraic sets of constant description complexity, and let R be a fixed semi-algebraic m-ary relation on $H_1 \times \cdots \times H_m$ such that the number of m-tuples that are related (resp. unrelated) with respect to R is at least $\alpha \prod_{i=1}^{m} |H_i|$. Then there exists a constant c' > 0, which depends on α is a related to α . which depends on α , m and on the maximum description complexity of the sets in H_i ($i \in [m]$) and R, and there exist subfamilies $H_i^* \subseteq H_i$ with $|H_i^*| \ge c'|H_i|$ ($i \in [m]$) such that $\prod_{i=1}^m H_i^* \subset R$ (resp. $\prod_{i=1}^m H_i^* \cap R = \emptyset$).

Proof of Lemma 1.4. We apply Theorem 4.1 with m = d + 1 for the families of hyperplanes H_i , $i \in$ [d+1]. As in the previous section, we associate each hyperplane $h_i \in H_i$ with its dual vector $a_i \in I_i$ $\mathbb{R}^d \setminus \{0\}$ satisfying

$$h_i = \{ x \in \mathbb{R}^a \colon a_i \cdot x = 1 \}.$$

As in (1.1), given a (d + 1)-tuple of hyperplanes $(h_1, \ldots, h_{d+1}) \in \prod_{i=1}^{d+1} H_i$, for every $i \in [d + 1]$, let $v_i = \bigcap_{j \in [d+1] \setminus \{i\}} h_j$. That is, v_i is the unique solution of the equations $a_j \cdot x = 1$ for $j \in [d+1] \setminus \{i\}$. Using the assumption that the hyperplanes are in general position, we have $v_i \notin h_i$. Therefore, v_i must lie in one of the open half-spaces bounded by h_i , depending on $sign(a_i \cdot v_i - 1)$. Define 2^{d+1} different (d + 1)-ary relations on $\prod_{i=1}^{d+1} H_i$, depending on the sign pattern

$$(sign(a_1 \cdot v_1 - 1), \dots, sign(a_{d+1} \cdot v_{d+1} - 1))$$

For example, one of these relations is the relation R^+ , according to which (h_1, \ldots, h_{d+1}) are related if and only if sign $(a_i \cdot v_i - 1) > 0$ for all $i \in [d+1]$. Obviously, each (d+1)-tuple $(h_1, \ldots, h_{d+1}) \in \prod_{i=1}^{d+1} H_i$ is related by precisely one of the above relations. Therefore, for at least one relation R, the number of (d + 1)-tuples related with respect to R is at least $\frac{1}{2^{d+1}}\prod_{i=1}^{d+1}|H_i|$. Hence, if R is a semi-algebraic relation, then Lemma 1.4 follows directly from Theorem 4.1.

To see that the above relations are semi-algebraic, it is sufficient to observe the following. Let A be the *d* by *d* matrix whose columns are a_2, \ldots, a_{d+1} , and write A_k for the matrix obtained from A by replacing its kth column by a column whose each entry is 1. Since v_1 is the unique solution of the equations $a_j \cdot x = 1$ for $j \in [d+1] \setminus \{1\}$, by Cramer's rule we obtain that the *k*th coordinate of $v_1 \in \mathbb{R}^d$ is det A_k / det A. Thus, we have

$$a_1 \cdot v_1 - 1 = \sum_{k=1}^d a_{1k} \frac{\det A_k}{\det A} - 1,$$

where a_{1k} denotes the *k*th component of a_1 . Consequently,

$$\operatorname{sign}(a_1 \cdot v_1 - 1) = \operatorname{sign}\left[\det A\left(\sum_{k=1}^d a_{1k} \det A_k\right) - \left(\det A\right)^2\right].$$

The last expression in square brackets is a polynomial in the variables a_{ik} , $i \in [d + 1]$, $k \in [d]$. Analogously, sign $(a_2 \cdot v_2 - 1), \ldots, sign(a_{d+1} \cdot v_{d+1} - 1)$ can be written as the sign of a polynomial, which implies that the above relations are indeed semi-algebraic. \Box

This proof gives a weaker constant in Lemma 1.4 and consequently in Theorem 1.1. Namely, using a quantitative version of a weaker form of Theorem 4.1 obtained by Bukh and Hubard [4], we obtain

87

 $c(d) = b(d) = 3^{-(d+1)3^{d^2+d+1}}$. Note that Fox et al. [5] used Theorem 4.1 to establish a much stronger structure theorem for semi-algebraic relations.

Acknowledgments

Part of this work was done at Centre Interfacultaire Bernoulli, EPFL, Lausanne. Research partially supported by NSF Grant CCF-08-30272, by Swiss National Science Foundation Grants 200020-144531 and 200021-137574, by ERC Advanced Research Grant 267165, by Hungarian Science Foundation EuroGIGA Grants OTKA NN 102029 and OTKA 78439. The authors are grateful to R. Radoičić for his valuable suggestions.

References

- N. Alon, J. Pach, R. Pinchasi, M. Radoičić, M. Sharir, Crossing patterns of semi-algebraic sets, J. Combin. Theory Ser. A 111 (2005) 310–326.
- [2] I. Bárány, P. Valtr, Positive fraction Erdős-Szekeres theorem, Discrete Comput. Geom. 19 (1998) 335-342.
- [3] S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edition, Springer, Berlin, 2006.
- [4] B. Bukh, A. Hubard, Space crossing numbers, in: Symposium on Computational Geometry, ACM Press, 2011, pp. 163-170.
- [5] M. Gromov, V. Lafforgue, A. Naor, J. Pach, Overlap properties of geometric expanders, J. Reine Angew. Math. 671 (2012) 49–83.
- [6] J.E. Goodman, R. Pollack, R. Wenger, Geometric transversal theory, in: J. Pach (Ed.), New Trends in Discrete and Computational Geometry, Springer-Verlag, New York, 1991.
- [7] R.N. Karasev, Dual central point theorems and their generalizations, arXiv:0909.4915, and also Mat. Sb. 199 (2008) 1459–1479.
- [8] J. Matoušek, Lectures on Discrete Geometry, Springer, Heidelberg, 2002.
- [9] J. Pach, A Tverberg-type result on multicolored simplices, Comput. Geom. 1 (1998) 71–76.
- [10] H. Tverberg, A generalization of Radon's theorem, J. Lond. Math. Soc. 41 (1966) 123–128.