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We show that a convex body can pass through a triangular hole iff it can do so by a
translation along a line perpendicular to the hole. As an application, we determine the
minimum size of an equilateral triangular hole through which a regular tetrahedron with
unit edge can pass. The minimum edge length of the hole is (1 + √

2)/
√

6 ≈ 0.9856. One
of the key facts for the proof is that no triangular frame can hold a convex body. On the
other hand, we also show that every non-triangular frame can fix some tetrahedron.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω be a compact convex disk in a plane. By a frame we mean the boundary ∂Ω of Ω . Suppose that the frame ∂Ω is
attached to a convex body K ⊂ R

3, that is, K ∩ Ω �= ∅ and int(K ) ∩ ∂Ω = ∅, where int(K ) denotes the interior of K . If the
frame ∂Ω can be removed away from K by a continuous rigid motion of ∂Ω (or K ) with keeping int(K )∩ ∂Ω = ∅, then we
say ∂Ω can slip out of K , otherwise, we say ∂Ω holds K . A unit regular tetrahedron is a regular tetrahedron with unit edges.
For example, a circular frame of diameter 1/

√
2 + ε can hold a unit regular tetrahedron if ε is sufficiently small, see Fig. 1.

Zamfirescu [10] proved that most convex bodies can be held by a circular frame. More precisely, the convex bodies in
R

3 that cannot be held by any circular frame form a nowhere dense subset of the space of all convex bodies in R
3 with

Hausdorff metric. We first show that a triangular frame is quite different from a circular frame as follows.

Theorem 1. A triangular frame attached to a convex body can always slip out of the convex body. Thus no triangular frame can hold a
convex body.

Regarding a frame as the boundary of a hole in a plane, we may consider whether a given convex body can pass through
the hole. Itoh and Zamfirescu [3] studied the size of a hole (diameter and width) through which a regular simplex of unit
edges can pass. Itoh, Tanoue, and Zamfirescu [2] determined the smallest circular hole and the smallest square hole through
which a unit regular tetrahedron can pass, see also [6] for the problem in higher dimensions. Concerning a triangular hole,
we have the following.
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Fig. 1. A circular frame fixes a tetrahedron.

Theorem 2. A convex body K can pass through a triangular hole � iff K can be congruently embedded in a right triangular prism with
base �.

Thus, if a convex body can pass through a triangular hole, then it can do so by a continuous translation of the convex
body along a line perpendicular to the plane containing the hole. Similar assertion is not true for a circular hole. For
example, when a regular tetrahedron passes through a circular hole of the smallest possible size, rotations are necessary,
see [2], and [6] for higher dimensional cases.

It is proved in [7] that an equilateral triangular prism can contain a unit regular tetrahedron iff the edge length of the
base equilateral triangle of the prism is at least (1 + √

2)/
√

6. Hence we have the following.

Theorem 3. A unit regular tetrahedron can pass through an equilateral triangular hole iff the edge length of the hole is at least
(1 + √

2)/
√

6.

Finally we consider a fixing problem for non-triangular frames. We say that Mt is a rigid motion if Mt : R
3 → R

3 is an
isometry for each 0 � t � 1 starting with the identity map M0, and Mt is a continuous function of t for 0 � t � 1. Let P be
the xy-plane in R

3, and let H ⊂ P be a convex disk. We say that H fixes the convex body K ⊂ R
3 if

i. K ∩ P ⊂ H , and
ii. if a rigid motion Mt satisfies (Mt K ) ∩ P ⊂ H for all t ∈ [0,1], then Mt P = P for all t .

This, of course, means that the frame ∂ H holds K because then no rigid motion can move K away from P . In this definition
one cannot require that Mt equals the identity. This is shown by the example in Fig. 1: if ε = 0, then the regular tetrahedron
is fixed by the circle but it can clearly be rotated.

Theorem 4. Every non-triangular frame fixes some tetrahedron.

2. A convex body through a triangular hole

Proof of Theorem 1. Suppose that the boundary ∂� is a triangular frame attached to a convex body K . Let ∂� = a ∪ b ∪ c
with three edges a, b, c. The triangle � divides K into two parts K + and K − . Let Ha be a supporting plane of K containing
the edge a. Then, a ⊂ Ha and int(K ) ∩ Ha = ∅. Define Hb similarly. Let H be the plane containing c and parallel to the line
� := Ha ∩ Hb . Then Ha, Hb, H determine a prism P . One of K +, K − is contained in P . (For otherwise, we can find a point
p ∈ K + and a point q ∈ K − both lying in the same side of H opposite to the prism P . Then the line segment pq does not
intersects �, contradicting that � cuts the convex body K .) If K + ⊂ P (resp. K − ⊂ P ), then K can slip out of the frame ∂�

by moving parallel to the line � towards K − (resp. K +) side. �
Let P be the xy-plane in R

3. For a convex disk Ω ⊂ P , the right Ω-prism (denoted by Ω × R) is the set obtained as the
union of those lines that intersect Ω perpendicularly. The set Ω is called the base of Ω × R. If Ω is an equilateral triangle
of edge length t , then the prism is called an equilateral triangular prism of size t .

Lemma 1. Let Ω ⊂ P be a convex disk, and let P = Ω × R. Then, for any convex disk Ω̃ obtained as a section of P by a plane, Ω can
be congruently embedded in Ω̃ .

Lemma 1 is a result due to Kovalyov [5] (answering a question of Zalgaller [9]), and independently, Debrunner and
Mani-Levitska [1] (answering a question of Pach [8]), see also Kós and Törőcsik [4].
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Fig. 2. Top views.

Now, let us regard a triangle � ⊂ P as a hole.

Proof of Theorem 2. If K is congruently embedded in � × R, then K can pass through � by a translation parallel to the
z-axis.

Suppose that K can pass through the hole �. Let ∂� = a ∪ b ∪ c. Suppose that K can go through the hole � from the
upper half space [z � 0] into the lower half space [z � 0]. Let Kt ,0 � t � 1, denote the continuously moving body congruent
with K , passing through the hole � from [z � 0] to [z � 0]; K0 ⊂ [z � 0], K1 ⊂ [z � 0]. For each t ∈ [0,1], the plane P
divides Kt into two parts, K +

t = K ∩ [z � 0] and K −
t = K ∩ [z � 0]. Let Ha

t be a supporting plane of Bt containing the edge
a. Then this is a continuously moving plane such that a ⊂ Ha

t and Ha
t ∩ int(Kt) = ∅. Define Hb

t similarly. Let Ht be the plane
containing c and parallel to the line Lt := Ha

t ∩ Hb
t . Then Ha

t , Hb
t , Ht determine a continuously moving triangular prism Pt .

Note that ∅ = K −
0 ⊂ P0, and ∅ = K +

1 ⊂ P1. Furthermore, for each t ∈ [0,1], one of K +
t , K −

t is contained in Pt as in the proof
of Theorem 1. Let α = sup{t ∈ [0,1]: K −

t ⊂ Pt}. Then, there is a monotone increasing sequence 0, t1, t2, t3, . . . such that
K −

tn
⊂ Ptn and limn→∞ tn = α. Hence, by the continuity, we have K −

α ⊂ Pα . Similarly, since t > α implies K +
t ⊂ Pt , we have

K +
α ⊂ Pα . Therefore, Kα ⊂ Pα .

Thus K can be congruently embedded in a triangular prism Pα with Pα ∩ P = �. By Lemma 1, Pα is congruently
embedded in � × R. Hence K can be congruently embedded in � × R. �
Corollary 1. If a convex body can pass through a triangular hole, then a whole process of passing through the hole can be realized by a
translation along a line perpendicular to the plane having the hole.

Proof of Theorem 3. Let �(d) denote an equilateral triangle with edge length d. Two congruent regular tetrahedra T1, T2 ⊂
�(d) × R are said to be equivalent if it is possible to superpose T1 on T2 by a continuous rigid motion of T1 within the
prism. Let ν(d) denote the maximum number of mutually non-equivalent embeddings of a unit regular tetrahedron into
�(d) × R. The following result is proved in [7]:

ν(d) =

⎧⎪⎪⎨
⎪⎪⎩

0 for d < d0 := 1 + √
2/

√
6 ≈ 0.9856,

6 for d0 � d < d1 := √
3 + 3

√
2/6 ≈ 0.9958,

18 for d1 � d < 1,

1 for 1 � d.

(1)

By (1) we have ν(d) �= 0 iff d � (1 + √
2)/

√
6. In other words, a unit regular tetrahedron can be congruently embedded

in �(d) × R iff d � (1 + √
2)/

√
6. Combining this result with Theorem 2, we get Theorem 3. �

Here we recall two important embeddings which are essentially used to show (1) in [7]. We are going to embed a
unit tetrahedron T = ABC D into �(d)-prisms. First, let us consider the case d = d0. Let h = d0/2 = (1 + √

2)/
√

24, and let
�0 ⊂ P be the triangle with vertices (±h,0,0), (0,

√
3h,0). Then �0 is an equilateral triangle of edge length d0. Let P be

the �(d0)-prism. Let k = (
√

2 − 1)/
√

24, � = 1/
√

2, and define four points A, B, C, D by

A = (k, �,−h), B = (−h,0,−k), C = (h,0,k), D = (−k, �,h).

Then one can check that these four points span a regular tetrahedron of edge length 1, which is contained in the �(d0)-
prism P , see Fig. 2 left.

Next we consider the case d = d1. Let �1 ⊂ P be the triangle with vertices

A′ =
(√

2

3
,0,0

)
, B ′ =

(
−

√
3 + √

2

6
,0,0

)
, E =

(
−

√
3 − √

2

12
,

√
6 + 1

4
,0

)
.

A straightforward calculation shows that �1 is an equilateral triangle with edge length d1. Let T = ABC D be the tetrahedron
with vertices
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A =
(√

2

3
,0,

1

3

)
, B =

(
−

√
3 + √

2

6
,0,

√
6 − 1

6

)
, C =

(√
3 − √

2

6
,0,−

√
6 + 1

6

)
, D =

(
0,

√
6

3
,0

)
.

Then T is a unit regular tetrahedron contained in the �1-prism, see Fig. 2 right.
What is the minimal area of a hole such that a unit regular tetrahedron ABC D can pass through it? This problem is

raised in [3]. Let ABC D be a unit regular tetrahedron in R
3 such that the edge AB lies on the z-axis. Then, by projecting

ABC D to P , we get an isosceles triangle with sides 1,
√

3/2,
√

3/2, whose area is 1/
√

8. Hence ABC D can pass through a
triangular hole of area 1/

√
8. In fact, this is the minimum area hole that a unit regular tetrahedron can pass through by

translation only. So, if we could find a smaller hole by allowing rotation for escape, then the hole would be of non-triangular
shape.

Problem 1. Is 1/
√

8 the minimal area of a hole through which a unit regular tetrahedron can pass?

In this paper, we have considered problems in R
3. In higher dimensions, the following is proved in [6]. If a regular

n-simplex �n in R
n can pass through a hole of a regular (n − 1)-simplex with side length �n , then

√
1 − (1/n) < �n < 1.

3. Tetrahedra fixed by a non-triangular frame

Let P be the xy-plane in R
3, and let H ⊂ P be a convex disk. An alternative description of fixing is the following: H fixes

the convex body K ⊂ R
3 if K ∩ P ⊂ H and if a rigid motion Mt : R

3 → R
3 satisfies K ∩ (M−1

t P ) ⊂ M−1
t H for all t ∈ [0,1],

then Mt P = P for all t . We need one more definition. A convex disk C ⊂ R
3 fits into H if H contains a congruent copy of C .

It is clear that if C fits into H , then the diameter, width, area of C is at most as large as that of H .
We will use two easy facts (Lemmas 2 and 3 below) from elementary plane geometry. Let R be the first quadrant of P .

For positive reals p,q and ε, let Dε(p,q) be the ε-disk centered at (p,q), that is, Dε(p,q) = {(x, y): (x− p)2 +(y −q)2 < ε2}.

Lemma 2. Let ε > 0 and p1,q1 > 2ε. Then, for all (x1, y1) ∈ Dε(p1,q1) ∩ R, the maximum

max
{
(x1 − x)2 + (y1 − y)2: (x, y) ∈ Dε(0,0) ∩ R

}
is attained only at (x, y) = (0,0).

In other words, the origin is the unique farthest point in Dε(0,0) ∩ R from any point in Dε(p1,q1) ∩ R , which easily
follows from the positions of (x, y), (x1, y1) and (0,0).

For a,b, c ∈ R
3, we write [a,b] for the line segment from a to b, and dist(c, [a,b]) for the distance from c to [a,b].

Lemma 3. Let a = (α,0,0),b = (β,0,0) and c = (γ ,h,0), where h > 0. Suppose that the triangle abc has a unique longest side
[a,b]. Then,

L(c) := {
(x, y,0): 0 � y < h, x ∈ R

} ⊂ P

cannot contain a congruent copy of �abc.

Proof. The width of �abc, that is, the shortest height of the triangle, is dist(c, [a,b]) = h. So, the result follows. �
We also need a stronger version of Lemma 1, namely, the embedding obtained in Lemma 1 is continuous in the sense

described below. For an isometry f and a compact set C , let ‖ f ‖C := maxz∈C | f (z) − z|.

Lemma 4. Let Ω ⊂ P and Ω̃ be as in Lemma 1. Then, for every ε > 0 there is a δ > 0 such that for any rigid motion Mt with
M1(Ω̃) ⊂ P and ‖M1‖Ω < δ, one can find an isometry g on P with g(Ω) ⊂ M1(Ω̃) and ‖g‖Ω < ε.

This is an easy consequence of a result from [4]. For convenience we include a sketch of the proof here.

Proof. By choosing a suitable coordinate system on P , we may assume that there exist a λ � 1 and a map pλ : (x, y) �→
(x, λy) with pλ(Ω) = Ω̃ ′ , where Ω̃ ′ ⊂ P is a congruent copy of Ω̃ . It is proved in [4] that there are two points E, F ∈ ∂Ω

with the following property:

Let E ′ = pλ(E) and F ′ = pλ(F ) be points on ∂Ω̃ ′ . Choose F ′′ on the line segment [E ′, F ′] so that |E ′ − F ′′| = |E − F |. Let
h be the rotation preserving isometry on P sending E and F to E ′ and F ′′ , respectively. Then, h(Ω) ⊂ Ω̃ ′ .

Let Nt be a rigid motion with N1(Ω̃) = Ω̃ ′ . Then g := M1 ◦ N−1
1 ◦ h is the desired isometry. Indeed, g(Ω) ⊂ M1(Ω̃) follows

from the construction. If ‖M1‖Ω is small, then we see that ‖N1‖Ω , λ − 1, and ‖h‖Ω are small as well. In fact, by choosing
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Fig. 3. Case 1. (a,b) ⊂ int H .

δ sufficiently small, we can guarantee that ‖M1‖Ω < δ implies max{‖M‖Ω,‖N1‖Ω,‖h‖Ω } < ε/3. So it follows that ‖g‖Ω �
‖M1‖Ω + ‖N1‖Ω + ‖h‖Ω < ε. �
Proof of Theorem 4. Let H ⊂ P be a non-triangular convex disk. We construct a tetrahedron T fixed by H . Let f (x, y) =
|x − y| be the distance function, restricted to (x, y) ∈ H × H .

Case 1. There is a local maximum of f at (a,b) such that the open segment (a,b) ⊂ int H .

We may assume that |a − b| = 1. So let a = (0,0,0) and b = (1,0,0). Choose two points c = (cx, c y,0) and d = (dx,dy,0)

on ∂ H in the opposite side with respect to the x-axis, that is, c ydy < 0. Let Q := conv{a, c,b,d} ⊂ H be the convex hull of
{a,b, c,d}. We construct a tetrahedron T fixed by H so that Q = T ∩ P .

Choose a point A on the z-axis. If the lines ad and bc intersect, then let � be a line passing through the intersection and
A, else if ad ‖ bc, then let � be a line passing through A and parallel to ad. Let B be the intersection of the line � and the
plane x = |a − b| = 1. Let D be the intersection of the lines Bd and Aa. Since two lines Ac and Bb intersects by Desargues’s
theorem, let C be the intersection. Then,

ab ⊥ AD, ab ⊥ BC, and two lines AD and BC are skew, (2)

see Fig. 3.
Let T = ABC D be our tetrahedron. Now let us verify that the four vertices a, c,b,d are all on the edges of T . To see

this, it is enough to check that A and B sit in the same half-space according to the plane P , while C and D are in the
other half-space. By direct computation, this is equivalent to the condition that x-coordinates of c and d are in (0,1), and
y-coordinates of c and d have opposite signs. In fact, this property is equivalent to our assumption that (a,b) is a local
maximum of f . Consequently, we have Q = T ∩ P .

We fix the tetrahedron T and we try to move the frame ∂ H . If we can move the frame within P only, then, by definition,
T is fixed by H . Now suppose that we can move the frame slightly and it is on the plane P̃ �= P . More precisely, we consider
a rigid motion Mt such that T ∩ (M−1

t P ) ⊂ M−1
t H for all t ∈ [0,1] and M−1

1 P = P̃ . Then, by (2), we have Mta = a and
Mtb = b for all t . So Mt is a rotation around the line ab, and thus P ∩ P̃ coincides with the line ab.

Let Q̃ = conv{a,b, c̃, d̃} be the section of our tetrahedron by the plane P̃ , where c̃ (resp. d̃) is on the edge [A, C] (resp.
[B, D]), and let Q ′ = conv{a,b, c′,d′} ⊂ P be the projection of Q̃ to P . Then, c′ is on the line ac, because c̃ is on [A, C].
On the other hand, c̃ is obtained by rotating c around the line ab, and so c′ is an interior point of �abc. This contradiction
completes the proof of Case 1.

Next we assume that we are not in Case 1, that is, if f has a local maximum at (a,b) ∈ H × H , then the open segment
(a,b) is on the boundary of H . Let a,b ∈ H and suppose that [a,b] is a diameter of H . Then [a,b] ⊂ ∂ H , otherwise we
are in Case 1. We may assume that H is contained in the first quadrant of P and |a − b| = 1. So put a = (0,0,0) and
b = (1,0,0) on the x-axis. Define a distance function from b by fb(x) = |x − b| for x ∈ H0 := ∂ H \ (a,b). Then, fb(x) is
monotone increasing as x moves from b to a along H0. To see this, suppose, to the contrary, that there is c ∈ H0 such that
fb has a local maximum at c ∈ H0. Then [b, c] ⊂ ∂ H . Since H is not a triangle, we have (a, c) ⊂ int H . But, by Lemma 2,
f has a local maximum at (a, c). This means that we are in Case 1, a contradiction. So fb is monotone, and similarly
fa(x) := |x − a| for x ∈ H0 is also monotone.

Case 2. There is a diameter [a,b] ⊂ ∂ H of H , and fa is monotone.

We will choose c,d ∈ H0, and ai,bi, ci,di (i = 1,2) from P , see Fig. 4. We start with the following construction.

Lemma 5. There are points c,d ∈ H0 and d1, c1, c2 ∈ P such that c is the midpoint of [c1, c2] and [c1, c2]∩ H = {c}, [d1, c1] is parallel
with [d, c], [a,d1] ∩ H = [a,d], dist(c, [a,b]) � dist(d, [a,b]), and the line c1c2 intersects the line ab at z with b ∈ [a, z].
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Fig. 4. Case 2. [a,b] = diam H .

Proof. Let v be the farthest point of H from [a,b]. Suppose [b, v] ⊂ ∂ H . Then v would do for c, we just let z = 2b − a and
choose a suitable pair of point c1, c2 on the line cz. We find d above the chord [a, v] as follows. Let � be the line parallel
with [a, v] and supporting H between a and v . As H is not a triangle, (a, v) ⊂ int H , and so � is disjoint from the chord
[a, v]. Let d be the point in � ∩ H closest to [a,b]. The position of d1 on the line ad is determined by the condition that
[c1,d1] parallel with [d, c].

If both (a, v), (b, v) ⊂ int H , then let d be the same point as before. We find c above the chord [b, v] just as d was found
above [a, v]. We assume (by swapping H with its mirror image if necessary), that dist(c, [a,b]) � dist(d, [a,b]). It is clear
that there is a supporting line �c to H with H ∩ �c = {c}, and that �c intersects the line ab at a point z with b ∈ [a, z]. We
can choose the points c1, c2 on �c satisfying all the conditions, and then find d1 on the line ad such that [c1,d1] parallel
with [d, c]. �

Here the segment [c1, c2] can be chosen as small as needed. For i = 1,2, choose bi on the line ab so that bici is parallel
to bc, and choose d2 on the line ad so that c2d2 is parallel to cd. By choosing [c1, c2] sufficiently short we can make sure
that d2 lies in the interior of the segment [a,d]. Let a1 = a2 = a. Set Q i = conv{ai,bi, ci,di} for i = 1,2. Let e be the unit
(upward) normal vector of the plane P . Let T be the tetrahedron delimited by the planes aff{a,b,a1 + e}, aff{b, c,b1 + e},
aff{c,d, c1 + e}, and aff{d,a,d1 + e}. By the construction, we have

T ∩ P = Q = conv{a,b, c,d},
T ∩ (P + e) = Q 1 + e = conv{a1 + e,b1 + e, c1 + e,d1 + e},
T ∩ (P − e) = Q 2 − e = conv{a2 − e,b2 − e, c2 − e,d2 − e}.

We fix the tetrahedron T and we try to move the frame ∂ H . Suppose that we can move the frame slightly and it is on
the plane P̃ . Namely, we consider a rigid motion Mt such that T ∩ (M−1

t P ) ⊂ M−1
t H for all t ∈ [0,1] and M−1

1 P = P̃ . Our
goal is to show that Mt is the identity, which means T is fixed by H . The plane P̃ intersects the edge [a1 + e,a2 − e] in the
point ã. Define b̃, c̃ and d̃ similarly. By the construction, we have T ∩ P = Q ⊂ H , and Q̃ := T ∩ P̃ = conv{ã, b̃, c̃, d̃} ⊂ M−1

1 (H)

fits into H . Let a′ denote the orthogonal projection of ã onto the plane P . Define b′, c′ and d′ similarly. Notice that a′ = a,
b′ ∈ [b1,b2], c′ ∈ [c1, c2], d′ ∈ [d1,d2].

Choose ε > 0 so that 6ε < min{cx, c y}, where c = (cx, c y,0). (We will need this to apply Lemma 2 later.) We plug this ε

into Lemma 4 to get δ. Assume that Q and Q̃ differ only slightly. More precisely, we assume that

|c̃ − c| < ε/3, and ‖M1‖H < δ/3 < ε/3.

By Lemma 1, a′b′c′d′ also fits into H , and moreover, by Lemma 4, we can find an embedding close to the original position,
that is, there is an isometry g : P → P satisfying a′′b′′c′′d′′ := g(a′b′c′d′) ⊂ H and ‖g‖H < ε/3. Then we have |c′′ − c′| =
|g(c′) − c′| � ‖g‖H < ε/3, |c′ − c̃| � ‖M1‖H < ε/3, and |c̃ − c| < ε/3. Thus we get |c′′ − c| � |c′′ − c′| + |c′ − c̃| + |c̃ − c| < ε.
Similarly, we get |M1c̃ − c| � |M1c̃ − c̃| + |c̃ − c| � ‖M1‖H + ε/3 < 2ε/3. In summary, we have{

c′′, M1c̃
} ⊂ Dε(c). (3)

Since c′′ ∈ Dε(c) by (3), we can apply Lemma 2 to get∣∣c′′ − a′′∣∣ �
∣∣c′′ − a′∣∣.

By Lemma 3, �a′b′c′ does not fit into L(c′). The same is true for �a′′b′′c′′ (≡ �a′b′c′). So we have c′′ ∈ H \ L(c′). Let c′
H

(resp. c′′
H ) be the intersection of ∂ H and the line ac′ (resp. ac′′), see Fig. 5.

Since c′′ ∈ H \ L(c′), using the monotonicity of fa , we have∣∣c′′
H − a′∣∣ �

∣∣c′
H − a′∣∣.

Therefore we have∣∣c′′ − a′′∣∣ �
∣∣c′′ − a′∣∣ �

∣∣c′′
H − a′∣∣ �

∣∣c′
H − a′∣∣ �

∣∣c′ − a′∣∣ = ∣∣c′′ − a′′∣∣,
and thus |c′′ − a′′| = |c′′ − a′| = |c′ − a′|. Then, by Lemma 2, |c′′ − a′′| = |c′′ − a′| gives (a =)a′ = a′′ . Also c′′ ∈ H \ L(c′) and
|c′′ − a′| = |c′ − a′| give c′ = c′′ , which is only possible if c′ = c′′ = c = c̃.
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Fig. 5. c′
H , c′′

H ∈ ∂H .

We will show that a = ã. Observe that M1(Q̃ ) ⊂ H and

dist
(
M1c̃, M1[ã, b̃]) = dist

(
c̃, [ã, b̃]) = dist

(
c, [ã, b̃]) � dist

(
c, [a,b]),

where the last inequality follows from the fact that [ã, b̃] is contained in the plane y = 0, namely, the plane whose distance
to c equals dist(c, [a,b]). So, by Lemma 3, the triangle M1(�ãb̃c̃) does not fit into L(c), and thus M1c̃ ∈ H \ L(c). Then we
have

|M1ã − M1c̃| � |a − M1c̃| � |a − c|,
where we use M1c̃ ∈ Dε(c) from (3) to apply Lemma 2 for the first inequality, and we use the monotonicity of fa for the
second inequality. On the other hand |M1ã − M1c̃| = |ã − c̃| = |ã − c| � |a − c| where the last inequality follows from the
construction. Thus |M1ã − M1c̃| = |ã − c| = |a − c| and then ã = a follows.

Now it follows from ã = a and c̃ = c that Mt is a rotation around the line ac. Thus b̃ is obtained by rotating b around
ac. In this case, b �= b̃ is impossible because bb′ �⊥ ac. Therefore we have ã = a, b̃ = b and c̃ = c. Thus P̃ = P and Mt is the
identity. This completes the proof of Case 2 and also of the theorem. �

Similarly to the proof of Theorem 4, one can show the following: for every convex quadrilateral H ⊂ P , there is a
tetrahedron T such that T is fixed by H and H = T ∩ P . Conversely, if we are given a tetrahedron first, then can we find
such a quadrilateral frame?

Problem 2. Let T be a tetrahedron. Is it true that there is a plane P such that H := T ∩ P fixes T ?
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