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Abstract A k-fan in the plane is a point x ∈ R
2 and k halflines starting from x. There

are k angular sectors σ1, . . . , σk between consecutive halflines. The k-fan is convex
if every sector is convex. A (nice) probability measure μ is equipartitioned by the
k-fan if μ(σi) = 1/k for every sector. One of our results: Given a nice probability
measure μ and a continuous function f defined on sectors, there is a convex 5-fan
equipartitioning μ with f (σ1) = f (σ2) = f (σ3).

Keywords Measures · Convex k-fans · Equipartitions · Functions on sectors

1 Introduction

Let S2 be the unit sphere in R
3. A k-fan on the sphere S2 is formed by a point x ∈ S2

and k ≥ 3 great semicircles �1, . . . , �k , starting from x and ending at −x, listed in
anticlockwise order when seen from x. The spherical sector σi is delimited by �i and
�i+1 and its interior is disjoint from all �j . The k-fan on the sphere is convex, by
definition, if the angle of each sector is at most π . Given a probability measure μ

on S2, the k-fan (x;�1, . . . , �k) equipartitions μ if μ(σi) = 1/k for all i.
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This paper is a continuation of the one by Bárány, Blagojević and Szűcs [3] which
is about the following question of Nandakumar and Ramana Rao [9]. Given an integer
k ≥ 2 and a convex set K ⊂ R

2 of positive area does there exist a convex k-partition
of K such that all pieces have the same area and the same perimeter? The case k = 2
is trivial. In [3] the existence of such a partition for k = 3 is proved by the following,
more general theorem.

Theorem 1.1 Assume μ is a Borel probability measure on S2 with μ(�) = 0 for all
great circles �, and f is a continuous function defined on the sectors in S2. Then
there is a convex 3-fan (x;�1, �2, �3) equipartitioning μ such that

f (σ1) = f (σ2) = f (σ3). (1)

We will explain later how this theorem settles the k = 3 case of the question of
Nandakumar and Ramana Rao. In this paper we prove analogous properties of con-
tinuous functions defined on the sectors of equipartitioning convex 4- and 5-fans.
Here are our main results.

Theorem 1.2 Assume μ is a Borel probability measure on S2 with μ(�) = 0 for all
great circles �, and f is a continuous function defined on the sectors in S2. Then

(1) there is a convex 4-fan equipartitioning μ with f (σ1) = f (σ3), f (σ2) = f (σ4),

(2) there is a convex 4-fan equipartitioning μ with f (σ1) = f (σ2), f (σ3) = f (σ4),

(3) there is a convex 5-fan equipartitioning μ with f (σ1) = f (σ2) = f (σ3),
(4) there is a convex 5-fan equipartitioning μ with f (σ1) = f (σ2) = f (σ4).

The theorem is proved by the standard configuration space/test map method with
some unusual twists. It is carried out in three steps:

• The set of all equipartitioning k-fans is known to be V2(R
3) the Stiefel manifold

of orthogonal two-frames in R
3. The configuration space V conv is going to be the

so called convex part of the set of all equipartitioning k-fans. It depends on the
measure μ. Its definition and its topological properties will be established in Sect. 2
by geometric methods, similar to the ones used in [3].

• Defining the suitable (Z4 and Z5-equivariant) test maps from V conv to the phase
space is done in Sect. 3. Some extra care has to be exercised in case (2) of The-
orem 1.2. We will show that the non-existence of such a test map implies Theo-
rem 1.2.

• The non-existence of such Z4 and Z5-equivariant maps is established in Theo-
rems 5.1 and 6.1 with the help of Serre spectral sequences of Borel constructions.
This is in Sects. 5 and 6.

It would be better to show that, under the conditions of Theorem 1.2, there is an
equipartitioning convex 4-fan resp, 5-fan with f (σ1) = f (σj ) for all i, j . But this is
too much to hope for as the following results show. The examples are in the plane R

2

but they work on S2 as well (see the remark below).

Theorem 1.3 There are absolutely continuous measures in the plane μ and ν such
that
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Fig. 1 (A) Central projection ρ, (B) correspondence Fk ←→ V2(R3)

(1) there is no convex 4-fan simultaneously equipartitioning μ and ν.
(2) there is no convex 5-fan equipartitioning μ such that ν(σi) = ν(σi+1) =

ν(σi+2) = ν(σi+3) for some i = 1,2,3,4,5, the subscripts are taken mod 5.
(3) there is no convex 4-fan and no t ∈ (0,1/3) such that μ(σi) = ν(σi) = t for three

subscripts i ∈ {1,2,3,4}.

The first part of the theorem is the result of Bárány and Matoušek [2, Theorem
1.1.(i).(d)]. The proof of their result is repeated in Sect. 7. The same section contains
the proof of the second and third parts. In all cases the construction works because
the convexity condition reduces the degree of freedom by one.

Remark Here is the short explanation on how Theorem 1.1 answers the question of
Nandakumar and Ramana Rao affirmatively. A k-fan in the plane is formed by a
point x ∈ R

2 and k halflines �1, . . . , �k , starting from x, listed in anticlockwise order
around x. There are k angular sectors σ1, . . . , σk determined by the fan. Here σi is
the sector between halflines �i and �i+1. The k-fan in the plane is convex if and only
if each of the sectors σ1, . . . , σk is convex.

It is easier to work with spherical fans than with planar ones mainly because S2

is compact. The plane R
2 is embedded in R

3 as the tangent plane to S2 at the point
(0,0,1). Let ρ : {(x1, x2, x3) ∈ S2 | x3 > 0} → R

2 be the central projection. The map
ρ lifts any nice measure in the plane to a nice measure on the sphere. Also, a k-fan
in the plane lifts to a k-fan on the sphere and a k-fan on the sphere projects to a
k-fan in the plane, Fig. 1(A). Also, convexity of the fan is preserved under lifting and
projection. Therefore any theorem about fan partitions in the plane is a consequence
of a similar and more general theorem about fan partitions on the sphere S2.

Remark In Theorem 1.2 the measure μ is required to satisfy μ(�) = 0 for all great
circles �. By a standard compactness argument it suffices to prove the theorem for a
dense set of Borel probability measures.
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2 Configuration Space of Equipartitioning Convex k-Fans

This section is taken from [3, Sections 3 and 4] with the view towards the high di-
mensional applications. Here we work with general k -fans for all k > 3 although
what we have in mind k = 4,5.

Let μ be an absolutely continuous (with respect to the Lebesgue measure) Borel
probability measure on S2 such that μ(�) = 0 for all great circles �. For k ≥ 3 con-
sider the following family of k-fans on S2:

Fk =
{
(x;�1, . . . , �k) | μ(σ1) = · · · = μ(σk) = 1

k

}
.

For (x;�1, . . . , �k) ∈ Fk , let y = �1 ∩ (span{x})⊥ ∈ S2 and z ∈ (span{x})⊥ ∩
(span{y})⊥ ∩S2 be such that the base (y, z) of the linear space (span{x})⊥ induce the
orientation given by ordering of great semicircles (�1, . . . , �k), Fig. 1(B). Thus, z =
x × y, where × denotes the cross product. The correspondence (x;�1, . . . , �k) 	−→
(x, y) induces a homeomorphism between the family of fans Fk and the Stiefel man-
ifold V2(R

3). Let Zk = 〈ε〉 be a cyclic group. There is natural free Zk-action on Fk

given by

ε · (x;�1, . . . , �k) = (x;�2, . . . , �k, �1).

The main objective of this section is to describe the subfamily of all convex k-fans
contained in Fk as a Zk-invariant subspace.

Let p : (Fk = V2(R
3)) → S2 denotes the S1 fibration given by (x;�1, . . . , �k) =

(x, y) 	−→ z = x × y and let h : S2 → R be the function defined by h(z) = μ(H(z)),
where H(z) = {v ∈ S2 | v · z ≤ 0} is the lower hemisphere with respect to z. As
shown in [3], one can assume that the composition h : S2 → R is a smooth map and
that has a regular value at the point 1

k
, i.e., h−1({ 1

k
}) is an 1-dimensional embedded

submanifold of S2, [5, Corollary 7.4, p. 84].

Lemma 2.1 For the fan (x;�1, . . . , �k) = (x;σ1, . . . , σk) = (x, y), z = x × y =
p(x, y), the sector σk is not convex if

(h ◦ p)(x;σ1, . . . , σk) = h(z) <
1

k
.

Proof Since μ(σk) = 1
k

and μ(H(z)) < 1
k

, then σk properly contains the hemisphere
H(z) and therefore is not convex. �

Direct consequence of the previous lemma is the characterization of the (non)convex
k-fans:

(x;σ1, . . . , σk) is convex ⇐⇒ (∀i ≥ 0)(h ◦ p)
(
εi(x;σ1, . . . , σk)

) ≥ 1

k

or

(x;σ1, . . . , σk) is not convex ⇐⇒ (∃i ≥ 0)(h ◦ p)
(
εi(x;σ1, . . . , σk)

)
<

1

k
.
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Fig. 2 The cycles Si and discs Ωi

Lemma 2.2 After a possible rotation of the measure μ, the circle

C = {
(e3, y) ∈ V2

(
R

3) | y ∈ S
((

span{e3}
)⊥)} ⊂ V2

(
R

3)

is invariant under the Zk-action and every point (e3, y) ∈ C defines a convex k-fan.

Proof The following result of Dolnikov [7] and Živaljević, Vrećica [10] is needed.

For n ≤ d probability measures in R
d , there exists a (n− 1)-dimensional affine

subspace such that the measure of every halfspace containing this affine sub-
space is at least 1

d+2−n
in every one of the k measures.

We use it with d = 3 and n = 2. Let the first measure be μ and the second one
concentrated at the origin. Then the affine space is a line passing through the origin.
We may assume, by rotating S2 if necessary, that the line passes through e3. Since
k > 3, then h(e3 × y) ≥ 1

3 > 1
k

for every y ∈ S((span{e3})⊥). Thus, the circle C is
invariant under the Zk-action and each (e3, y) ∈ C defines a convex k-fan. �

The point 1
k

is the regular value of the function h. Thus, h−1({ 1
k
}) is an

1-dimensional embedded submanifold of S2, i.e., union of disjoint cycles Si , i ∈
[m] = {1, . . . ,m}. The image p(C) is the equator of the sphere S2 and h(e3 × y) > 1

k

for every y ∈ p(C). Therefore, every cycle Si is disjoint from the equator p(C) and
so belongs to the upper or lower hemisphere.

Let Ωi denote the closed disc bounded by Si , ∂Ωi = Si , and not containing p(C).
Notice that also p(C) ∩ Ωi = ∅. Let Ui = p−1(Ωi) and Ti = p−1(Si). The fibrations
p : Ui → Ωi is the fibration over the contractible space Ωi and therefore homeo-
morphic to the trivial fibration. Thus Ui ≈ S1 × Ωi is a solid torus and its boundary
Ti ≈ S1 × Si ≈ S1 × S1 is an ordinary torus.

The Zk-action is given by the homeomorphism ε : V2(R
3) → V2(R

3). Hence
Ui, ε · Ui, . . . , ε

k−1 · Ui are solid tori and Ti, ε · Ti, . . . , ε
k−1 · Ti are ordinary tori

for every i ∈ [m]. The relationships between these tori are described in the following
proposition which is just the modification of [3, Claim 3.7, 3.8, 3.9].
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Proposition 2.3

(1) The cycle C is disjoint from all solid tori Ui, ε · Ui, . . . , ε
k−1 · Ui , i ∈ [m].

(2) εα · Ti ∩ εβ · Tj �= ∅ =⇒ i = j and α = β .
(3) The tori Ui, ε · Ui, . . . , ε

k−1 · Ui are pairwise disjoint, i ∈ [m].

Proof

(1) Let us assume that C ∩ εα · Ui �= ∅. Since ε · C = C, we have

C ∩ Ui �= ∅ =⇒ p(C) ∩ p(Ui) �= ∅ =⇒ p(C) ∩ Ωi �= ∅.

Contradiction with definition of Ωi .
(2) Let α = β and εα · Ti ∩ εα · Tj �= ∅. Then

Ti ∩ Tj �= ∅ =⇒ p(Ti) ∩ p(Tj ) �= ∅ =⇒ Si ∩ Sj �= ∅ =⇒ i = j.

Let 0 ≤ α < β ≤ k. Without losing the generality, we can assume that α =
0. Let (x;�1, . . . , �k) ∈ Ti ∩ εβ · Tj �= ∅. Then (x;�1, . . . , �k) ∈ Ti , ε−β ·
(x;�1, . . . , �k) = (x;�k−β+1, . . . , �k−β) ∈ Tj and consequently σk and σk−β are
hemispheres. This cannot be: a contradiction.

(3) In this part of the proof we use the Generalized Jordan Curve theorem [5, Corol-
lary 8.8, p. 353]. Since H1(V2(R

3),Z) = 0, every torus εα · Ti splits V2(R
3) into

two disjoint parts. Let us assume that εα · Ui ∩ εβ · Ui �= ∅, 0 ≤ α < β ≤ k.
Again, it is enough to consider the case α = 0. Since Ti ∩ εβ · Ti = ∅ and
H2(V2(R

3),Z) = 0 then the complement V2(R
3)\(Ti ∪ εβ · Ti) has three com-

ponents. The intersection Ui ∩ εβ · Ui is one of these three components with the
boundary Ti or εβ · Ti or Ti ∪ εβ · Ti . We discuss these three cases separately.
(a) Let ∂(Ui ∩ εβ · Ui) = Ti ⊂ Ui . Then Ui ⊆ εβ · Ui and consequently

Ui ⊆ εβ · Ui ⊆ ε2β · Ui ⊆ · · · ⊆ Ui.

Thus, Ui = εβ · Ui and so Ti = εβ · Ti , contradiction.
(b) Let ∂(Ui ∩ εβ · Ui) = εβ · Ti ⊂ εβ · Ui . Then εβ · Ui ⊆ Ui and consequently

εβ · Ui = Ui . Thus εβ · Ti = Ti gives the contradiction.
(c) Let ∂(Ui ∩εβ ·Ui) = Ti ∪εβ ·Ti . Then εβ ·Ti ⊆ Ui and so εβ ·Ui is contained

in Ui or its complement (εβ · Ui)
c is contained in Ui . Thus either Ui ∪ εβ ·

Ui = Ui or Ui ∪ εβ · Ui ⊇ (εβ · Ui)
c ∪ εβ · Ui = V2(R

3). The later is not
possible since C is disjoint from both Ui and εβ · Ui . Therefore εβ · Ui ⊆ Ui

and consequently εβ · Ui = Ui and εβ · Ti = Ti , contradiction. �

Since the cycles Si , i ∈ [m] are pairwise disjoint (Fig. 2), the discs Ωi and Ωj

are either disjoint or one is contained in the other. Consider the discs Ωi that are not
contained in any other disc Ωj . They are the maximal elements among the Ωi with
the respect to inclusion. For simpler writing we assume that these disks are Ωi with
i ∈ [r] where, of course, 1 ≤ r ≤ m. Consequently, the related Ui , i ∈ [r], are also
maximal between Ui with the respect to inclusion. Let us denote the Zk orbit of Ui

by O(Ui) := Ui ∪ (ε · Ui) ∪ · · · ∪ (εk−1 · Ui).
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Lemma 2.4 For distinct i, j ∈ [r], the orbits O(Ui) and O(Uj ) are either disjoint or
one is contained in the other.

Proof Let O(Ui) ∩ O(Uj ) �= ∅. Then there are α and β , α ≤ β , such that εα · Uk(i) ∩
εβ · Uk(j) �= ∅. Without losing the generality we can assume that α = 0. There are
two separate cases:

(1) Let β = 0. Then

Ui ∩ Uj �= ∅ =⇒ Ωi ∩ Ωj �= ∅ =⇒ Ωi ⊂ Ωj or Ωj ⊂ Ωi

=⇒ Ui ⊂ Uj or Uj ⊂ Ui

=⇒ O(Ui) ⊂ O(Uj ) or O(Uj ) ⊂ O(Ui).

(2) Let β �= 0. Since Ti ∩ εβ · Tk(j) = ∅ we see that the complement V2(R
3)\(Ti ∪

εβ · Tj ) has three components. One of them is Ui ∩ εβ · Uj with boundary either
Tj or εβ · Tj or Ti ∪ εβ · Tj . We discuss all three possibilities:
(a) Let ∂(Ui ∩ εβ ·Uj ) = Ti ⊂ Ui . Then Ui ⊆ εβ ·Uj and consequently the orbit

O(Ui) is contained in the orbit O(Uj ).
(b) Let ∂(Ui ∩εβ ·Uj) = εβ ·Tj ⊂ εβ ·Uk(j). Then εβ ·Uj ⊆ Ui and consequently

the orbit O(Uj ) is contained in the orbit O(Ui).
(c) Let ∂(Uj ∩εβ ·Uj) = Ti ∪εβ ·Tj . Consequently Ti ⊂ εβ ·Uj and εβ ·Tj ⊂ Ui .

Therefore εβ ·Uj ⊆ Ui or (εβ ·Uj )
c ⊆ Ui . Since (εβ ·Uj )

c ⊆ Ui implies that
Ui ∪εβ ·Uj = V2(R

3), and this is not possible, we conclude that εβ ·Uj ⊆ Ui

and consequently the orbit O(Uj ) is contained in the orbit O(Ui). �

Consider the following subset of the family of all equipartitioning k-fans on the
sphere S2:

V conv = V2
(
R

3)\
( ⋃

i∈[r]

⋃
α∈{0,...,k−1}

εα · Ui

)
.

The previous results imply that

(1) εα · Ui , for all i ∈ [r] and α ∈ {0, . . . , k − 1}, are pairwise disjoint closed solid
tori,

(2) every (x;�1, . . . , �k) = (x, y) ∈ V conv is a convex k-fan,
(3) C ⊂ V conv and V conv are Zk-invariant subspaces of V2(R

3).

Therefore the set V conv will be called the convex part of V2(R
3). Notice that, as

Fig. 2 indicates, there might be some convex k-fans that are not contained in the
convex part V conv.

3 Test Maps

In this section we describe four similar test map schemes associated with the parts of
Theorem 1.2. Let Zk = 〈ε〉 denotes the usual cyclic group of order k.
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Configuration Spaces Consider as the configuration spaces the spaces of equiparti-
tioning convex 4- and 5-fans described in the previous section. Let us denote these
spaces by V conv

4 = B4\A4 and V conv
5 = B5\A5, where B4 = B5 = V2(R

3) and

A4 =
( ⋃

i∈[r4]

⋃
α∈{0,1,2,3}

εα · Uk(i)

)
and A5 =

( ⋃
i∈[r5]

⋃
α∈{0,1,2,3,4}

εα · Uk(i)

)
.

Notice that both spaces A4 and A5 are homotopy equivalent to disjoint unions of
1-dimensional spheres.

Some Real Z4 and Z5-Representations Let R
4 be a real Z4 -representation equipped

with the following Z4-action ε · (x1, x2, x3, x4) = (x2, x3, x4, x1). The subspaces

W4 = {
(x1, x2, x3, x4) | x1 + x2 + x3 + x4 = 0

} ⊂ R
4,

U = span
{
(1,−1,1,−1)

} = {
(x1, x2, x3, x4) ∈ W4 | x1 = x3, x2 = x4

} ⊂ W4,

V = span
{
(1,0,−1,0), (0,1,0,−1)

}
= {

(x1, x2, x3, x4) ∈ W4 | x1 − x2 + x3 − x4 = 0
} ⊂ W4.

are Z4-invariant subspace or real Z4-representations. It is not hard to prove that there
is an isomorphism of real Z4-representations W4 ∼=R U ⊕ V .

Similarly, consider R
5 as a real Z5 -representation via the action ε · (x1, x2, x3,

x4, x5) = (x2, x3, x4, x5, x1). The subspace

W5 = {
(x1, x2, x3, x4, x5) | x1 + x2 + x3 + x4 + x5 = 0

} ⊂ R
5

is Z5-invariant and therefore a real subrepresentation.

Test Space and Test Map for 4-Fans Let f and g : V conv
4 → R be continuous func-

tion on the sectors of the convex 4-fan. Consider two test maps τ1 : V conv
4 → W4 and

τ2 : V conv
4 → W4 ⊕ W4 given by

τ1(σ1, σ2, σ3, σ4) = (
f (σ1) − f ,f (σ2) − f ,f (σ3) − f ,f (σ4) − f

)
where f = f (σ1) + f (σ2) + f (σ3) + f (σ4) and

τ2(σ1, σ2, σ3, σ4) = (
f (σ1) − f ,f (σ2) − f ,f (σ3) − f ,f (σ4) − f ,

g(σ1) − g,g(σ2) − g,g(σ3) − g,g(σ4) − g

)
where, similarly, g = g(σ1)+g(σ2)+g(σ3)+g(σ4). Having in mind that for g one
can take for example function f 2.

There are two test spaces of interest

T1 = {
(x1, x2, x3, x4) ∈ W4 | x1 = x3, x2 = x4

} = U,

T2 = {
(x1, x2, x3, x4, y1, y2, y3, y4) ∈ W4 ⊕ W4 | x1 − x2 + x3 − x4

= y1 − y2 + y3 − y4 = 0
} ∼= V ⊕ V.

(2)



390 Discrete Comput Geom (2013) 49:382–401

Proposition 3.1

(1) If there is no Z4-equivariant map V conv
4 → W4\T1 and V conv

4 → (W4 ⊕ W4)\T2,
then parts 1 and 2 of Theorem 1.2 hold.

(2) If there is no Z4-equivariant map V conv
4 → S(V ) and V conv

4 → S(U ⊕ U), then
parts 1 and 2 of Theorem 1.2 hold.

Proof

(1) If there is no Z4-equivariant map V conv
4 → W4\T1, then there exists a convex

4-fan with sectors σ1, σ2, σ3, σ4 such that τ1(σ1, σ2, σ3, σ4) ∩ T1 �= ∅ and conse-
quently

f (σ1) = f (σ3) and f (σ2) = f (σ4).

If there is no Z4-equivariant map V conv
4 → (W4 ⊕W4)\T2, then there is a convex

4-fan with sectors σ1, σ2, σ3, σ4 such that τ2(σ1, σ2, σ3, σ4) ∩ T1 �= ∅. Taking for
g = f 2 we get

f (σ1) + f (σ3) = f (σ2) + f (σ4) and f (σ1)
2 + f 2(σ3) = f 2(σ2) + f 2(σ4).

This implies that either f (σ1) = f (σ2), f (σ3) = f (σ4) or f (σ1) = f (σ4),
f (σ2) = f (σ3).

(2) The existence of Z4-homotopies,

W4\T1 = W4\U � U⊥\{(0,0,0,0)
} = V \{(0,0,0,0)

} � S(V ),

(W4 ⊕ W4)\T2 = W4\(V ⊕ V ) � (V ⊕ V )⊥\{(0,0,0,0) ⊕ (0,0,0,0)
}

= (U ⊕ U)\{(0,0,0,0) ⊕ (0,0,0,0)
} � S(U ⊕ U),

and (1) imply the claim (2). �

Test Space and Test Map for 5-Fans Let h : V conv
5 → R be a continuous function on

the sectors of 5-fans. Consider the test map τ3 : V conv
5 → W5 given by

τ3(σ1, σ2, σ3, σ4, σ5)

= (
f (σ1) − f ,f (σ2) − f ,f (σ3) − f ,f (σ4) − f ,f (σ5) − f

)
,

where f = f (σ1)+f (σ2)+f (σ3)+f (σ4)+f (σ5). Here W5 = {(x1, . . . , x5)|x1 +
· · · + x5 = 0} ⊆ R

5.
There are two test spaces T3 and T4 we are interested in. They are unions of the

minimal Z5-invariant arrangements A3 and A4 containing the linear subspace L3 ⊂
W5 and L4 ⊂ W5, respectively, given by

L3 = {
(x1, x2, x3, x4, x5) ∈ W5 | x1 = x2 = x3

}
, (3)

L4 = {
(x1, x2, x3, x4, x5) ∈ W5 | x1 = x2 = x4

}
. (4)

The intersection posets of the arrangements A3 and A4 are isomorphic, Fig. 3.
The basic property of the test map scheme follows directly.
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Fig. 3 Hasse diagram of the
intersection posets of the
arrangement A3 and A4 with
codimensions in W5

Proposition 3.2

(1) If there is no Z5-equivariant map V conv
5 → W5\T3, then part 3 of Theorem 1.2

holds.
(2) If there is no Z5-equivariant map V conv

5 → W5\T4, then part 4 of Theorem 1.2
holds.

4 Cohomology of the Configuration Spaces as an R[Zn]-Module

In this section we study the cohomology of the configuration spaces V conv
4 and V conv

5
as Z[Z4] and F5[Z5]-module, respectively. This will turn out to be an important step
in the proof of the non-existence of the appropriate Z4 and Z5-equivariant maps,
Sects. 5 and 6.

4.1 Cohomology of V conv
4

We establish the following isomorphisms of Z[Z4]-modules:

H 0(V conv
4 ;Z

) = Z and H 1(V conv
4 ;Z

) ∼= (
Z[Z4]

)⊕r4 . (5)

Proposition 4.1 The cohomology with the Z coefficients of the pair (B4,A4) is given
by

Hi(B4,A4;Z) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Z[Z4])⊕k/(1+ε+ε2+ε3)⊕kZ

∼= (Z[Z4])⊕(k−1) ⊕ (Z[Z4]/(1+ε+ε2+ε3)Z), i = 1,

M, i = 2,

Z, i = 3,

0, otherwise.

where Z[Z4]-module M is a part of the following exact sequence of Z[Z4]-modules:

0 −→ (
Z[Z4]

)⊕k −→ M −→ Z2 −→ 0. (6)

Proof The pare (B4,A4) generates the following long exact sequence in cohomology
with Z coefficients:

0 −→ H 0(B4,A4) −→ H 0(B4)
Φ0−→ H 0(A4)

−→ H 1(B4,A4) −→ H 1(B4)
Φ1−→ H 1(A4)
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−→ H 2(B4,A4) −→ H 2(B4)
Φ2−→ H 2(A4)

−→ H 3(B4,A4) −→ H 3(B4)
Φ3−→ 0.

We know that H 0(B4) = Z, H 0(A4) = (Z[Z4])⊕r4 and

Φ0(a) = (
a + ε · a + ε2 · a + ε3 · a) ⊕ · · · ⊕ (

a + ε · a + ε2 · a + ε3 · a)
.

Thus Φ0 is an injection. Since H 1(B4) = 0, there is a short exact sequence

0 −→ Z
Φ0−→ (

Z[Z4]
)⊕r4 −→ H 1(B4,A4) −→ 0

and therefore

H 1(B4,A4) ∼= (
Z[Z4]

)⊕r4/(1+ε+ε2+ε3)⊕r4 Z

∼= (
Z[Z4]

)⊕(r4−1) ⊕ (
Z[Z4]/(1+ε+ε2+ε3)Z

)
.

From the fact that H 1(A4) = (Z[Z4])⊕r4 , H 2(A4) = 0 and H 2(B4) = Z2 we obtain
an exact sequence

0 −→ (
Z[Z4]

)⊕r4 −→ H 2(B4,A4) −→ Z2 −→ 0.

Finally, the fact that H 3(B4) = Z gives the exact sequence

0 −→ H 3(B4,A4) −→ Z −→ 0

and the isomorphism H 3(B4,A4) ∼= Z. �

Corollary 4.2

Hi(B4\A4;Z) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Z[Z4])⊕r4/(1+ε+ε2+ε3)⊕r4 Z

∼= (Z[Z4])⊕(r4−1) ⊕ (Z[Z4]/(1+ε+ε2+ε3)Z), i = 2,

M, i = 1,

Z, i = 0,

0, otherwise.

Proof The Poincaré–Lefschetz duality [8, Theorem 70.2, p. 415] applied on the com-
pact manifold B4 relates the homology of the difference B4\A4 with the cohomology
of the pair (B4,A4), i.e.,

Hi(B4\A4;Z) ∼= H 3−i (B4,A4;Z).

Now the claim follows directly from the previous proposition. �

Proposition 4.3 Hom(M,Z) ∼= (Z[Z4])⊕r4 .



Discrete Comput Geom (2013) 49:382–401 393

Proof The Z[Z4]-module M seen as an abelian group can be decomposed into the
direct sum of the free and the torsion part, M = Free(M) ⊕ Torsion(M). This is
decomposition is a Z4-invariant. Then Hom(M,Z) ∼= Hom(Free(M),Z) ∼= Free(M)

and therefore Hom(M,Z) is a free abelian group. The exact sequence (6) implies that
rank(Hom(M,Z)) ≥ 4r4. Application of the Hom functor on the same exact sequence
(6) yields the exact sequence

0 −→ Hom(Z2,Z) −→ Hom(M,Z) −→ Hom
((

Z[Z4]
)⊕r4,Z

)
−→ Ext(Z2,Z) −→ Ext(M,Z) −→ Ext

((
Z[Z4]

)⊕r4,Z
)
.

Since, as Z[Z4]-modules,

Hom(Z2,Z) = 0, Hom
((

Z[Z4]
)⊕r4,Z

) ∼= (
Z[Z4]

)⊕r4,

Ext(Z2,Z) ∼= Z2, Ext
((

Z[Z4]
)⊕r4,Z

) = 0,

the exact sequence transforms into

0 −→ Hom(M,Z) −→ (
Z[Z4]

)⊕r4 −→ Z2 −→ Ext(M,Z) −→ 0.

First notice that rank(Hom(M,Z)) ≤ 4r4 and therefore

rank
(
Hom(M,Z)

) = rank
(
Hom

(
Free(M),Z

)) = rank
(
Free(M)

) = 4r4.

Since the exact sequence (6) gives an inclusion of Z[Z4]-modules (Z[Z4])⊕r4 −→
Free(M), and (Z[Z4])⊕r4 is the direct sum of the free Z[Z4]-modules we can con-
clude that Free(M) ∼= (Z[Z4])⊕r4 . Thus we have an isomorphism of Z[Z4]-modules

Hom(M,Z) ∼= Hom
(
Free(M),Z

) ∼= Hom
((

Z[Z4]
)⊕r4,Z

) ∼= (
Z[Z4]

)⊕r4 . �

Finally, we have to verify the isomorphisms (5) of Z[Z4]-modules.

Corollary 4.4 H 0(B4\A4;Z) = Z and H 1(B4\A4;Z) ∼= Hom(M,Z) ∼= (Z[Z4])⊕r4 .

Proof The complement B4\A4 is connected. Therefore the cohomology in dimension
zero is Z. The Universal coefficient theorem applied for the first cohomology gives
the exact sequence

0 −→ Ext
(
H0(B4\A4;Z),Z

) −→ H 1(B4\A4;Z)

−→ Hom
(
H1(B4\A4;Z),Z

) −→ 0.

Since Ext(H0(B4\A4;Z),Z) = Ext(Z,Z) = 0, the exact sequence gives the isomor-
phism

H 1(B4\A4;Z) ∼= Hom
(
H1(B4\A4;Z),Z

) = Hom(M,Z) ∼= (
Z[Z4]

)⊕r4 . �
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4.2 Cohomology of V conv
5

Like in [3, Sect. 6], we establish the following isomorphisms of F5[Z5]-modules:

H 0(V conv
5 ;F5

) = F5 and H 1(V conv
5 ;F5

) ∼= (
F5[Z5]

)⊕r5 .

Proposition 4.5 H 0(V conv
5 ;F5) = F5 and H 1(V conv

5 ;F5) = ⊕r5
i=1 F5[Z5].

Proof Since the complement V conv
5 = B5\A5 is connected, the first claim easily fol-

lows. The second claim follows from Poincaré–Lefschetz duality [8, Theorem 70.2,
p. 415] and the homology exact sequence of the pair (B5,A5) since H1(B5;F5) =
H2(B5;F5) = 0. Indeed,

H 1(V conv
5 ;F5

) ∼= H2(B5,A5;F5) ∼= H1(A5;F5) ∼= (
F5[Z5]

)⊕r5 . �

5 Non-existence of the Test Map, Proof of Theorem 1.2(1)–(2)

The first two parts of Theorem 1.2, via Proposition 3.1, are direct consequences of
the following theorem.

Theorem 5.1 There is no Z4-equivariant map

(i) V conv
4 → S(V ),

(ii) V conv
4 → S(U ⊕ U).

Proof The proof is obtained by studying the morphism of Serre spectral sequences
associated with the Borel constructions of B4\A4, S(V ) and S(U ⊕ U). We denote
the cohomology of the group Z4 with Z coefficients by H ∗(Z4;Z). It is well known
that

H ∗(Z4;Z) = Z[T ]/〈4T 〉,

where degT = 2.

The Serre Spectral Sequence of V conv
4 ×

Z4
EZ4 The E2-term of the sequence is

given by E
p,q

2 = Hp(Z4,H
q(V conv

4 ,Z)). For q = 1, from Corollary 4.4 and [6, Ex-
ample 2, p. 58] we find that the first row is

E
p,1
2 = Hp

(
Z4;

(
Z[Z4]

)⊕r4
) =

{
Z

⊕r4, p = 0,

0, p �= 0.

Since the differentials in the spectral sequence are H ∗(Z4;Z)-module maps, we have
d

0,1
2 = 0. This means, in particular, that T ,2T ∈ H 2(Z4;Z) = E

2,0
2 survive to the

E∞-term.
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The Serre Spectral Sequence of S(V )×
Z4

EZ4 The E2-term of the sequence is given
by

E
p,q

2 = Hp
(
Z4;Hq

(
S(V );Z

)) = Hp(Z4;Z) ⊗ Hq
(
S(V );Z

)

=
{

Hp(Z4;Z), q = 0,1,

0, otherwise.

In general, the coefficients should be twisted, but the Z4 action on S(V ) is orientation
preserving, hence the coefficients are untwisted. The action of Z4 on S(V ) ≈ S1 is
free and therefore

S(V ) ×Z4 EZ4 � S1/Z4 ⇒ Hi
(
S(V ) ×Z4 EZ4;Z

) = 0 for i > 1.

The spectral sequence converges to H ∗(S(V ) ×Z4 EZ4;Z) and therefore in the E∞-
term everything in positions p + q > 1 must vanish. Since our spectral sequence has
only two non-zero rows and the only possibly non-zero differential is d2 it follows
that d2(1⊗L) = T ∈ H 2(Z4;Z) = E

2,0
2 . Here L ∈ H 1(S(V );Z) denotes a generator.

Therefore, the element T ∈ H 2(Z4;Z) = E
2,0
2 vanishes in the E3-term.

The Serre Spectral Sequence of S(U ⊕ U) ×Z4 EZ4 The representation V is the
1-dimensional complex representation of Z4 induced by 1 	→ eiπ/2. Then U ⊕ U ∼=
V ⊗C V . Following [1, Sect. 8, p. 271 and Appendix, p. 285] we deduce the first
Chern class of the Z4-representation U ⊕ U

c1(U ⊕ U) = c1(V ⊗C V ) = c1(V ) + c1(V ) = T + T = 2T ∈ H 2(Z4;Z).

There by [4, Proposition 3.11] we know that in the E2-term of the Serre spectral
sequence associated to S(U ⊕ U) ×

Z4
EZ4 the second (0,1)-differential is given by

d2(1 ⊗ L) = 2T ∈ H 2(Z4;Z) = E
2,0
2 . Here again L ∈ H 1(S(U ⊕ U);Z) denotes the

generator. Thus the element 2T ∈ H 2(Z4;Z) = E
2,0
2 vanishes in the E3-term.

The Non-existence of Both Z4-Equivariant Maps Assume that in both cases there
exists a Z4-equivariant,

(i) f : V conv
4 → S(V ),

(ii) g : V conv
4 → S(U ⊕ U).

Then f and g induce maps between

• Borel constructions, V conv
4 ×Z4 EZ4 → S(V ) ×

Z4
EZ4 and V conv

4 ×Z4 EZ4 →
S(U ⊕ U) ×

Z4
EZ4,

• equivariant cohomologies,

f ∗ : HZ4

(
S(V );Z

) → HZ4

(
V conv

4 ;Z
)

and g∗ : HZ4

(
S(U ⊕ U);Z

) → HZ4

(
V conv

4 ;Z
)
,
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• associated Serre spectral sequences,

E
p,q
r (f ) : Ep,q

r

(
S(V );Z

) → E
p,q
r

(
V conv

4 ;Z
)

and

E
p,q
r (g) : Ep,q

r

(
S(U ⊕ U);Z

) → E
p,q
r

(
V conv

4 ;Z
)

such that in the 0-row of the E2-term

E
p,0
2 (f ) : (Ep,0

2

(
S(V );Z

) = Hp(Z4;Z)
) → (

E
p,0
2

(
V conv

4 ;Z
) = Hp(Z4;Z)

)

and

E
p,0
2 (g) : (Ep,0

2

(
S(U ⊕ U);Z

) = Hp(Z4;Z)
) → (

E
p,0
2

(
V conv

4 ;Z
) = Hp(Z4;Z)

)

are identity maps.

The contradiction is obtained by tracking the behavior of the E
2,0
r (f ) and E

2,0
r (g)

images of T ∈ H 2(Z4;Z) and 2T ∈ H 2(Z4;Z) as r grows from 2 to 3. Explicitly,

E
2,0
2

(
S(V );Z

) � T
E

2,0
2 (f )	−→ T ∈ E

2,0
2

(
V conv

4 ;Z
)
,

E
2,0
2

(
S(U ⊕ U);Z

) � 2T
E

2,0
2 (g)	−→ 2T ∈ E

2,0
2

(
V conv

4 ;Z
)

and

E
2,0
3

(
S(V );Z

) � 0
E

2,0
3 (f )	−→ T ∈ E

3,0
3

(
V conv

4 ;Z
)
,

E
2,0
3

(
S(U ⊕ U);Z

) � 0
E

2,0
3 (f )	−→ 2T ∈ E

3,0
3

(
V conv

4 ;Z
)
.

Since the image of zero cannot be different from zero we have reached a contradic-
tion. Thus, there are no Z4-equivariant maps in both cases:

V conv
4 → S(V ), V conv

4 → S(U ⊕ U).

The theorem is proved. �

6 Non-existence of the Test Map, Proof of Theorem 1.2(3)–(4)

We conclude the proof of Theorem 1.2, using Proposition 3.2, by showing the fol-
lowing non-existence theorem.

Theorem 6.1 There is no Z5-equivariant map V conv
5 → W5\Tj , where j ∈ {3,4}.
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Proof Again we study the morphism of Serre spectral sequences associated with the
Borel constructions of V conv

5 and W5\T3. The cohomology ring of the group Z5 with
F5 coefficients will be denoted by H ∗(Z5;F5). It is known that

H ∗(Z5;F5) = F5[t] ⊗ (
F5[e]/e2),

where deg t = 2, deg e = 1.

The Serre Spectral Sequence of V conv
5 ×

Z5
EZ5 The E2-term of the sequence is

given by E
p,q

2 = Hp(Z5,H
q(V conv

5 ,F5)). For q = 1, from the Proposition 4.5 and
[6, Example 2, p. 58] we have

E
p,1
2 = Hp

(
Z5;

(
F5[Z5]

)⊕r5
) =

{
F

⊕r5
5 , p = 0,

0, p �= 0.

The differentials in the spectral sequence are H ∗(Z5;F5)-module maps. Therefore
d

0,1
2 = 0. In particular, αt ∈ H 2(Z5;F5) = E

2,0
2 survive to the E∞-term for all α ∈

F5\{0}.

The Serre Spectral Sequence of (W5\Tj ) ×
Z5

EZ5 First, we need to understand
the cohomology of W5\Tj with F5 coefficients. According to Goresky–MacPherson
formula

H̃ i(W5\Tj ;F5) ∼=
⊕

p∈PAj

H̃2−i−dimp

(


(
(PAj

)<p

);F5
)
.

Here PAj
is an intersection poset of the arrangement Aj . The intersection posets

PA3 and PA4 are isomorphic. Since the cohomology of the arrangement complement
is completely determined by the intersection poset, we do not need the distinguish
between the test spaces T3 and T4.

From Hasse diagram of the poset PAj
, Fig. 3, we have

Hi(W5\Tj ;F5) ∼=
⎧⎨
⎩

F5, i = 0,

F5[Z5] ⊕ F5[Z5] ⊕ F5, i = 1,

0, i �= 0,1.

Thus the E2-term of the Serre spectral sequence of (W5\Tj ) ×
Z5

EZ5 is

E
p,q

2 = Hp
(
Z5;Hq(W5\Tj ;F5)

)

=
⎧⎨
⎩

Hp(Z5;F5), q = 0,

Hp(Z5;F5[Z5]) ⊕ Hp(Z5;F5[Z5]) ⊕ Hp(Z5;F5), q = 1,

0, otherwise.

The action of Z5 on W5\Tj is free and therefore

(W5\Tj )×Z5
EZ5 � (W5\Tj )/Z5 ⇒ Hi

(
(W5\Tj )×Z5

EZ5;F5
) = 0 for i > 1.
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The spectral sequence converges to H ∗((W5\Tj ) ×
Z5

EZ5;F5) and so in the E∞-
term everything for p + q > 1 must vanish. Since our spectral sequence has only
two non-zero rows and the only possibly non-zero differential is d2 it follows that
d2(x) = t ∈ H 2(Z5;F5) = E

2,0
2 . Here

x ∈ H 0(Z5;F5) ⊂ H 0(
Z5;F5[Z5]

) ⊕ H 0(
Z5;F5[Z5]

) ⊕ H 0(Z5;F5) = E
0,1
2

denotes a suitably chosen generator. Thus the element t ∈ H 2(Z4;Z) = E
2,0
2 vanishes

in the E3-term.

The Non-existence of Z5-Equivariant Maps Assume that there exists a Z5-
equivariant map f : B5\A5 → W5\Tj . Then f induces the maps between

• Borel constructions, (B5\A5) ×Z5 EZ5 → (W5\Tj ) ×
Z5

EZ5,
• equivariant cohomologies, f ∗ : HF5(W5\Tj ;F5) → HZ5(B5\A5;F5), and
• associated Serre spectral sequences,

E
p,q
r (f ) : Ep,q

r (W5\Tj ;F5) → E
p,q
r (B5\A5;F5)

such that on the 0-row of the E2-term

E
p,0
2 (f ) : (Ep,0

2 (W5\Tj ;F5) = Hp(Z5;F5)
)

→ (
E

p,0
2 (B5\A5;F5) = Hp(Z5;F5)

)
is the identity map.

The contradiction is obtained by tracking the image of t ∈ H 2(Z5;F5) mapped by
E

2,0
r (f ) as r grows from 2 to 3. Explicitly,

E
2,0
2 (W5\T3;F5) � t

E
2,0
2 (f )	−→ t ∈ E

2,0
2 (B5\A5;F5)

E
2,0
3 (W5\T3;F5) � 0

E
2,0
3 (f )	−→ t ∈ E

3,0
3 (B5\A5;F5).

The image of zero cannot be different from zero, thus we have reached a contradic-
tion. There is no Z5-equivariant map V conv

5 → W5\Tj and the theorem is proved. �

7 Counter Examples, Proof of Theorem 1.3

7.1 Proof of Theorem 1.3(1)

We will prove more, namely, that given αi > 0 (i = 1,2,3,4) with
∑4

1 αi = 1, there
are two probability measures μ and ν on R

2 such that no convex 4-fan satisfies the
conditions μ(σi) = ν(σi) = αi for all i = 1,2,3,4.

This construction is from [2, Theorem 1.1.(i).(d)]. Let Q resp. T be the segment
[(−2,0), (2,0)] and [(−1,1), (1,1)], and let ν be the uniform (probability) measure
on Q. Also, let μ be the uniform (probability) measure on T for the time being. It will
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be modified soon. Assume there is a convex 4-fan α-partitioning both measures. Then
three consecutive rays intersect both Q and T and so the center of the 4-fan cannot
lie between the lines containing Q and T . It cannot be below the line containing T

as otherwise one sector would meet Q in an interval too short to have the prescribed
ν measure. The only way to make the 4-fan convex is that there are three downward
rays and the fourth ray points upward. The three downward rays split Q, resp. T

into four intervals of ν- and μ-measure αi,αi+1, αi+2, αi+3 in this order for some
i = 1,2,3,4 (the subscripts are meant modulo 4). Thus the lengths of these intervals
are 4αi,4αi+1,4αi+2,4αi+3 on Q and 2αi,2αi+1,2αi+2,2αi+3 on T . So given α,
the three downward rays, together with the center, are uniquely determined by the
index i specifying that the starting interval is of length 4αi on Q. Let (zi,1) be the
point where the middle downward ray intersects T . This is four points corresponding
to the four possible cases. Now we modify the measure μ a little. We move a small
mass of μ from the left of (zi ,1) to the right, for each i = 1,2,3,4. Each moving
takes place in a very small neighborhood of (zi,1). This changes only the position of
the middle downward ray (in the modified measure μ), and the new ray will not pass
through the intersection of the other two. We need to check that the four modifications
are compatible. This is clearly the case when all the zi are distinct if the mass that has
been moved is close enough to the corresponding (zi,1). If two or more zi coincide,
then the modification for one i will do for the others as well.

7.2 Proof of Theorem 1.3(2)

This construction is similar to the previous one. This time μ is the uniform measure
on the interval T = [(−1,1), (1,1)], but Q, the support of ν = νh, is the whole x axis
and the distribution function of νh, F = Fh, which depends on a parameter h ∈ (0,1),
is given explicitly as

Fh(x) =
{

hex if x ≤ 0,

1 − (1 − h)e−x if x ≥ 0.

Note that Fh is concave resp. convex on [0,∞) and (−∞,0]. The following proper-
ties of Fh are easily checked:

(i) no line intersects the graph of Fh in more than three points,
(ii) no line intersects the graph of the convex (concave) part of Fh in more than two

points,
(iii) Fh is symmetric, in the sense that F1−h(−x) = 1 − Fh(x) for all h and x.

We are going to show that, for some h ∈ (0,1), the measures μ and νh satisfy the
requirements.

Assume that this is false, that is, for each h ∈ (0,1) there is a convex 5-fan equipar-
titioning μ and ν(σi) = ν(σi+1) = ν(σi+2) = ν(σi+3) > 0. As we have seen before,
the center of the 5-fan cannot lie between Q and T . Consequently four consecutive
rays intersect T at points (−0.6,1), (−0.2,1), (0.2,1), (0.6,1) and then intersect Q

at points x, x + y, x + 2y, x + 3y, say. These four points split Q into five intervals
I1 = (−∞, x), I2 = (x, x + y), I3 = (x + y, x + 2y), I4 = (x + 2y, x + 3y), I5 =
(x + 3y,∞). Because of symmetry (iii) it suffices to consider three cases:
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Case 1 when νh(I1) = νh(I2) = νh(I3) = νh(I4),
Case 2 when νh(I1) = νh(I2) = νh(I3) = νh(I5),
Case 3 when νh(I1) = νh(I2) = νh(I4) = νh(I5).

We show that there is a small h0 > 0 such that all three cases fail for h ∈ (0, h0)

and for h ∈ (1 − h0,1). This is needed because of symmetry.

Case 1 This case is the simplest: the points (x + iy,F (x + iy)), i = 0,1,2,3 are on
the same line contradicting property (i).

Case 2 Now x < 0 as otherwise the points (x + iy,F (x + iy)), i = 0,1,2 would be
on the same line contradicting property (ii). Similarly x + 2y > 0. The conditions
say that 2Fh(x) = Fh(x + y), 3Fh(x) = Fh(x + 2y) and Fh(x) = 1 − Fh(x + 3y).
If 0 ∈ (x, x + y], then we have

6hex = 3 − 3(1 − h)e−x−y = 2 − 2(1 − h)e−x−2y = 6(1 − h)e−x−3y .

Here the middle equation fails to hold when h is close to 1. When h is close to 0,
then x + y and x + 2y have to be close to 0; consequently x + 3y is also close to 0.
But then Fh(x) is close to 0 and 1 − Fh(x + 3y) is close to 1 so they cannot be
equal.
If 0 ∈ (x + y, x + 2y), then we have

6hex = 3hex+y = 2 − 2(1 − h)e−x−2y = 6(1 − h)e−x−3y .

The first equation shows that ey = 2. Then the last equation fails to hold when h is
close to 1. We also have hex = (1 − h)e−x/8, or 8he2x = 1 − h which cannot hold
when h is close to 0.

Case 3 Again, x < 0 and x + 3y > 0 follow from (ii). By (iii) it suffices to consider
the case 0 ∈ [x+y, x+3y]. Then 2Fh(x) = Fh(x+y) implies, again, that y = log 2.
Then, just as before, Fh(x) = 1−Fh(x +3y) gives 8he2x = 1−h. This cannot hold
for h close to 0. When h is close to 1, then x → −∞ and x + 3y > 0 is not possible
since y = ln 2.

7.3 Proof of Theorem 1.3(3)

We construct two probability measures μ and ν on R
2 such that there is no t ∈

(0,1/3) and no convex 4-fan in R
2 satisfy the conditions μ(σi) = ν(σi) = t for three

consecutive subscripts.
This is similar to the example in Sect. 7.1. T is the same as there, μ is the uniform

measure on T , and Q is again the interval [(−2,0), (2,0)]. But this time the measure
ν has a continuous distribution function F(x), defined on x ∈ [−2,2]. We assume
that F(x) is a strictly concave function with F(−2) = 0 and F(2) = 1 (of course).
This implies that no line intersects the graph of F in more than two points. Assume
there is t > 0 and a convex 4-fan with μ(σi) = ν(σi) = t for three subscripts i. Then
for the fourth subscript j , μ(σj ) = ν(σj ) = 1 − 3t .

As we have seen above, the center of the 4-fan cannot be between the lines of T

and Q. Consequently three consecutive rays intersect both Q and T . Let x, y, z be the
intersection points of these rays with Q in this order from left to right. The conditions
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on μ and ν imply that either y − x = λt , z − y = λt and F(y) − F(x) = t , F(z) −
F(y) = t , or y − x = λt , z − y = λ(1 − 3t) and F(y) − F(x) = t , F(z) − F(y) =
1 − 3t , or y −x = λ(1 − 3t), z−y = λt and F(y)−F(x) = 1 − 3t , F(z)−F(y) = t

with a suitable positive λ. In all three cases

F(y) − F(x)

y − x
= F(z) − F(y)

z − y
= 1

λ
.

So the points (x,F (x)), (y,F (y)), (z,F (z)) from the graph of F are on the same
line, contrary to the assumption of concavity of F .
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