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Abstract What is the minimum perimeter of a convex lattice n-gon? This question was
answered by Jarník in 1926. We solve the same question, and prove a limit shape result, in
the case when perimeter is measured by a (not necessarily symmetric) norm.
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1 Introduction

What is the minimal perimeter Ln that a convex lattice polygon with n vertices can have? In
1926 Jarník [4] proved that Ln =

√
6π
9 n3/2 + O(n3/4). The aim of this paper is to extend this

result to all, not necessarily symmetric, norms in the plane. As usual, such a norm is defined
by a convex compact set D ⊂ R2 with 0 ∈ int D, and the norm of x ∈ R2 is

||x || = ||x ||D = min{t ≥ 0 : x ∈ t D}.
Let Z2 be the lattice of integer points in R2, and write Pn (n ≥ 3) for the set of all convex

lattice n-gons in R2, that is, P ∈ Pn if P = conv {z1, . . . , zn} where z1, . . . , zn ∈ Z2 are the
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628 I. Bárány, N. Enriquez

vertices, in anticlockwise order, of P . The D-perimeter of P is defined by

Per P = PerD P =
n∑

i=1

||zi+1 − zi ||D

where zn+1 = z1 by convention. Note that for a non-symmetric D, PerD P depends on the
orientation of P as well. Define now

Ln = Ln(D) = min{PerD P : P ∈ Pn} (1.1)

and Pn ∈ Pn a (not necessarily unique) minimizer satisfying Per D Pn = Ln(D).
In this paper we determine the asymptotic behaviour of Ln(D) for all norms and show,

further, that, after suitable scaling, the minimizing polygons have a limiting shape. Similar
results were proved by Maria Prodromou [5] in 2005 in the case when D is symmetric, that
is, D = −D.

An important part of the proof is a centering procedure of the original norm which yields
a new norm whose unit ball has its center of gravity at the origin. Moreover, the perimeter
of a polygon using this new norm is the same as the perimeter computed with the original
norm. This procedure is described in Sect. 3.

Once this new norm is defined, we follow Jarník’s idea in Sect. 6, by using the n shortest
primitive vectors to estimate the asymptotics of Ln .

The existence of a limit shape for Pn is proved in Sect. 9 and requires substantial additional
efforts which are not encountered in the centrally symmetric case of [5].

2 Results and notations

Assume that the vertices of a minimizer Pn ∈ Pn are z1, . . . , zn in anticlockwise order (which
is the orientation giving the minimal D-perimeter). Then En = {z2 − z1, . . . , zn − zn−1,

z1 − zn} is the edge set of Pn . Define Cn = conv En . Note that En determines Pn uniquely
(up to translation). Even more generally, the following is true.

Proposition 2.1 Suppose V ⊂ R2 is a finite set of vectors whose sum is zero. Assume fur-
ther that u, v ∈ V, u = λv with λ > 0 implies that u = v. Then there is a unique (up to
translation) convex polygon whose edge set is equal to V .

Proof This is very simple. One has to order (cyclically) the vectors in V by increasing
slope as v1, . . . , vn, v1. Then the polygonal path through the points 0, v1, v1 + v2, v1 + v2 +
v3, . . . , v1 + · · · + vn = 0 in this order is a convex polygon with edge set V . Uniqueness is
clear. &'

We call this construction the increasing slope construction. Here come our main results.
We let K denote the family of all convex compact sets in R2 with non-empty interior. For
K , L ∈ K, dist (K , L) denotes their Hausdorff distance.

Theorem 2.2 There is a unique C ∈ K such that lim dist ((Area Cn)−1/2Cn, C) = 0. More-
over, g(C) = 0 and lim n−3/2 Ln(D) exists and equals

α(D) = π√
6

∫

C

||x ||dx .

The two parts of this statement are proved respectively in Sects. 5 and 6.
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Jarník’s convex lattice n-gon 629

Theorem 2.3 There is a convex set P ⊂ R2 such that the following holds. Let Pn be an arbi-
trary sequence of minimizers, of Ln(D), translated so that min{x : (x, y) ∈ Pn} is reached
at the origin. Then lim dist (n−3/2 Pn, P) = 0.

We explain in Sect. 9.1 how and why P is determined uniquely by C . Moreover, it is
shown in Sect. 10 that P is a circular disk if and only if the unit ball D is an ellipse having a
focus point at the origin, which is the case with Jarník’s polygon.

To avoid some trivial complications in the proofs we assume that D is strictly convex. We
emphasize however that the above results are valid without this extra condition.

3 Centering the norm

We introduce some notation. We write B for the Euclidean unit ball in R2 and |x | for the
Euclidean norm of x ∈ R2. Since D is compact convex and 0 ∈ int D, there are positive
constants d1, d2 such that d1 B ⊂ D ⊂ d2 B, or, equivalently,

d1|x | ≤ ‖x‖ ≤ d2|x |, for every x ∈ D.

Let 〈, 〉 denote the Euclidean scalar product in R2. Write e(t) for the Euclidean unit vector
(cos t, sin t), t ∈ [0, 2π ]. Define the following open set:

D$ = {u ∈ R2 ||x ||D + 〈u, x〉 > 0,∀x ∈ R2, x -= 0}
Each u ∈ D$ defines a norm ||.||u on R2, with unit ball Du via

||x ||u = ||x ||D + 〈x, u〉.

Fact 3.1 For each u ∈ D∗||.||u is a norm, and Per D(P) = Per Du (P) for every P ∈ Pn.
Consequently P ∈ Pn is a minimizer for Ln(D) if and only if it is one for Ln(Du).

We need some further notation. As usual, the radial function of Du, ru(t) is defined
as ||e(t)||−1

u . Let g(K ) denote the center of gravity of K ∈ K, that is, g(K ) =
(Area K )−1 ∫

K xdx . When K = Du this can be written as

g(D) = (3Area Du)−1

2π∫

0

r3
u (t)e(t)dt.

The following simple result is important.

Theorem 3.2 There exists a unique vector u ∈ D∗ such that g(Du) lies at the origin.

Remark The uniqueness of this u is actually not needed and could be seen as a consequence
of the sequel.

Proof We define a map % : D∗ → (0,∞) by

%(u) =
2π∫

0

r2
u (t)dt.

This map is differentiable and ∇%(u) = −2
∫ 2π

0 r3
u (t)e(t)dt .
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630 I. Bárány, N. Enriquez

We claim now that

(i) % is strictly convex on D∗,
(ii) if v ∈ ∂ D∗ and u ∈ D∗ tends to v, then %(u) tends to infinity.

Before the proof we show how the claim implies the theorem. By (i) and (ii) % takes
its minimum at a unique u0 ∈ D∗, and ∇%(u0) = 0. Consequently g(Du0) = 0, indeed.
Uniqueness follows since ∇%(u) = 0 implies that % takes its minimum at u.

Proof of the claim For (i) we have to show that

%

(
1
2
(u + v)

)
≤ 1

2
(%(u) + %(v)) . (3.1)

Observe that for all t

||e(t)|| +
〈

1
2
(u + v), e(t)

〉
= 1

2
[||e(t)|| + 〈u, e(t)〉 + ||e(t)|| + 〈v, e(t)〉],

which is the same as

r−1
1
2 (u+v)

(t) = 1
2
[r−1

u (t) + r−1
v (t)].

This implies, via elementary methods, that

r2
1
2 (u+v)

(t) ≤ 1
2
[r2

u (t) + r2
v (t)],

with equality iff u = v. Integrating this inequality gives (3.1), and the case of equality is
clear.

For the proof of (ii) we show that, for large enough N there is a small δ > 0 so that %(u) >

N for every u ∈ D∗ with |u−v| < δ (Euclidean distance). Note first that v ∈ ∂ D∗ implies the
existence of τ ∈ [0, 2π ] with ||e(τ )||+〈v, e(τ )〉 = 0. Since D is convex, the function r(t) =
||e(t)||−1 has left and right derivatives everywhere, and then so does ||e(t)||. This implies that
||e(t)−e(τ )|| is bounded in absolute value by a constant times t−τ for every t ∈ [0, 2π]. Then
on the same interval r−1

u (t)−r−1
u (τ ) = ||e(t)||− ||e(τ )||+ 〈e(t)−e(τ ), u〉 ≤ (const)|t −τ |

(because D∗ is bounded). Further r−1
u (τ ) = r−1

u (τ ) − ||e(τ )|| − 〈v, e(τ )〉 = 〈e(τ ), u − v〉
which is smaller than δ in absolute value. Then for t ∈ [0, 2π]

r(t) > (const|t − τ | + δ)−1.

The integral of r2(t) on [0, 2π] is then larger than const/δ. &'

From now on we work with the new norm ||.||u , and for simpler notation we drop the
subscript u. As we have seen this does not affect the value of Ln = Ln(D), or the set of
minimizers for Ln . It is also clear that the new norm is strictly convex, again. We make
another simplifying assumption, namely, that

Area D = 1 (3.2)

This is just a convenient scaling of the unit ball which leaves the set of minimizers, and the
corresponding En, Cn and consequently C, P (from Theorems 2.2 and 2.3) unchanged.
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Jarník’s convex lattice n-gon 631

4 Auxiliary lemmas

We write P for the set of primitive vectors in Z2, i.e., z = (x, y) ∈ Z2 (z -= 0) is in P if x and
y are relatively prime. The following two claims are very simple. The second one explains
the crucial role played by P in all the problem.

Claim 4.1 For all n ≥ 3, Ln < Ln+1.

Proof Let Pn+1 = conv {z0, z1, . . . , zn} be a minimizer for Ln+1 and set P∗
n = conv {z1,

. . . , zn}. Then Ln ≤ Per P∗
n < Ln+1. &'

Claim 4.2 En ⊂ P.

Proof Assume Pn is a minimizer and the edge z2 − z1 /∈ P, say. Then the segment [z1, z2]
contains an integer z ∈ Z2 distinct from z1, z2. The convex lattice n-gon conv {z1, z,
z3, . . . , zn} has shorter D-perimeter than Pn because the triangle conv {z1, z2, z3} contains
the triangle conv {z1, z, z3} so the latter has shorter D-perimeter. &'

The following lemma will be useful when proving that most points in Cn ∩ P belong to
En .

Lemma 4.3 Assume a, b ∈ En and a -= ±b. Let T be the parallelogram with vertices
0, a, b, a + b. If x, y ∈ (T ∩ P) \ En and x -= y, then x + y /∈ T .

Proof If x+y ∈ T were the case, then set E∗ = En∪{x, y, z}\{a, b} where z = a+b−x−y.
The increasing slope construction works now because

∑
z∈E∗ z = 0 and gives rise to a con-

vex lattice (n + 1)-gon P if there is no u ∈ En with u = λz with λ > 0. If there is such a
u, we replace u and z by u + z in E∗, and the increasing slope construction gives a convex
lattice n-gon P . We claim that P has shorter D-perimeter than Pn . This clearly finishes the
proof.

To prove Per P < Per Pn we have to show that ‖x‖+‖y‖+‖z‖ < ‖a‖+‖b‖. According
to our assumptions, x = α1a + β1b, y = α2a + β2b, and z = α3a + β3b with αi ,βi ≥ 0 for
all i and

∑
αi = ∑

βi = 1. Thus (Fig. 1)

‖x‖ + ‖y‖ + ‖z‖ ≤ α1‖a‖ + β1‖b‖ + α2‖a‖ + β2‖b‖ + α3‖a‖ + β3‖b‖
= ‖a‖ + ‖b‖.

&'

5 The density of P

In what follows c, c1, c2, .. denote positive constants independent of n. We will also use
Vinogradov’s convenient 4 notation: f (n) 4 g(n) means that there are positive constants
c and n0 such that c f (n) ≤ g(n) for all n ≥ n0. Of course, the constants do not depend on n.
But they depend on D, more precisely, they depend on the constants d1, d2. f (n) 5 g(n) has
the same meaning but with f (n) ≥ cg(n). We will also use the big Oh and little oh notation.

We need some standard estimates on the distribution of lattice points and primitive points
in a convex body K ∈ K. We assume that 0 ∈ K . Let L denote the Euclidean perimeter of
K . We suppose that L > 100, say, but we think of K as “large”. In fact, in most applications
L tends to infinity. The following estimate is simple and well-known.

∣∣∣|K ∩ Z2| − Area K
∣∣∣ ≤ 2L . (5.1)
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632 I. Bárány, N. Enriquez

Fig. 1 The proof of Lemma 4.3

This implies, with the standard method using the Möbius function, that
∣∣∣∣|K ∩ P| − 6

π2 Area K
∣∣∣∣ ≤ 3L log L . (5.2)

Assume next that f : R2 → R is a 1-homogeneous function, that is, f (λx) = λ f (x) for
every x ∈ R2 and λ ≥ 0. Write M = max{| f (z)| : z ∈ K }. Let Q(z) denote the aligned unit
square centered at z ∈ Z2. Define the variance of f on K as

V = max{| f (x) − f (z)| : x ∈ Q(z) and Q(z) ∩ K -= ∅ and z ∈ Z2}
Under these conditions the following estimates hold.

∣∣∣∣∣∣

∑

z∈K∩Z2

f (z) −
∫

K

f (z)dz

∣∣∣∣∣∣
≤ V Area K + 4M L , (5.3)

∣∣∣∣∣∣

∑

z∈K∩P

f (z) − 6
π2

∫

K

f (z)dz

∣∣∣∣∣∣
≤ (2V Area K + 5M L) log L . (5.4)

The proof of the four estimates (5.1), (5.2), (5.3), (5.4) is postponed to Appendix 1. Proofs
of analogous results can also be found in [3] or [1].

These estimates will be used quite often in the case when K = λK0, and λ → ∞ with
K0 fixed. Then formulae (5.1), (5.2), (5.3), (5.4) have the following simpler form:

|K ∩ Z2| = λ2Area K0(1 + O(λ−1)), (5.5)

|K ∩ P| = 6
π2 λ2Area K0(1 + O(λ−1 log λ)). (5.6)

∑

z∈K∩Z2

f (z) = λ3
∫

K0

f (z)dz + O(λ2), (5.7)

∑

z∈K∩P

f (z) = 6
π2 λ3

∫

K0

f (z)dz + O(λ2 log λ). (5.8)
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Jarník’s convex lattice n-gon 633

The constant in the big Oh notation depends only on K0. Here K0 is either a convex set or a
starshaped set with boundary consisting of finitely many line segments.

6 Asymptotics of Ln

We show first that lim n−3/2 Ln(D) exists and equals π√
6

∫
D ||x ||dx . So the formula for α(D)

in Theorem 2.2 holds with C = D (but, of course, only after the centering procedure).
We start with the lower bound.

Claim 6.1 lim inf n−3/2 Ln ≥ π√
6

∫
D ||x ||dx.

Proof Here we use the following density principle. The sum of the lengths of n distinct prim-
itive vectors is at least as large as the sum of the lengths of the n shortest (distinct) primitive
vectors. We will see the same principle in action again.

Let v1, . . . , vn be the n shortest, in ||.||-norm, vectors in P (ties broken arbitrarily). Set
λ = max{‖vi‖ : i = 1, . . . , n}. Then (int λD) ∩ P ⊂ {v1, . . . , vn} ⊂ λD. The boundary of
λD contains at most PerBλD ≤ 2πd2λ lattice points. So |λD ∩P|−2πd2λ ≤ n ≤ |λD ∩P|.
Using (5.6) with λD gives, together with Area D = 1, that

|λD ∩ P| = 6
π2 λ2(1 + O(λ−1 log λ)).

This shows that n = 6
π2 λ2(1 + O(λ−1 log λ)) implying that λ =

(
π√

6
+ o(1)

)
n1/2. Using

this in (5.8) with λC gives

Ln ≥
n∑

1

‖vi‖ ≥
∑

z∈int (λD)∩P

‖z‖ ≥
(

6
π2 − O(λ−1 log λ)

)
λ3

∫

D

‖z‖dz.

&'

Claim 6.2 lim sup n−3/2 Ln ≤ π√
6

∫
D ||x ||dx.

Proof Consider now the convex polygon whose edges are v1, . . . , vn plus an extra edge
v0 = −∑n

i=1 vi which may have the same direction as one of the other n vectors. This
polygon is either an n-gon or an n + 1-gon. Since, by Claim 4.1, Ln < Ln+1, we obtain

Ln < Ln+1 ≤
n∑

i=0

||vi || =
n∑

i=1

||vi || +
∣∣∣∣∣

∣∣∣∣∣−
n∑

i=1

vi

∣∣∣∣∣

∣∣∣∣∣

≤
∑

z∈λD∩P

||z|| +
∣∣∣∣∣

∣∣∣∣∣−
∑

z∈λD∩P

z

∣∣∣∣∣

∣∣∣∣∣ + 2|P ∩ ∂λD|

with the notations of Claim 6.1. Claim 5.8 bounds the two first terms respectively by(
6

π2 + O(λ−1 log λ)
)

λ3 ∫
C ‖z‖dz and O(λ2 log λ). The third term is bounded by λ times

the number of lattice points of the boundary of λC and so it is less than 2πd2λ
2. &'

7 Bounding Cn

Our next target is to give bounds on the width and diameter of Cn = conv En .
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634 I. Bárány, N. Enriquez

Claim 7.1 The width of En, w(En), satisfies w(En) 5 n1/2.

Proof Set w = w(En). Clearly,

Ln =
∑

v∈En

‖v‖ 5
∑

v∈En

|v| ≥ Mn(w),

where Mn(w) is the sum of the lengths of the n shortest (in Euclidean norm) distinct vectors
in Z2 lying in a strip of width w.

A simple yet technical computation, delayed to Appendix 1, shows that w ≤ γ n1/2 (where
γ ∈ (0, 1/2]) implies Mn(w) 5 n3/2/γ . This finishes the proof of Claim 7.1, because then
n3/2 5 Ln 5 Mn(w) 5 n3/2/γ would lead to contradiction if γ were too small. &'
Claim 7.2 Assume the smallest Euclidean ball centred at 0 and containing En is RB. Then
R 4 n1/2.

Proof Assume a is the farthest point (in Euclidean distance) from the origin in En . Then
|a| = R. Claim 6.2 implies that |a| ≤ Ln 4 n3/2. Since w(En) 5 n1/2 by the previ-
ous claim, there is a point b ∈ En whose distance from the line {x = ta : t ∈ R} is
≥ 1

2w(En) 5 n1/2.
The perimeter of the triangle 7 = conv {0, a, b} is |a| + |b| + |a − b| ≤ 4|a| because

|b| ≤ |a| and |a − b| ≤ |a|+ |b| ≤ 2|a|. Here Area 7 = 1
2 |a|h where h is the corresponding

height of 7. Since w(En) ≥ n1/2, h 5 n1/2.
Then by (5.2) for large enough n,

∣∣∣∣|P ∩ 1
2
7| − 6

π2 Area
1
2
7

∣∣∣∣ ≤ 3 · 2|a| log 2|a| 4 h|a| log |a|√
n

4 Area 7 log n√
n

implying that |P ∩ 1
27| ≥ 1

8 Area 7, again when n is large enough.
Assume now that Area 7 > 16n. Then |P ∩ 1

27| ≥ 2n. Since |En | ≤ n, 1
27 contains two

distinct points x, y ∈ P\En and, evidently, x+y ∈ 7. Then x, y, x+y ∈ conv {0, a, b, a+b}
contradicting Lemma 4.3.

Thus Area 7 = 1
2 |a|h ≤ 16n, and so R = |a| 4 n1/2. &'

We need one more fact about Cn :

Claim 7.3 Assume r B is the largest Euclidean ball centered at 0 and contained in Cn. Then
r 5 n1/2.

Proof Let a be the nearest point to 0 on the boundary of Cn . Thus r = |a|. Define E+ =
En ∩ {x ∈ R2 : ax > 0} and E− = En ∩ {x ∈ R2 : ax < 0}, and set f (x) = ax/|a|
which is just the component of x ∈ R2 in direction a. To have simpler notation we write
f (X) = ∑

x∈X f (x) when X ∈ R2 is a finite set. Since
∑

z∈En
z = 0, f (E+)+ f (E−) = 0

(because f (z) = 0 when az = 0). We will show, however, that |a| ≤ γ n1/2, for a suitably
small γ > 0, implies that

f (E+) + f (E−) < 0. (7.1)

Define F+ = {x ∈ R2 : 0 < f (x) ≤ γ n1/2} ∩ RB with R 4 n1/2 from Claim 7.2. The
density principle tells now that f (E+) ≤ f (P ∩ F+) ≤ f (Z2 ∩ F+) and the last sum can be
estimated as follows. Let Q(z) be the unit cube centred at z. Again, Area Q(z) ∩ F+ ≥ 1/4
for all z ∈ Z2 ∩ F+. This implies that, for large enough n,

m := |Z2 ∩ F+| ≤ Area F+/4 4 R|a| 4 γ n.
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Jarník’s convex lattice n-gon 635

We use now (5.3):
∣∣∣∣∣∣

f (Z2 ∩ F+) −
∫

F+

f (z)dz

∣∣∣∣∣∣
4 R|a|.

It is easy to see that
∫

F+ f (z)dz 4 |a|2 R implying that f (Z2 ∩ F+) 4 |a|2 R 4 γ 2n3/2.
Define F− = {x ∈ R2 : 0 > f (x) ≥ −λγ n1/2} ∩ RB where λ > 0 is chosen so that

F− contains exactly n − m − k lattice points. Here k is the number of lattice points on the
line ax = 0 so k ≤ 2R + 1 4 n1/2. Note that λγ n1/2 4 R since En ⊂ RB consists
of exactly n vectors. Choosing γ small enough guarantees that m < 0.1n which, in turn,
guarantees that λ > 1 and further, that |F− ∩ Z2| ≥ 0.8n. The Euclidean perimeter of F−

is at most 4R + λγ n1/2 4 R and (5.1) shows that
∣∣|F− ∩ Z2| − Area F−∣∣ 4 R. Clearly

Area F− 4 Rλγ n1/2, implying that

0.8n < |F− ∩ Z2| ≤
(

1 + O
(

1
λγ n1/2

))
Area F− 4 Rλγ n1/2 4 λγ n,

which implies λγ 5 1.
The density principle says now that f (E−) ≤ f (F−) (note that f is negative on F− and

E−), and f (F−) can be estimated using (5.3):
∣∣∣∣∣∣

f (F−) −
∫

F−

f (z)dz

∣∣∣∣∣∣
4 R2 4 n,

because max{| f (x)| : x ∈ F−} ≤ R. Now f (z) is negative on F−. It is easy to check that
λ2γ 2n R 4 −

∫
F− f (z)dz 4 λ2γ 2n R. So we have

− f (F−) ≥
∫

F−

− f (z)dz + O(n) 5
∫

F−

− f (z)dz 5 λ2γ 2n R 5 n3/2

This shows that (7.1) indeed holds if γ > 0 is chosen small enough because 0 < f (Z2 ∩
F+) 4 γ 2n3/2 and − f (Z2 ∩ F−) 5 n3/2. &'

Corollary 7.4 There are positive numbers r and R (depending only on D) such that for all
n ≥ 3

r B ⊂ (Area Cn)−1/2Cn ⊂ RB.

8 Almost all primitive points of Cn are in En

We state now a geometric lemma which is about a special kind of approximation. The tech-
nical proof is postponed to Appendix 3.

Lemma 8.1 Assume K ∈ K is a convex polygon with r B ⊂ K ⊂ RB. Then for every
δ ∈ (0, 0.02(r/R)2] there are vertices v1, . . . , vm of K such that with Q = conv {v1, . . . , vm}
the following holds:

• Q ⊂ K ⊂ (1 + 4R2r−2δ)Q,
• for all i , the angle - vi 0vi+1 is at least δ.
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636 I. Bárány, N. Enriquez

Fig. 2 The proof of Lemma 8.2

Lemma 8.2 For every ε > 0 there is n0 = n0(ε, D) such that for all n ≥ n0, (1 − ε)Cn ∩
P ⊂ En.

Proof Let rn , resp. Rn be the maximal, minimal radius such that rn B ⊂ Cn ⊂ Rn B. It fol-
lows from Corollary 7.4 that Rn/rn ≤ c with a suitable positive constant depending only on
D. Thus Lemma 8.1 can be applied with K = Cn and δ = ε/(8c2) (if ε ≤ 0.02/8 which we
can clearly assume). We get a polygon Q = conv {v1, . . . , vm} satisfying Cn ⊂ (1 + ε/2)Q.

Assume, contrary to the statement of the lemma, that there is an x ∈ (1 − ε)Cn ∩ P \ En .
One of the cones pos {vi , vi+1} contains x , the cone W := pos {v1, v2}, say. Define 7 =
conv {0, v1, v2}. Thus 7 ⊂ Cn ∩W ⊂ (1+ε/2)7, see Fig. 2. As x ∈ (1−ε)Cn ∩W, v1+v2−
x ∈ W \ (1+ε)7. The triangle 7∗ = ((v1 + v2 − x) − W )\ (1+ε/2)7 is disjoint from Cn .
We claim that it contains a primitive point y. This will finish the proof since then x, y, x + y
all lie in the parallelogram with vertices 0, v1, v2, v1 + v2 contradicting Lemma 4.3.

We prove the claim by using (5.2): Area 7∗ 5ε3n because its angle at v1+v2−x is at least
δ, and the neighbouring sides are of length at least ε|v1|/2 and ε|v2|/2 and |v1|, |v2| 5 n1/2.
Further, its perimeter is at most |v1| + |v2| + |v1 − v2| 4 n1/2. Thus

∣∣∣∣|7∗ ∩ P| − 6
π2 Area 7∗

∣∣∣∣ 4 (log n)n1/2.

Here 6
π2 Area 7∗ is of order ε3n and the error term is of order (log n)n1/2. Since ε fixed, 7∗

contains a primitive vector if n is large enough. &'

9 The limit shape of Cn

In this section we prove Theorem 2.2.
The Blaschke selection theorem and Corollary 7.4 imply that (Area Cn)−1/2Cn contains

a convergent (in Hausdorff metric) subsequence. Assume next that (Area Cnk )
−1/2Cnk is a

convergent subsequence whose limit is a convex body C ∈ K.
Our target is to show that C = D. This will prove Theorem 2.2: if every convergent

subsequence of (Area Cn)−1/2Cn converges to D then the sequence itself converges to D.
Define λk = √

Area Cnk and set, for simpler writing, Ck = λ−1
k Cnk . Since Enk contains

nk primitive points, we get, using Lemma 8.2, that |Cnk ∩ P| is nk(1 + o(1)). Now ||Cnk ∩ P|
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− 6
π2 Area Cnk | is controlled by the perimeter of Cnk which is of the order of

√
AreaCnk by

convexity of Cn and Corollary 7.4. Inequality 5.2 then yields nk = 6
π2 Area Cnk (1 + o(1))

and λk = π√
6

√
nk(1 + o(1)).

For every δ > 0, (1 − δ)C ⊂ Ck ⊂ (1 + δ)C for all large enough k. It follows immedi-
ately that Area C = 1. We show next that

∫
C zdz = 0 (which implies g(C) = 0). For this it

suffices to prove that
∫

C f (z)dz = 0 in the case when f is the linear function f (z) = x and
f (z) = y where z = (x, y). Choose ε > 0 and then, using Lemma 8.1, k0 so large that, for
k > k0,

(1 − ε/2)Cnk ∩ P ⊂ Enk ⊂ Cnk ∩ P.

It follows now that there is a k1 so that for all k > k1

(1 − ε)λkC ∩ P ⊂ Enk ⊂ (1 + ε)λkC ∩ P. (9.1)

Using the notation f (X) = ∑
z∈X f (z) when X ⊂ R2 is finite, we have f (Enk ) = 0. Next,

| f (P ∩ λkC)| = | f (P ∩ λkC) − f (Enk )|
≤ | f (P ∩ [(1 + ε)λkC \ (1 − ε)λkC]) |
4 ελk max{ f (z) : z ∈ λkC} 4 εnk .

On the other hand, by (5.8),

| f (P ∩ λkC)| = 6
π2 λ3

k

∫

C

f (z)dz
(

1 + O(λ−1
k log λk)

)

as one can check easily. So if
∫

C f (z)dz -= 0, then f (P ∩ λkC) is of order n3/2
k . But as we

have just shown, | f (P ∩ λkC)| 4 εnk . So indeed,
∫

C f (z)dz = 0.
An almost identical proof, this time with the 1-homogeneous function f (z) = ‖z‖ gives

π√
6

∫

C

‖x‖dx = α(D).

We only give a sketch: Eq. (9.1) shows that
∣∣∣∣∣∣

∑

z∈P∩λk C

‖z‖ −
∑

z∈P∩Enk

‖z‖

∣∣∣∣∣∣
4 εnk .

Here
∑

z∈P∩Enk
‖z‖ = Lnk and so lim n−3/2

k
∑

z∈P∩λk C ‖z‖ = α(D). The estimate (5.4)
says now that

∣∣∣∣∣∣∣

∑

z∈P∩λk C

‖z‖ − 6
π2

∫

λk C

‖x‖dx

∣∣∣∣∣∣∣
4 nk log nk,

and π√
6

∫
C ‖x‖dx = α(D) follows.

So C ∈ K satisfies g(C) = 0, Area C = 1, and π√
6

∫
C ‖x‖dx = α(D). We show that

C = D then. Letting ρ(.) denote the radial function of C , we have

∫

C

‖x‖dx = 1
3

2π∫

0

ρ(t)3/r(t)dt =
∫

D

‖x‖dx = 1
3

2π∫

0

r2(t)dt.
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We use Hölder’s inequality :

2π∫

0

ρ2 ≤




2π∫

0

ρ3

r




2/3 


2π∫

0

r2




1/3

which is an equality if and only if ρ and r are proportional. But this is an equality in our case.
Further,

∫ 2π
0 ρ2 =

∫ 2π
0 r2 = 2 and so ρ = r . Thus C and D have the same radial functions.

&'

9.1 Proof of Theorem 2.3

This is fairly simple once we know that (Area Cn)−1/2Cn tends to D. Recall that e(t) =
(cos t, sin t). When a minimizer Pn is translated as Theorem 2.3 specifies, the sum of the
edges of Pn having direction between e(0) and e(t) is very close to the sum of the primitive
vectors in Cn whose direction is between e(0) and e(t) in Dn . The latter, divided by n3/2 is
very close to P(t) =

∫
D(t) zdz where D(t) is the set of vectors in D with direction between

e(0) and e(t). The curve P(t) is closed (because g(D) = 0) and convex (this has been shown
in [2]), so it is the boundary of a convex set P . The simple and straightforward checking of

lim dist (n−3/2 Pn, P) = 0

is left to the reader. We remark that the convexity of P(t) follows also from the fact that the
boundary of Pn , after suitable rescaling, tends to P(t). &'

The same construction D → P with P(t) =
∫

D(t) zdz is used, with a similar purpose, in
[2]. Further properties of the construction are also established there.

10 An example

We concentrate now on the cases when the solution is constant which correspond to the case
when the limit shape of the polygon is a circle.

Lemma 10.1 The limit shape is a round if and only if 1/r is of the form a +b cos θ +c sin θ ,
or, in other words, when r is the radial function of an ellipse having its focus point at the
origin.

Proof Suppose 1/r is of the form above. Then the unique solution u of the centering proce-
dure is equal to (−b,−c), ru is constant, and Du is a circle. Conversely, if Du is a circle, it
means that ru is constant. In other words, 1/r = 1/ru − b cos t − c sin t , where (b, c) are the
coordinates of u. &'
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11 Appendix 1

Lemma 11.1 Let Mn(w) be the sum of the lengths of the n shortest (in Euclidean norm)
distinct vectors in Z2 lying in a strip of width w, centred at the origin. Suppose γ ∈ (0, 1/2],
then w ≤ γ n1/2 implies Mn(w) 5 n3/2/γ .

Proof It is clear that this set of vectors is just the set of lattice points contained in A := d B∩T
where T is a strip of width w, centred at the origin, and d is a suitable radius making A ∩ Z2

have exactly n elements (ties broken arbitrarily). Let ϕ denote the angle that the strip T makes
with the x-axis of R2. We may assume by symmetry that ϕ ∈ [0,π/4].

Observe first that d ≥ √
n/2 since otherwise the disk d B would contain fewer than n

lattice points. Let Q(z) denote the unit square centred at z ∈ R2 and let /k be the line with
equation x = k (k is an integer). Clearly, /k intersects S in a segment of length w cos ϕ, and
so /k ∩ Z2 contains at least 8w/ cos ϕ9 and at most 8w/ cos ϕ9 + 1 lattice points from S.

Assume first that w/ cos ϕ ≥ 1. As is easy to see, Area A ∩ Q(z) is at least 1/4 for
z ∈ A ∩ Z2. Hence, Area A ≥ n/4. Since Area A < 2dw, d > n/(4w) follows.

For simpler notation write u = (d cos ϕ)/2. For the lines /k with k ∈ [u, 2u−w/2], /k ∩ A
contains at least 8w/ cos ϕ9 lattice points. Since w < u, there are at least 82u−w/29−8u9 5
u such lines. All of them have distance at least (d −w)/2 5 d from the origin. Consequently,
using the bounds w ≤ γ n1/2 and d ≥ n1/2/2 generously,

Mn(w) 5 d
⌊

w

cos ϕ

⌋
u 5 d2w ≥

( n
4w

)2
w 5 1

γ
n3/2.

Assume next that w/ cos ϕ < 1. There are at most six z ∈ A∩Z2 such that Q(z) intersects
the boundary of d B. For the other z ∈ A ∩ Z2, Q(z) intersects the boundary of A in one or
two line segments, whose total length is between 1/ cos ϕ and 2/ cos ϕ. For distinct lattice
points in A ∩ Z2 the corresponding segments do not overlap. This implies that

n − 6
cos ϕ

≤ 4d ≤ 2(n − 6)

cos ϕ
.

Each line /k with |k| ≤ 2u/3 contains at most one lattice point from A. The remaining points
from A ∩ Z2, and there are at least n − 282u/39 − 1 of them, are at distance d

3 − 1 from the
origin. Hence, we see

Mn(w) ≥
(

d
3

− 1
) (

n − 82
d cos ϕ

3
9 − 1

)
5 n2.

&'

12 Appendix 2

We prove here estimates (5.1), (5.2), (5.3), (5.4).
Call Q(z), z ∈ Z2, inside square if Q(z) ⊂ K , and outside square if z /∈ K but Q(z)∩K -=

∅ and a boundary square if z ∈ K and Q(z) \ K -= ∅, and write I, B respectively O for the
set of z ∈ Z2 for which Q(z) is an inside, boundary, and outside square.

It is easy to check that |B| + |O| ≤ 2L . The estimate (5.1) follows from the fact that
|K ∩Z2| = |I |+|B| and Area K = |I |+∑

z∈B∪O Area K ∩Q(z). Then |K ∩Z2|−Area K =∑
z∈B(1 − Area K ∩ Q(z)) − ∑

z∈O Area K ∩ Q(z)). This implies (5.1) as each term in the
sum is at most one in absolute value.

123



640 I. Bárány, N. Enriquez

Let x and y denote the components of z ∈ R2. For the proof of (5.2) we use the Möbius
function:

|K ∩ P| =
∑

z∈K∩Z2,z -=0

∑

d|x,d|y
µ(d) =

∞∑

d=1

µ(d)

(
| 1
d

K ∩ Z2| − 1
)

.

The terms in the sum are all zero for d ≥ L because the perimeter of K is L and 0 ∈ K .
Next, | 1

d K ∩ Z2| can be estimated easily by (5.1):

∣∣∣∣|
1
d

K ∩ Z2| − Area
1
d

K
∣∣∣∣ ≤ 2

L
d

.

As is well-known,
∑∞

1
µ(d)
d2 = π2

6 and | ∑d>L
µ(d)
d2 | ≤ 1

L . Putting these estimates together
gives that the left hand side of (5.2) is at most

Area K
L

+
L∑

1

∣∣∣∣
2L
d

− 1
∣∣∣∣ ≤ L

4π
+ 2L(1 + log L) + L < 3L log L ,

if L is large enough. Here we also used the isoperimetric inequality in the form Area A < L2

4π .
The proof of (5.3) starts the same way as that of (5.1):

∑

z∈K∩Z2

f (z) =
∑

z∈I∪B

f (z) and

∫

K

f (z)dz =
∑

z∈I

∫

Q(z)

f (u)du +
∑

z∈B∪O

∫

Q(z)∩K

f (u)du.

So the difference on the left hand side of (5.3) consists of two parts: the first is∑
z∈I

∫
Q(z) | f (z) − f (u)|du ≤ V |I | ≤ V Area K . The second is just

∑

z∈B



 f (z) −
∫

Q(z)∩K

f (u)du



 −
∑

z∈O

∫

Q(z)∩K

f (u)du,

which in absolute value is at most 2M |B| + M |O| ≤ 4M L .
Finally we turn to (5.4). The same way as above one shows that

∑

z∈K∩P

f (z) =
L∑

d=1

dµ(d)
∑

z∈ 1
d K∩Z2

f (z)

where we can include z = 0 in the summation since f (0) = 0. Next

∑

z∈ 1
d K∩Z2

f (z) =
∫

1
d K

f (u)du + error term = 1
d3

∫

K

f (u)du + error term
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where the error term is at most V Area K
d2 + 4 M

d
L
d from (5.3). So the left hand side of (5.4) is

at most

1
L

∫

K

| f (u)|du +
L∑

1

|µ(d)

d
|(V Area K + 4M L)

≤ 1
L

MArea K + (1 + log L)(V Area K + 4M L) ≤ (2V Area K + 5M L) log L ,

using the isoperimetric inequality again.

13 Appendix 3

We start the proof of Lemma 8.1 with the following Claim.

Claim 13.1 Suppose a, b, c, d are vertices of K (in anticlockwise order), [a, b] and [c, d]
are edges of K , and - b0c < 3δ. Let x be the intersection point of the lines through a, b and
c, d, and let y be the intersection point of the lines through 0, x and a, c. Then |x − y| ≤
4δ(R/r)2|y|.

Proof The condition r B ⊂ K ⊂ RB implies thatβ = - 0xb = - 0ba−- xba > arcsin r/R−
3δ since

sin - 0ba = d(0, /a,b)

|b|
(/a,b being the line through a and b) |b| < R , d(0, /a,b) > r by assumption, so that
sin - 0ba > r/R, see Fig. 3.

Fig. 3 The proof of Claim 13.1
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Further - xyc = - 0xa − - x0b > β. The sine theorem in the triangle x, y, c shows that

|x − y|
|x − c| = sin - cxy

sin - cyx
,

and similarly, the sine theorem in the triangle x, 0, c shows that

|x − c|
|x | = sin - c0x

sin - 0cx
.

Multiplying them gives

|x − y|
|x | = sin - cxy sin - c0x

sin - cyx sin - 0cx
<

sin 3δ

(r/R) sin β
.

Next, since |y| = |x | − |x − y|, we have

|x |
|x | − |x − y| = 1

1 − |x−y|
|x |

<
1

1 − sin 3δ
(r/R) sin β

We use this inequality next in the form

|x − y|
|y| <

sin 3δ

(r/R) sin β
· |x |
|x | − |x − y| <

sin 3δ

(r/R) sin β − sin 3δ
< 4δ

(
R
r

)2

,

where we only have to check the validity of the last inequality. This is a matter of direct com-
putation using that sin β > sin(arcsin(r/R)−3δ) > (r/R) cos 3δ−sin 3δ and the assumption
that δ < 0.02(r/R)2 implying, in particular, that δ < 0.02. What is to be checked now is that

tan 3δ

[

1 + 4δ

(
R
r

)2 ( r
R

+ 1
)]

≤ 4δ.

Here δ(R/r)2 < 0.02 and so the expression in the square bracket is at most 1.16 and the
inequality follows. We omit the details. &'

The Proof of Lemma 8.1 is an algorithm that constructs the vertex set V of Q. We start
with V = ∅. We call the edge [a, b] of K special if - a0b ≥ δ. Let W be a cone with apex at
0 and angle δ. It follows that if W is disjoint from all special edges, then it contains a vertex
of K .

Case 1 Let [a1, b1], [a2, b2], . . . , [ak, bk] be consecutive special edges in anticlockwise order
so that - bi 0ai+1 < 3δ for all i = 1, . . . , k − 1 (or up to k if - bk0a1 < 3δ). We call this a
maximal chain of consecutive special edges if there is no special edge [a, b] with - b0a1 < 3δ

or - bk0a < 3δ.
For such a maximal chain we put the vertices a1, . . . , ak, bk (or a1, . . . , ak if - bk0a1 < 3δ)

into V , and we do so for all such maximal chains.

Case 2 Let [a1, b1] and [a2, b2] be consecutive special edges with vertices a1, b1, a2, b2 in
anticlockwise order so that γ := - b10a2 ≥ 3δ. Then we choose δ′ ∈ [δ, 3δ] so that γ /δ′

is an odd integer, say 2h + 1. This is always possible since there is an odd integer between
γ /(3δ) and γ /δ because their difference is γ /δ − γ /(3δ) = 2γ /(3δ) ≥ 2.

Subdivide now the cone pos {b1, a2} into 2h + 1 subcones, each of angle δ′ and pick a
vertex u1, . . . , uh from every second subcone. Finally, put b1, u1, . . . , uh, a2 into V .
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If there are only two special edges [a1, b1] and [a2, b2], then one has to do the same
construction between edges [a2, b2] and [a1, b1] as well. If there is only one special edge,
then the construction is carried out from b1 to a1 as if one had two special edges [a1, b1] and
[b1, a1].

Finally, if there are no special edges, then we chose a δ′ ∈ [δ, 2δ] so that 2π/δ′ is an even
integer, 2h, say. This is evidently possible. Subdivide the plane into cones of angle δ′ (with
apex at 0) and choose a vertex u1, . . . , uh from every second cone, and set V = {u1, . . . , uh}.

The algorithm is finished. By construction - vi 0vi+1 ≥ δ. We now check the condition
K ⊂ (1 + 4δ(R/r)2)Q. Let vi , vi+1, vi+2, vi+3 be four consecutive vertices of Q in anti-
clockwise order. Rename these points as a, b, c, d as in the Claim. Then K ∩ pos (b, c) \ Q
is contained in the triangle b, c, x from the Claim. Now y ∈ Q because y lies on the seg-
ment [a, c], and so x ∈ (1 + 4δ(R/r)2)Q according to the Claim. So the triangle b, c, x is
contained (1 + 4δ(R/r)2)Q. &'
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