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INFINITE PATHS WITH NO SMALL ANGLES

IMRE BÁRÁNY AND ATTILA PÓR

Abstract. It is shown here that given a discrete (and infinite) set of points in the
plane, it is possible to arrange them on a polygonal path so that every angle on the
polygonal path is at least 9◦. This has been known to hold for finite sets (with 20◦).
The main result holds for discrete sets in higher dimensions as well, with a smaller
bound on the angle.

§1. Introduction and the main result. A set X ⊂R2 is discrete by definition
if every disk contains only finitely many elements of X . Of course, X is finite
or countable. An ordering of the points of X is either x1, x2, . . . (a one-way
infinite sequence) or . . . , x−1, x0, x1, x2, . . . (a two-way infinite sequence) or
x1, x2, . . . , xn (when X is finite). Such an ordering is identified with a polygonal
path P on X : its edges are the segments connecting xi to xi+1. The angle of P at
xi is just 6 xi−1xi xi+1. The path is called α-good if all of its angles are at least α
where α > 0. In answer to a question of Fekete [3] from 1992 (see also [4]) and
of Dumitrescu [2] from 2005, we proved in [1] the following result.

THEOREM 1. If X is a finite set in the plane, then there is an α-good path
on X with α = π/9.

The aim of this paper is to extend the above result of [1] to infinite, discrete
sets X ⊂R2. The condition of discreteness is quite natural. For instance,
when X is the set of rational points on the x-axis, the ordering is either increasing
or decreasing but it is unclear how to define angles along this path. Even worse,
it is equally unclear what the definition of a path or an angle could be when X is
the image of the rational points on the Peano curve. The following is our main
result.

THEOREM 2. Assume that 0< α < π/18 and that X is a discrete set in the
plane. Then there exists an α-good path on the points of X.

Here one cannot guarantee that the path is one- or two-way infinite. The
example showing this is when X is the set of positive integer points, and integer
points, respectively, on the x-axis. The next example is interesting as it highlights
the difficulties of finding an α-good path. Let q ∈R be large and define
xn = (q3n+1, 0) ∈R2, yn = (0, q3n+2) ∈R2, zn = (−q3n+3, 0) ∈R2, and X =⋃
∞

0 {xn, yn, zn}. Every pair of points in X determines a segment that is either
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almost vertical or almost horizontal. In view of Theorem 1 there is a good path
on every finite subset of X . But how to extend such a path to an infinite one?
What is an α-good path on X? How many α-good paths are there on X?

We observe that Kynčl [5] has recently improved the bound in Theorem 1
from π/9 to π/6, which is actually the best possible value of α. The details are
not yet available, but most likely his result combined with our proof would imply
that Theorem 2 holds for every α < π/12.

§2. Auxiliary lemmas. The proof of Theorem 2 consists of several steps. We
now introduce some notation and terminology and state the two main lemmas
needed for the proof. For a point z ∈R2, |z| denotes its distance from the origin
and z denotes the unit vector z/|z| (assuming that z 6= 0). So z ∈ S1 where S1

is the unit circle, so it can be thought of as a direction or angle. It will be
convenient to use the notation z ∈ I , meaning that I is an arc on S1. Such an
arc is just I = (β, γ ) where β, γ are angles and (β, γ ) means the anticlockwise
arc from β to γ . Given distinct points u, v ∈R2 we let uv denote the unit vector
(v − u)/|v − u|.

From now on we assume that X ⊂R2 is infinite and discrete and α ∈

(0, π/18). We assume, without loss of generality, that the origin, to be denoted
by 0, is not contained in X and also that |x | and |y| are different for each pair
x, y ∈ X , x 6= y.

Fix β ∈ (0, π/18) and define K to be the cone consisting of vectors z with
z ∈ [−β, β]. As usual, let −K be the reflection of K with respect to 0 and
K ∗ = K ∪ (−K ) be the corresponding double cone. Here is the cone lemma, an
auxiliary result needed for Theorem 2.

LEMMA 1. If X\K ∗ is finite, then there is an α-good path on X.

The same conclusion holds, of course, if X\K ∗0 is finite where K ∗0 is a rotated
copy (around the origin) of K ∗. We now slightly reformulate the cone lemma.
Let 4=4(X) denote the set of limit directions in X , that is, z ∈ 4(X) if and
only if there is a sequence of distinct elements z1, z2, . . . of X with lim zn = z.
Clearly 4(X)⊂ S1 is closed. When I is an arc on S1 we define I ∗ = I ∪ (−I ).
Here is the cone lemma in a slightly different form, more suitable for our
purposes.

LEMMA 2. Assume that 4(X)⊂ I ∗ for some open arc I ⊂ S1 of length
π/9. Then there is an α-good path on X.

It will suffice to prove Lemma 1 because of the following.

CLAIM 1. Lemma 1 implies Lemma 2.

Proof. Assume that the conditions of Lemma 2 hold. Since I is open and
4(X) is closed, there is a closed arc J ⊂ I with 4(X)⊂ J ∗. Let K0 be the cone
hull of J ; then K0 is a cone with half angle β ∈ (0, π/18) and X\K ∗0 is finite, so
Lemma 1 applies. 2



28 I. BÁRÁNY AND A. PÓR

Figure 1: The construction of a(n), b(n), xn+1.

Now we come to the second auxiliary lemma. A point a ∈ X is called sharp
if 6 0ab < π/18 for every b ∈ X with |b|< |a|. Set γ = π/9.

LEMMA 3. Assume that all but finitely many elements of X are sharp. Then
there is a γ -good path on X.

For our purposes, an α-good path on X would do as well. But, as we will see
later, the proof gives a γ -good path on X .

§3. Proof of Theorem 2. A pair a, b ∈ X is said to be fat if all angles of the
triangle 0ab are at least π/18. The proof of the following result is simple.

PROPOSITION 1. If X contains infinitely many fat pairs, then there is an
α-good path on X.

Proof. We choose a sequence of (distinct) fat pairs, ak, bk , from X with
lim ak = a ∈ S1 and lim bk = b ∈ S1. This is clearly possible, and 6 a0b ≥ π/18.
Also, 6 a0b ≤ π − 2π/18 since the angles at a and b of the triangle a0b are at
least π/18.

We will construct an α-good path P on X of the form

x1, a(1), b(1), x2, a(2), b(2), x3, . . .

satisfying the condition

for every n, each x ∈ X with |x |< |xn| appears before xn on P. (1)

Here a(n), b(n) are fat pairs from the sequence ak, bk . The construction is
quite straightforward (see Figure 1). Evidently, x1 is the shortest element of X .
Assume that Pn = x1, a(1), b(1), x2, . . . , b(n − 1), xn has been constructed
satisfying condition (1) and, further, that xnb(n)≈ b, meaning that xnb(n) and b
are less than (π/18− α)/2 apart on S1. Clearly xn+1 has to be the shortest vector
in X missing from Pn . Choose a(n), b(n) from the sequence of fat pairs so far
from xn and xn+1 that xna(n)≈ a and xn+1b(n)≈ b (with the same meaning
of ≈ as before). It is not hard to see now that Pn+1 = Pn, a(n), b(n), xn+1 is an
α-good path. 2
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Figure 2: The construction of a(n), b(n), c(n), xn+1.

Next we call a pair a, b ∈ X balanced if 6 0ab ≥ π/18, 6 0ba ≥ π/18 and
6 a0b < π/18.

PROPOSITION 2. If X contains infinitely many balanced pairs, then there
is an α-good path on X.

Proof. We again choose a sequence of (distinct) balanced pairs ak, bk from X
with lim ak = a ∈ S1 and lim bk = b ∈ S1. This is clearly possible, 6 a0b ≤
π/18, and a, b ∈ 4(X).

For z ∈ S1, let Iz be the open arc of S1 of length π/9, centered at z.
Assume that there exists c ∈ 4(X) with c /∈ I−a ∪ Ib. Let ck ∈ X be a

sequence with ck→ c and |ck | →∞. We will construct an α-good path P on X
of the form

x1, c(1), a(1), b(1), x2, c(2), a(2), b(2), x3, . . .

satisfying condition (1) where a(n), b(n) are pairs from the sequence ak, bk
and c(n) is a subsequence of ck (see Figure 2). The construction is similar to
the previous one. We start with x1, the shortest element in X . Assume that
the path Pn = x1, c(1), a(1), b(1), . . . , b(n − 1), xn has been constructed and
satisfies condition (1), and, further, that x(n)b(n − 1)≈ b. Again, xn+1 has to
be the shortest vector in X missing from Pn . Choose c(n) so that xnc(n)≈ c and
then the pair a(n), b(n) so far away from c(n) and xn+1 that a(n)c(n)≈−a and
xn+1b(n)≈ b. It is clear that Pn+1 = Pn, c(n), a(n), b(n), xn+1 is an α-good
path.

The same argument works, exchanging the roles of a and b, when there is
c ∈ 4(X) with c /∈ I−b ∪ Ia . Thus we can assume that there is no c ∈ 4(X) with
c /∈ I−a ∪ Ib or c /∈ I−b ∪ Ia . This means that, with I = Ia ∩ Ib, 4(X)⊂ I ∗.
Now the cone lemma (Lemma 2) can be applied since I is an open interval of
length at most π/9. 2

Thus we are left with the case when there are only finitely many fat pairs and
finitely many balanced pairs in X . Choose r so large that all fat and balanced
pairs in X are inside Dr , the disk of radius r centered at 0. We claim then that
every x ∈ X\Dr is sharp.
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Indeed, consider x ∈ X\Dr and assume that z ∈ X with |z|< |x |. Then, of
course, 6 0zx > 6 0xz. If 6 0xz ≥ π/18, then the pair x, z is either fat (since
6 x0z ≥ π/18) or balanced (if 6 x0z < π/18). But both cases are excluded as x
is outside Dr . Thus 6 0xz < π/18 and x is sharp.

A direct application of Lemma 3 completes the proof of the theorem. 2

§4. Proof of the cone lemma. We need a stronger version of Theorem 1 which
is proved in [1]. To state it we require two additional definitions.

Given a path z1, z2, . . . , zn the directions z2z1 and zn−1zn are called the end
directions of the path. We call a subset R of S1 a restriction if it is the disjoint
union of two closed arcs R1, R2 ⊂ S1 such that both have length 4γ and their
distance from each other (along the unit circle) is larger than 2γ . (Recall that
γ = π/9.) We call the path z1, . . . , zn R-avoiding if the two end directions are
not in the same Ri (i = 1, 2) and the path is γ -good.

THEOREM 3. Let X be a finite set of points in the plane. For every
restriction R there is an R-avoiding path on all the points of X.

We now begin the proof of the cone lemma. Call a pair a, b ∈ X steep if the
angle between the x-axis and the line through a and b is at least 2γ .

If there is no steep pair in X , then ordering the points of X by increasing first
component gives an α-good path on X , even with α = 5π/9.

We let C be the cone consisting of all z ∈R2 with z ∈ [−π/18, π/18], and set
C∗ = C ∪ (−C). Since β < π/18, the cone K lies in the interior of the cone C .
One more piece of notation: z1 denotes the first coordinate of z ∈R2.

Assume next that there are only finitely many steep pairs in X . For ti > 0
define the strip Ti = {x ∈R2

: |x1
| ≤ ti }. Choose t1 so large that T1 contains

all steep pairs and the set X\K ∗ as well. Next choose t2 ∈R so large that
X\T2 ⊂ x + C∗ for every x ∈ X ∩ T1. Such a t2 exists because K ⊂ C .

Set R1 = [−2γ, 2γ ], R2 = [π − 2γ, π + 2γ ]. Then R = R1 ∪ R2 ⊂ S1 is a
restriction, so by Theorem 3, there is an R-avoiding path, P = x1, x2, . . . , xn
on X ∩ T2 (even with α = π/9). One end direction of P is not in R1 and the
other one is not in R2. For the sake of simplicity assume that x2x1 /∈ R1 and
xn−1xn /∈ R2.

Let xn+1, xn+2, . . . and x0, x−1, x−2, . . . respectively be the points of
(X\T2) ∩ K in increasing order and the points of (X\T2) ∩ (−K ) in decreasing
order.

CLAIM 2. The path . . . , x−1, x0, x1, . . . , xn, xn+1, . . . is α-good on X.

Proof. We only have to check 6 xn−1xnxn+1 ≥ α and 6 x0x1x2 ≥ α. By
symmetry it suffices to check the latter. Either x1, x2 is a steep pair (see
Figure 3), in which case x1, x2 ∈ T1 and 6 x0x1x2 ≥ 2γ − π/18= π/6> α
because x1

0 < 0, x1 ∈ X ∩ T1, and x0 ∈ X\T2 ⊂ x1 − C imply x0x1 ∈ −C ; or
x1, x2 is not a steep pair, in which case x2x1 ∈ R2 because x2x1 /∈ R1. But then
6 x0x1x2 ≥ π − γ − π/18= 13π/18> α. 2
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So we are left with the case when there are infinitely many steep pairs. We
first construct an α-good path on X under the extra condition that X ⊂ K , and
explain how to extend the argument for the general case later.

Let 5 be the set of steep pairs in X . We will use them to create U-turns on
the α-good path to be constructed.

We recursively define numbers t0 = 0< t1 < t2 < · · · and pairs {ai , bi } and
{ci , di } in5 (all of them distinct points of X ) satisfying conditions (Ai) and (Ci)
below. We set Ti = {z ∈R2

| 0≤ z1
≤ ti }. The conditions are as follows.

(Ai) {ai , bi } ∈5, ai , bi ∈ Ti\Ti−1 and X\Ti ⊂ (ai + C) ∩ (bi + C).
(Ci) {ci , di } ∈5, ci , di ∈ Ti+1\Ti and X ∩ Ti ⊂ (ci − C) ∩ (di − C).

The recursive definition starts with choosing a steep pair a1, b1 and then t1
so large that (A1) is satisfied. This is possible since the angle of K is smaller
than that of C . Assume that ti , ai , bi , ci−1, di−1 have been defined for all i =
1, 2, . . . , k (except c−1, d−1, which are not needed) and satisfy all conditions.
Then we choose a steep pair, ck, dk , outside Tk satisfying (Ck). Next we choose
another steep pair ak+1, bk+1 outside Tk (both distinct from ck, dk). Finally, we
fix tk+1 so large that condition (Ak + 1) holds. This is clearly possible.

The construction of the α-good path is now easy (see Figure 4). We add a
dummy point a0 = (−1, 0). Theorem 1 guarantees the existence of a γ -good
path Qi on the finite set

((X ∩ (Ti\Ti−1))\{ai , bi , ci−1, di−1}) ∪ {ai−1, ci }.

Neither ai−1 nor ci is an interior point of Qi because of condition (Ai − 1) and
(Ci). In the case of a0 this follows from X ⊂ K . Thus ai−1 and ci are the
endpoints of Qi with the end direction at ai−1 in C and at ci in −C . It follows
now that the path Q1, d1, b1, Q2, d2, b2, Q3, d3, . . . is α-good on X ∪ {a0}.
Deleting the dummy vertex from it gives an α-good path on X . This completes
the proof when X ⊂ K .

In the general case we proceed as follows. If there are infinitely many steep
pairs both in K and −K , then we choose a steep pair a1, b1 ∈ K and another
a−1, b−1 ∈ −K and then fix t1 so large that T1 = {z ∈R2

: |z1
| ≤ t1} contains all

Z\K ∗ and, further, the conditions

(X\T1) ∩ K ⊂ (a1 + C) ∩ (b1 + C)

(X\T1) ∩ (−K )⊂ (a−1 − C) ∩ (b−1 − C)

are satisfied. This is clearly possible. We then proceed the same way as before,
but moving in two directions.

If, finally, there are infinitely many steep pairs in K yet only finitely many in
−K , then an obvious combination of the previous methods produces an α-good
path on X . The details are straightforward and therefore omitted. 2

Remark. The bound α < π/18 comes from this part of the proof. Namely,
Theorem 1 gives the γ -good path Qi ; its endpoints are forced to be ai−1 and ci
only when the angle of K is less than π/9.
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Figure 3: The angle 6 x0x1x2.

Figure 4: The construction of Q3.

§5. Proof of Lemma 3. Let r > 0 be so large that X0 = X ∩ Dr contains all
non-sharp points of X . Order the elements of X\X0 by increasing distance from
the origin, so if x1, x2, . . . is this order, then |xn|< |xn+1| for all n ∈N. Set,
further, X (n)= X0 ∪ {x1, . . . , xn} and fix a γ -good path, Pn , on X (n).

CLAIM 3. For every n ∈N, xn is an endpoint of every γ -good path
on X (n).

Proof. Assume to the contrary that xn is an interior point of such a path. Then
the two neighbors of xn (a, b, say) are in X (n) and 6 0xna and 6 0xnb are both
smaller than π/18 and therefore 6 axnb < π/9, which is a contradiction. 2

For every 1≤ n ≤ k we define, by backward induction on n, a γ -good path
Pk[n] on X (n) as follows. Set Pk[k] = Pk . If Pk[n] has been defined and n > 1,
then, by the previous claim, xn is an end vertex of Pk[n]. Delete this end vertex
from Pk[n] to get Pk[n − 1].
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Let L be an infinite subset of the natural numbers and n ∈N. There exists
an infinite subset L ′ of L such that for every j, k ∈ L ′ the two paths Pj [n] and
Pk[n] are the same. Indeed, partition L by paths on X (n), that is, for every
k ∈ L , k ≥ n, the element k is put into the class Pk[n]. Since there are finitely
many paths on X (n), one of the classes L ′ is infinite.

Next we define, by induction, a chain of infinite sets L1 ⊃ L2 ⊃ L3 ⊃ · · ·

with the property that, for every j, k ∈ Ln , the two paths Pj [n] and Pk[n] are
the same. Start with L0 =N. Let n ≥ 1 and assume that L = Ln−1 has been
defined. The previous argument gives a suitable infinite L ′ ⊂ L , and we set
Ln = L ′. The sets form an infinite chain L0 =N, L1, L2, . . . with each Ln
infinite and containing Ln+1, and, further, for i, j ∈ Ln with n ≥ 1, the condition
Pj [n] = Pk[n] is satisfied.

For n ∈N let Qn be the path Pk[n] for some k ∈ Ln . For n < m, Qn is a
subpath of Qm by construction. Define the infinite path Q as the union of the
paths Qn . The path Q is an infinite γ -good path on X . 2

Remark. In the example of §1 there are neither fat nor balanced pairs, and
the conditions of Lemma 2 do not hold. So in our proof, the α-good path on X
is found via the above procedure. The argument in Claim 3 can be used to show
that all α-good paths on X are of the following form. The order of the xns and zns
is . . . , z2, z1, x1, x2, x3, . . . and y1 is either between x1 and x2 or between x1
and z1 and, for n ≥ 2, yn is either between xn and xn+1 or between zn−1 and zn .
It is easy to see that each such path is indeed α-good.

§6. Higher dimensions. In the paper [1] we proved the higher-dimension
analogue of Theorem 1 in the following form.

THEOREM 4. For every d ≥ 2 there is a positive αd such that for every finite
set of points X ⊂Rd there exists an αd -good path on X.

The actual value of αd is π/42 (for d > 2); see [1]. The proof of Theorem 2
goes through in higher dimensions without any real difficulty, and gives the
following result.

THEOREM 5. For every d ≥ 2 for every discrete set of points X ⊂Rd and
every α ∈ (0, π/84) there exists a α-good path on X.

Acknowledgements. Partial support from Hungarian National Foundation
Grants No. 060427 and 062321 is acknowledged. This work was also supported
by the Discrete and Convex Geometry project, MTKD-CT-2005-014333, of the
European Community.

References

1. I. Bárány, A. Pór and P. Valtr, Paths without small angles. SIAM J. Discrete Math. (2009), to appear.
2. A. Dumitrescu, 2005, personal communication.
3. S. Fekete, Geometry and the traveling salesman problem, PhD Thesis, Department of Combinatorics

and Optimization, The University of Waterloo, 1992.
4. S. Fekete and G. J. Woeginger, Angle-restricted tours in the plane. Comput. Geom. 8 (1997), 195–218.
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