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Abstract We prove several colorful generalizations of classical theorems in discrete
geometry. Moreover, the colorful generalization of Kirchberger’s theorem gives a
generalization of the theorem of Tverberg on non-separated partitions.
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1 Introduction

A prominent role in combinatorial geometry is played by Helly’s theorem, which
states that a finite family of convex sets in R

d has a non-empty intersection if and
only if every subfamily of size d + 1 has a non-empty intersection. Results of the
type “if every subfamily of size k of a family A has some property P , then the whole
family also has the property P ” are called Helly-type theorems and have been the
object of active research.

Associated with every Helly-type theorem we have a colorful version. Suppose
in addition that every object of A is painted with at least one of k colors. Assume
that every subset of A of size k, that uses the k different colors, has property P .
It is too much to expect, then, that the whole family A also has property P . What
usually happens, but not always,1 is that there is a color i such that the subfamily of
all elements of color i has property P .

In this sense, the first colorful theorem was discovered by Lovász, and it is the
colorful version of Helly’s theorem. Independently, searching for a mathematical
game, Bárány found the Colorful Carathéodory Theorem [2]. To be more precise:
if a finite set A ⊂ R

d is colored with d + 1 colors and x ∈ R
d is separated from

every colorful subset of size d + 1, then there is a color such that x is separated
from the set of all points of this color. Here two sets of points A,B are separated if
convA ∩ convB = ∅. In the same spirit, there are colorful versions of several classi-
cal transversal theorems; see [1, 5].

In this paper we will prove several generalizations of colorful theorems which we
will call “very colorful” to distinguish them from the older ones. In Sect. 2 we will
use topology to prove that, in fact, for the colorful version of Carathéodory’s theorem,
we have as a conclusion that there exist two colors such that x is separated from the
set of all points of some of those colors.

There is a very interesting and less known Helly-type theorem, namely Kirch-
berger’s theorem. Suppose that we have two kinds of points A,B ⊂ R

d say square
and round points. Kirchberger’s theorem asserts that if for every subset of A ∪ B of
size d + 2, the square points and the round points are separated, then the same is true
for the whole set A ∪ B .

In Sect. 3 we give several generalizations of Kirchberger’s theorem. First of all,
the r-partite version of this theorem is true, where the notion of separability is the
natural one and the “magic” number used for this theorem is the Tverberg number
(r − 1)(d + 1)+ 1. Second, this result has a colorful version. Furthermore, this color-
ful version has, as a special case, Tverberg’s theorem, which is the r-partite version of
Radon’s theorem and one of the most beautiful results in combinatorial geometry. Its
proof has two ingredients. The first is the Colorful Carathéodory Theorem [2] (only
one color in the conclusion). The second, which is based on an idea of Sarkaria [7], is
a necessary and sufficient condition for

⋂r
i=1 convAi = ∅ (where Ai ⊂ R

d ) in terms
of a well-defined tensor product. If we use more of the strength of the Very Colorful

1The theorem “if every four points in A ⊂ R
2 are in convex position then all points of A are in convex

position” has no colorful version.
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Carathéodory Theorem (two colors in the conclusion), then we end up with an inter-
esting non-trivial generalization of the theorems of Tverberg and Radon (Sect. 4).

In Sect. 5 we use the Very Colorful Carathéodory Theorem to show that in the con-
clusion of the spherical (cone) version of the Colorful Helly Theorem the existence of
two colors can be ensured. This is not the case for Lovász’s Colorful Helly Theorem,
but we will generalize it in another direction: if one asks that every subfamily with a
large number of colors (not only the colorful ones) is intersecting, then the number
of intersecting colors increases.

Again, take a Helly-type theorem (if every subfamily of size k of a family A has
some property P , then the whole family also has property P ) and suppose now that
every object of the family A is painted with at least one of m ≥ k colors. Suppose
also that every colorful subfamily of size k of A has property P . Then what usually
happens is that there is a number of colors with the property that the set of all elements
of these colors also satisfies property P . Every colorful theorem can be generalized
in this way. Usually, this generalization does not follow directly from the colorful
version but can be proved with an easy modification of the original proof. This is the
case for all colorful theorems in Sects. 2–5.

However, we found that the modifications needed to prove such a generalization of
the Colorful Hadwiger Theorem [1] are not so easy. So, we dedicate the last section
of this paper to explain how to modify the known proof of the Colorful Hadwiger
Theorem.

Finally, a few words on terminology. All the subspaces, hyperplanes, semispaces,
etc. are always through the origin. If not, then we will use the adjective “affine”. All
colorings are surjective. When a set is colored, it is allowed for an element to receive
more than one color. Alternatively, one can think that colorings are functions, but
repetitions of elements are allowed. Let B be a subset of a colored set. We say that B

is colorful if the coloring restricted to it is injective.

2 Carathéodory’s Theorem

Theorem 1 (Very Colorful Carathéodory Theorem) Let A be a finite set of points in
R

d colored with d + 1 different colors. If every colorful subset A′ with |A′| = d + 1
is separated from the origin, then there exist two colors such that the subset of all
points of these colors is separated from the origin.

Proof Let B ⊆ A be the colorful subset with |B| ≤ d such that convB is closest to
the origin. Let α be the closest point to the origin in convB . Denote by Σ the solid
open ball centered at the origin through α. Let Γ be the affine hyperplane through
α tangent to Σ and denote by Γ 0 the open affine semispace bounded by Γ which
contains the origin.

Let x ∈ A be such that B ′ = B ∪ x is colorful. If x ∈ Γ 0 then the segment αx

meets Σ and therefore convB ′ is closer to the origin than convB . This implies that
there exists B ′′ ⊆ B with |B ′′| ≤ d such that convB ′′ is closer to the origin than
convB , contradicting the minimality of B . So, Γ 0 does not contain points of colors
not present in B . The number of such colors is d + 1 − |B|. If |B| < d , this proves
the theorem. If |B| = d , then there is exactly one color missing.
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Fig. 1 The L1 and L2
half-lines

Suppose |B| = d and denote B = {b1, . . . , bd}. If for some color of B there is no
point in A ∩ Γ 0 of this color, then we are done. So, we can suppose that there is
C = {c1, . . . , cd} ⊆ A∩Γ 0 such that for every i the point ci has the same color as bi .

Let L1 be the half-line starting at the origin and containing α. Since there are
d + 1 colors, there is a point, x0 say, of a color not present in B . Let L2 be the
half-line starting at the origin and containing −x0. The situation is shown in Fig. 1.

Let L = L1 ∪ L2. Clearly, the homotopy group Πd−2(R
d \ L) is non-zero and the

essential (d − 2)-cycle can be represented by the boundary of the (d − 1)-simplex
convB .

Denote by E = {e1, . . . , ed} the standard orthonormal basis of R
d . Let Ωd−1 be

the boundary of the d-dimensional cross-polytope which is conv{E ∪ −E}. Every
facet of Ωd−1 is a simplex. A subset of d vertices of Ωd−1 spans a facet if and only if
it does not contain antipodal points. For any i we paint ei and −ei with the color of bi .
Therefore, every facet of Ωd−1 is a colorful (d −1)-dimensional simplex. Finally, let
U be the interior of the facet convE. So, Ωd−1 \U is a (d −1)-dimensional simplicial
complex piecewise linear homeomorphic to a (d − 1)-simplex.

Let f : Ωd−1 \ U → R
d be the piecewise linear map defined on the vertices of

Ωd−1 \U by sending ei to bi ∈ B , sending −ei to ci ∈ C and then extending linearly.
Note that f preserves colors. Since f restricted to the boundary of Ωd−1 \ U is
by definition the essential (d − 2)-cycle of Πd−2(R

d \ L), the image of f cannot
avoid L. Therefore, there exists a facet of Ωd−1 \ U whose image by f intersects L.
Let σ = {z1, . . . , zd} �= E be a set of vertices of Ωd−1 such that L ∩ convf (σ ) �= ∅.

If L2 ∩convf (σ ) �= ∅, then f (σ )∪x0 is a colorful subset of d +1 points which is
not separated from the origin. This contradicts the hypothesis. If L1 ∩convf (σ ) �= ∅,
then there exists a point β ∈ L1 ∩ convf (σ ) which is closer to the origin than α. This
contradicts the minimality of B . �

Observe that this theorem is sharp in the sense that one can get only two
colors and no more. This can be seen from the following example. Take d + 2
points {x0, . . . , xd, y} ⊆ R

d such that {x0, . . . , xd, y,0} is in general position and
0 ∈ conv{x0, . . . , xd}. Paint each of the xi with the first d − 1 colors and paint y

with the remaining two colors. The conditions of the theorem are fulfilled and only
the colors of y are separated from the origin.
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Fig. 2 The equivalence
between Kirchberger’s and
Carathéodory’s theorems

3 Kirchberger’s Theorem

Let A and B be two finite sets of points in R
d such that |A| + |B| ≥ d + 2. Kirch-

berger’s theorem asserts that convA ∩ convB �= ∅ if and only if there exist A′ ⊆ A

and B ′ ⊆ B with |A′| + |B ′| = d + 2 such that convA′ ∩ convB ′ �= ∅. Usually, one
asks the sets A and B to be disjoint because if not, then the statement becomes obvi-
ous. However, in the colorful version, which we will state below, the theorem makes
sense even when A = B . Therefore, we will not insist on such a limitation to Kirch-
berger’s theorem.

Kirchberger’s theorem follows from Carathéodory’s theorem using the following
construction. Denote x̃ = (

x
1

) ∈ R
d+1. If x ∈ A, then we code this point by the vector

x = x̃ and if x ∈ B, then we code this point by the vector x = −x̃. It turns out that
convA ∩ convB �= ∅ if and only if {x | x ∈ A ∪ B} is separated from the origin. This
construction is shown for a particular case in Fig. 2.

We will prove this fact in a more general setting when there are r ≥ 2 sets of
points. Let A = {A1, . . . ,Ar} be a family of finite sets of vectors in R

d . We say that
A is separated if

⋂r
1 convAi = ∅.

Let v1, . . . , vr be vectors in R
r−1 with a unique linear dependence vi + · · · +

vr = 0. For x ∈ Ai denote x̃ = (
x
1

) ∈ R
d+1 and x = x̃ ⊗ vi ∈ R

(r−1)(d+1). Denote also
X = ⋃r

i=1{x | x ∈ Ai}.
Lemma 2 (Sarkaria [7]) A is separated if and only if 0 /∈ convX.

Proof We show that A is not separated if and only if 0 ∈ convX. We start by assum-
ing that 0 ∈ convX, i.e., there exist positive real numbers α(x) with

∑
α(x) = 1 such

that

0 =
r∑

i=1

∑

x∈Ai

α(x)x =
r∑

i=1

∑

x∈Ai

α(x)̃x ⊗ vi =
r∑

i=1

(∑

x∈Ai

α(x)̃x

)

⊗ vi. (1)

There exists a unique vector u ∈ R
r−1 which is the solution of the system of linear

equations uv1 = 1, uv2 = −1 and uvi = 0 for i > 2. Multiplying from the right by u

gives
∑

x∈A1

α(x)̃x =
∑

x∈A2

α(x)̃x,
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and similarly we get

∑

x∈A1

α(x)̃x =
∑

x∈A2

α(x)̃x = · · · =
∑

x∈Ar

α(x)̃x, (2)

which is equivalent to

∑

x∈A1

α(x)x =
∑

x∈A2

α(x)x = · · · =
∑

x∈Ar

α(x)x,

∑

x∈A1

α(x) =
∑

x∈A2

α(x) = · · · =
∑

x∈Ar

α(x) = 1

r
,

and therefore r
∑

x∈A1
α(x)x is a common point of all convAi .

Conversely, if r
∑

x∈A1
α(x)x is a common point of all convAi , then for every

x in every Ai there exists a positive scalar α(x) such that the equalities (2) hold.
Tensorially multiplying the equality vi + · · · + vr = 0 from the left by

∑
x∈A1

α(x)̃x,

we obtain the equalities (1) and therefore 0 ∈ convX. �

For two families of sets A = {A1, . . . ,Ar} and B = {B1, . . . ,Br} we will say that
A is smaller than B if for all i ∈ {1, . . . , r} the inclusion Ai ⊆ Bi holds. If A is
smaller than B then we will write A  B.

For a family of sets A = {A1, . . . ,Ar} we will denote by �A the disjoint union of
the Ai , i.e., �A is

⋃r
1 Ai but points may be repeated. If �A is colored, then we will

say that A′  A is colorful if the coloring restricted to �A′ is injective. Moreover, for
any set of colors ∇ let A[∇] denote the family {A′

1, . . . ,A
′
r}, where A′

i is the set of
all elements of Ai whose color is in ∇ .

Theorem 3 (Very Colorful Kirchberger Theorem) Let A = {A1, . . . ,Ar} be a family
of finite sets of points in R

d . Denote n = (r − 1)(d + 1). Suppose that �A is colored
with n+1 different colors. If every colorful smaller family A′  A with |� A′| = n+1
is separated, then there are two colors α and β such that A[α,β] is separated.

Proof For x ∈ �A denote x as Sarkaria’s lemma. The color of x is the same as that
of x. By Sarkaria’s lemma, every family A′  A is separated if and only if �A′ =
{x | x ∈ �A′} is separated from the origin. Applying the Very Colorful Carathéodory
Theorem to the colored set of points �A ⊆ R

n finishes the proof. �

Observe that, if one has to show the existence of just one color, then it is enough
to apply the Colorful Carathéodory Theorem [2] instead of Theorem 1. This will be
the case in applications given by Corollary 4 and Theorem 5.

Corollary 4 (Multipartite Kirchberger) Let A = {A1, . . . ,Ar} be a partition of a
finite set X of points in R

d . The partition A is not separated if and only if there is a
set X′ ⊆ X with |X′| = (r − 1)(d + 1) + 1 such that {A1 ∩ X′, . . . ,Ar ∩ X′} is not
separated.
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Proof One implication follows from Theorem 3 taking (r − 1)(d + 1)+ 1 colors and
painting each point in X with all colors. The other implication is obvious. �

We mention that the Multipartite Kirchberger theorem was proved first by Attila
Pór [6] in his university thesis.

4 Tverberg’s Theorem

The Very Colorful Kirchberger Theorem is a powerful theorem, and some of its par-
ticular cases deserve extra discussion. Let A = {A1, . . . ,Ar}, where A1 = A2 = · · · =
Ar = A and A = {a1, . . . , an+1} is some set of n+1 = (r −1)(d +1)+1 points in R

d .
We paint the point ai with color i in every set Aj . It is clear that the family A[i] is
non-separated for every color i. So by the Very Colorful Kirchberger Theorem (one
color in the conclusion) there must be a colorful family B and B = {B1, . . . ,Br}  A
with | � B| = n+ 1 which is not separated. By its properties, B is a partition of A and
no Bi can be empty. Rephrasing this case, we obtain Tverberg’s theorem.

Theorem 5 (Tverberg) Every set of (r − 1)(d + 1) + 1 points in R
d has a non-

separated partition into r parts.

The preceding proof of Tverberg’s theorem uses little of the strength of the Very
Colorful Kirchberger Theorem in particular; the latter concludes that there exists a
set ∇ of not only one but two colors such that A[∇] is separated. This is not used in
Tverberg’s theorem. To remedy this situation we consider a more general particular
case. Let Δn denote the n-dimensional simplex.

Theorem 6 (Generalized Tverberg) Denote n = (r − 1)(d + 1). Suppose that
f1, . . . , fr : Δn → R

d are linear maps such that for every edge σ 1 ⊆ Δn the equality
f1(σ

1) ∩ · · · ∩ fr(σ
1) �= ∅ holds. Then there exist disjoint faces φ1, . . . , φr of Δn

such that f1(φ1) ∩ · · · ∩ fr(φr) �= ∅ and
∑

dimφi = n + 1 − r .

Proof Let A = {A1, . . . ,Ar}, where Ai = {ai,1, . . . , ai,n+1} ⊆ R
d . For every i ∈

{1, . . . , r} we color aij with the color j . So the set Ai can be interpreted as a function
fi : {1, . . . , n + 1} → R

d . The vertices of Δn can be identified with the n + 1 colors.
Then Δn is the simplex of colors. Extend linearly fi : Δn → R

d . A separated fam-
ily A′  A is just a choice of r faces φ1, . . . , φr of the simplex of colors such that
f1(φ1) ∩ · · · ∩ fr(φr) = ∅. If A′ is colorful, then the faces φ1, . . . , φr are disjoint. If
| � A′| = n + 1, then

∑
dimφi = n + 1 − r . Finally, the statement of the Very Col-

orful Kirchberger Theorem translates into the existence of an edge (spanned by two
colors) σ 1 ⊆ Δn such that f1(σ

1) ∩ · · · ∩ fr(σ
1) = ∅. Now if the statement of the

Very Colorful Kirchberger Theorem fails for every edge σ 1 ⊂ Δn, then its condition
has to fail for some colorful and separated family A′  A, finishing the proof. �

At first glance, the hypothesis of Theorem 6 seems to be too strong. For instance,
when d > 2, f1(σ

1) and f2(σ
1) are disjoint for generic affine maps f1, f2. Yet the



Discrete Comput Geom (2009) 42: 142–154 149

Fig. 3 Two projections of the
tetrahedron into the plane

conditions are not excessively strong, at least in the sense of the following example.
When r = 2 and d = 2, Theorem 6 is a generalization of Radon’s theorem in the
plane: if �,O : Δ3 → R

2 are linear maps such that for every edge σ ⊆ Δ3 the images
�(σ ) and O(σ ) intersect, then there exists a partition α,β of Δ3 such that �(α) and
O(β) intersect. In Fig. 3 there are two such images of Δ3 (with vertices numbered by
{1,2,3,4}), one whose vertices are labeled by squares, and one whose vertices are
labeled by circles.

Observe that in this example all edges σ ⊆ Δ3 but {1,2} are such that �(σ ) ∩
O(σ ) �= ∅. However, there is no partition of {1,2,3,4} into two parts α,β such that
�(α) ∩ O(β) �= ∅.

If we set f1 = · · · = fr = f in Theorem 6, then we obtain Tverberg’s theorem.
Therefore, the linearity of f can be replaced by continuity according to the Topolog-
ical Tverberg Theorem, which is proved only for prime numbers [3] and for powers
of prime numbers [8].

It is easy to see that the topological version of Theorem 6 is false, even when
the functions coincide on all vertices. Therefore, contrary to Tverberg’s theorem,
Theorem 6 can distinguish linear maps from continuous ones.

5 Helly’s Theorem

Any point p ∈ R
d can be associated to the open semispace whose normal vector

is
−→
0p. The following fact is well known (see [4]).

The origin is in the convex closure of a set of points in R
d if and only if the

corresponding set of open semispaces is not intersecting.

Therefore the Very Colorful Carathéodory Theorem is equivalent to the following.

Proposition 7 (Very Colorful Helly Theorem for semispaces) Let A be a finite fam-
ily of open semispaces in R

d colored with d + 1 different colors. If every colorful
subfamily A′ with |A′| = d + 1 is intersecting, then there are two colors such that the
subfamily of all sets of these colors is intersecting.

This proposition does not generalize to convex sets in R
d . This can be seen from

Fig. 4 where a yellow triangle, three red and three blue intervals fulfill the hypothesis,
but only one color class is intersecting.
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Fig. 4 The sharpness of the
Colorful Helly Theorem

Later in this section we will come back to this phenomenon. The intersection of
an open semispace with the unit sphere is an open hemisphere. Clearly, a set of open
semispaces is intersecting if and only if the set of corresponding open hemispheres
is intersecting, too. Therefore, Proposition 7 can be restated replacing semispaces by
hemispheres.

Contrary to the affine case, this proposition does generalize to spherically convex
sets. A spherically convex set is a subset C of the sphere such that if x, y ∈ C, then C

contains all geodesics between x and y. It is well known (and actually quite easy to
check) that an open spherically convex set is the intersection of a collection of open
hemispheres. A closed spherically convex set is the (topological) closure of an open
spherically convex set or is the whole sphere.

Theorem 8 (Very Colorful Helly Theorem on the sphere) Let A be a finite family of
closed, spherically convex sets in S d−1 colored with d + 1 different colors. If every
colorful subfamily A′ with |A′| = d +1 is intersecting, then there are two colors such
that the subfamily of all sets of these colors is intersecting.

Proof Let A be a family contradicting the theorem. We can suppose that none of the
elements of A is the whole sphere. For any colorful subfamily A′ with |A′| = d + 1
we pick a point in the intersection

⋂
A∈A′ A, thus obtaining a finite set of points P .

For each set A ∈ A denote by AP the set of all points in P which we picked for
the colorful subfamilies containing A. It is clear that {conv〈AP 〉 | A ∈ A} is also a
family contradicting the theorem. The convex sets in this new family are spherical
polytopes, i.e., they are spanned by a finite set of vertices.

Suppose now that the elements of A are spherical polytopes. For each A ∈ A and
ε > 0 choose an open spherical polytope Aε which contains A and is contained in
the ε-neighborhood of A. It is clear that for a sufficiently small ε, the family Aε =
{Aε | A ∈ A} also contradicts the theorem. Namely, there are no two colors such that
the subfamily of all sets of these colors is intersecting. In other words, it is enough to
prove the theorem for open spherical polytopes.

Now, let A be a family of open spherical polytopes contradicting the theorem.
For every A ∈ A let HA be the finite set of open hemispheres such that A is the
intersection of them. We color every hemisphere in HA with the color of A.

By Proposition 7 there are two colors such that all hemispheres of these colors
intersect. However, this implies that all A ∈ A of these two colors also intersect. �
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We come back to the affine case now. As we saw before, we cannot obtain two
intersecting colors. Lovász’s Colorful Helly Theorem is sharp in this sense.

Theorem 9 (Colorful Helly Theorem [2]) Let A be a finite family of compact convex
sets in R

d colored with d + 1 different colors. If any colorful subfamily A′ with
|A′| = d + 1 is intersecting, then there is a color such that the subfamily of all sets of
this color is intersecting.

We remark that using the presence of two colors in Theorem 8 one can give a new
and simple proof of the Colorful Helly Theorem:

(1) Add a new compact convex set containing all sets in A and paint it with a new
color.

(2) Lift the family to the sphere S d in R
d+1 using the projection from the center.

(3) Apply Theorem 8.

We shall further generalize the Colorful Helly Theorem in another direction. The
following result is exactly the Colorful Helly Theorem in the case m = d + 1.

Theorem 10 (Very Colorful Helly Theorem) Assume m ∈ {1, . . . , d + 1}. Let A be a
finite family of compact convex sets in R

d colored with d + 1 different colors. If every
subfamily A′ with |A′| = d + 1 and with at least m different colors is intersecting,
then there are d + 2 − m colors such that the subfamily consisting of all sets of these
colors is intersecting.

Proof A subfamily A′ ⊆ A with |A′| = d + 1 and with at least m different colors is
called rainbow. We denote B̂ = ⋂

A∈B A. The hypothesis of the theorem says that,
for every rainbow subfamily A′, the set Â′ is not empty.

Suppose the theorem is not true. Let A be the set of all families A contradicting
the theorem such that |A| is minimal. For A and B in A we define the partial order
relation A  B if there exists a bijection ϕ : A → B such that for all A ∈ A the
inclusion A ⊆ ϕ(A) holds.

Let A be a minimal element of this order relation and denote Ã = conv
⋃

A∈A A.

Let p ∈ Ã be a point such that p /∈ conv(Ã \ p), i.e., p is an extreme point of Ã.
We claim that there exists a rainbow subfamily B ⊆ A such that B̂ = p. Indeed,

suppose this is not the case. Then for every rainbow subfamily B there exists a point
q(B) ∈ B̂ \p ⊆ Ã \p. For every A ∈ A denote by A′ the convex closure of the points
q(B) such that B is a rainbow subfamily containing A. It is clear that the family
{A′ | A ∈ A} = A′  A also contradicts the theorem. Moreover, A′ �= A because no
set in A′ contains the point p. This contradicts the minimality of A.

Now we prove that there exists a set C ⊆ B with |B \ C| = 1 such that Ĉ = p.
Indeed, suppose this is not the case. Then for every C ⊆ B with |C| = d there exists a
point q(C) ∈ Ĉ \ p ⊆ Ã \ p. Since p is an extreme point, then there exists an affine
hyperplane H separating p from the set of all q(C). This means that for any C ⊆ B
with |C| = d we have that Ĉ intersects both affine open semispaces defined by H and
therefore Ĉ intersects H. Applying Helly’s classical theorem in dimension d − 1, we
obtain that B̂ intersects H . This contradicts the definition of B.
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Let ∇ be the set of colors of C . We know that |∇| ≥ m − 1. If |∇| ≥ m, then
for any A not in C the subfamily C ∪ {A} is rainbow and intersecting. Therefore, all
elements of A contain the point p. If |∇| = m − 1, then for every A ∈ A whose color
is not in ∇ the subfamily C ∪ {A} is rainbow and intersecting. Therefore, there are
d + 1 − |∇| = d + 2 − m colors such that all elements of A of these colors contain
the point p. In both cases there is a contradiction. �

Observe that Helly’s theorem can be derived from this theorem in several ways, in
particular, by setting m = 1. Therefore, if one does not want to use Helly’s theorem
in the proof, then induction on the dimension can be applied.

6 Hadwiger’s Theorem

The purpose of this last section is to prove the following.

Theorem 11 (Very Colorful Hadwiger Theorem) Let A1, . . . ,An be a finite, ordered
family of compact convex sets in the plane colored with at least m ≥ 3 different colors.
If for any choice of differently colored Ai , Aj and Ak with i < j < k the condition
Aj ∩ 〈Ai ∪ Ak〉 �= ∅ holds, then there are m − 2 colors such that there is a line
transversal to all the convex sets of these colors.

This theorem was proved in [1] for the particular case m = 3. It is not easy to
prove Theorem 11 from this particular case. However, the proof given in [1] can be
modified to prove Theorem 11. Since the needed modifications are technical, it makes
no sense to repeat the paper [1]. Therefore, the proof given here is not self-contained.
We will only modify the definitions of the following concepts from [1]:

• middle line of a colored family
• middle colored separating sign vector
• balanced colored sign vector

and we will prove Lemmas 3 and 4 from [1] in this more general context. This will
be enough to conclude the proof of Theorem 11.

Before proceeding, we remark that Theorem 11 is sharp in the sense that one
cannot find a transversal line to the sets of more than m − 2 colors. This can be seen
from the example in Fig. 5.

Now we start to discuss the promised modifications of [1]. Let d be a direction in
the plane and d⊥ its orthogonal direction. Chose any oriented line ⊥ in the direction
of d⊥. When we orthogonally project any convex set A to the line ⊥ we obtain
an interval [i(A), j (A)] and we can think that i(A) and j (A) are real numbers. Let
A1, . . . ,An be a colored family of plane convex sets. For any color c define qc =
Sup{i(Ai) | Ai is colored c} and pc = Inf{j (Ai) | Ai is colored c}. Moreover, if K is
any subset of colors, then we define qK = Sup{qc | c ∈ K} and pK = Inf{pc | c ∈ K}.
It is easy to see that there is a line transversal in the direction d to all the sets colored
with the colors in K if and only if qK ≤ pK .

Denote by C the set of all colors and suppose |C| = m ≥ 3. Then by u1, u2, . . . , um

we can denote real numbers such that u1 ≤ u2 ≤ · · · ≤ um and {u1, u2, . . . , um} =
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Fig. 5 The sharpness of the
Very Colorful Hadwiger
Theorem

{pc | c ∈ C}. In the same way we define v1, v2, . . . , vm such that v1 ≥ v2 ≥ · · · ≥ vm

and {v1, v2, . . . , vm} = {qc | c ∈ C}.
Let  be the oriented line in the direction d which meets ⊥ in the point θ =

(u2 + v2)/2. We will call  the middle line of the colored family A in the direction d .
The colored separating sign vector of the line  will be called the middle colored
separating sign vector of the direction d .

A colored sign vector will be called balanced if the following conditions hold:

(1) The number of different colors of non-zero coordinates is at least three.
(2) The number of different colors of positive coordinates is at least two.
(3) The number of different colors of negative coordinates is at least two.

Lemma 12 ([1] Lemma 3) If the m-colored family A has the property that for any
subset of colors K with |K| = m − 2 the subfamily of all sets colored with the colors
in K has no transversal line in the direction d , then the middle colored separating
sign vector of A in the direction d is balanced.

Proof We shall see that u2 < v2. If not, then um ≥ · · · ≥ u2 ≥ v2 ≥ · · · ≥ vm. Let P

be the set of colors such that {u2, . . . , um} = {pc | c ∈ P }, and Q be the set of colors
such that {u2, . . . , um} = {qc | c ∈ Q}. Let K = P ∩ Q. We have |K| ≥ m − 2 and
pK ≥ pP ≥ qQ ≥ qK . This implies that there is a line transversal in the direction d

to all sets colored with the colors in K contradicting the hypothesis.
So u1 ≤ u2 < θ < v2 ≤ v1, which means that there are positive coordinates of two

different colors (those corresponding to v1 and v2) and there are negative coordinates
of two different colors. If the number of different colors of non-zero coordinates is
exactly two, then the line  would be transversal to all the sets colored with the other
m − 2 colors. �

Lemma 13 ([1] Lemma 4) If x  y are both balanced and Hadwiger colored sign
vectors, then they have the same sign.

Proof Assume that x and y contradict the lemma. Say that the sign of x is plus and
the sign of y is minus. Denote by a and b the indices of the leading coordinates of x
and y, respectively. As is shown in [1] we can suppose that b = 1 and a = 2.

Since x  y, then x2 = y2 = +. We also know that x1 = 0 and y1 = −. We divide
the proof into two cases: the colors of coordinates 1 and 2 coincide or not.
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Suppose they coincide. Since y is balanced, then there must be a coordinate (say
i) of a second color such that yi = − and a coordinate (say j ) of a third color such
that yj = +. If i < j , then (y2, yi, yj ) = (+ − +), otherwise (y1, yj , yi) = (− + −),
and both cases are contradictory to the fact that y is Hadwiger.

Suppose the first coordinate is red and the second is blue. If there exists a coordi-
nate (say i) of another color such that xi = yi = −, then (y1, y2, yi) = (− + −), and
this is contradictory to the fact that y is Hadwiger. So, every color different from red
and blue has positive coordinates.

Since x is balanced and x  y, then there must exist:

A coordinate (say i) of a third color such that xi = yi = +.
A red coordinate (say j ) such that xj = yj = −.
A blue coordinate (say k) such that xk = yk = −.

If j < i, then (y2, yj , yi) = (+ − +). Hence, i < j . If k < i, then (yk, yi, yj ) =
(− + −); otherwise (y1, yi, yk) = (− + −) and in all cases we obtain a contradic-
tion. �

This concludes the required modifications of the proof in [1].

Remark During the preparation of this paper, János Pach informed us that he, An-
dreas Holmsen and Helge Tverberg simultaneously and independently discovered
Theorems 1 and 8.
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