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Abstract. Let C be a cone in R3 whose base B is a planar convex body in a horizontal
plane π and whose tip is a point v /∈ π . Let C be a packing formed by translates of C and
−C in R3. We exhibit an explicit constant c > 0 such that the density of any such C is
smaller than 1− c, answering a question of Wlodek Kuperberg.

1. Introduction and Main Result

Let C be a cone, over a planar convex set B, in R3 and let C be a packing consisting
of translates of C and −C (no rotations allowed). Kuperberg [5] proved several years
ago that the density δ(C) of C is less than 1 (for the reader’s convenience, we outline
a short proof at the end of this section). This immediately implies the existence of a
constant c > 0 such that δ(C) ≤ 1− c for every C and every packing C of translates of
C and −C . Indeed, if supC,C δ(C) = 1, then one can choose a convergent subsequence
of the cones such that the limiting cone tiles the space. However, then the density of the
corresponding packing is 1.

This argument cannot give any explicit value for c. That is why Kuperberg [5] raised
the following problem: Find an explicit constant c > 0 such that for every cone C , every
packing by translates of C and −C has density less than 1− c. The aim of this paper is
to give such an explicit constant.
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Here a cone C is simply the convex hull of the base B and the tip v, where B is a
convex compact set of nonzero area lying in a two-dimensional plane π , and v /∈ π is a
point in R3.

Theorem 1.1. There is an explicit constant c > 0 such that for every cone C ⊂ R3,
every packing by translates of C and −C has density smaller than 1− c.

Remarks. Our proof actually works for larger class of packings, with the same constant
c. Namely, letF be the family of all cones in R3 with tips at (0, 0, 1) or at (0, 0,−1) and
with bases B in the plane z = 0 such that B contains the horizontal unit disk centered
at the origin and is contained in the concentric disk of radius 2. Let C be a packing of
translates of cones in F . Then the density of C is at most 1− c. For this remark we are
indebted to Wlodek Kuperberg.

Our method gives an extremely small value for c. (We have not tried to optimize the
constants in the proofs.) It is very easy to see that if the base B tiles the plane, then there
exists a packing C by translates of C and −C whose density is 2

3 . The best construction
we know of is more than 100 years old and is due to Minkowski [6]. It is a lattice packing
by translates of an octahedron with density 18

19 , showing that the constant in Theorem 1.1
satisfies c ≤ 1

19 . Betke and Henk [1] proved that no lattice packing of octahedra can have
a larger density.

Sketch of a Proof of δ(C) < 1. We assume that C is a packing of translates of C and
−C , and we show that δ(C) < 1, the result of Kuperberg. This, of course, is weaker than
Theorem 1.1, but the proof is simple.

For contradiction we assume δ(C) = 1 and let Cn be a packing by translates of C and
−C such that δ(Cn) tends to 1. Let Q be a large cube. Then there are translated copies
Qn of Q such that, as n goes to infinity,∑

C∗∈Cn

Vol(C∗ ∩ Qn)→ Vol Q.

Translate Qn to Q together with the C∗ ∈ Cn that intersect Qn . We get finite packings
by translates of C and −C that cover Q almost perfectly. One can choose a convergent
subsequence of these packings, and the limiting packing C∗ tiles Q. Then C is a polytope.
Let C∗ be a cone in C∗ which is close to the center of Q, and let T be a triangular facet of
C∗ adjacent to the tip. Every point p in the relative interior of T is covered (besides C∗)
by another cone C(p) ∈ C∗. Further, C∗ and C(p) are separated by the plane aff(T ).
Now if C(p) is a translate of C , then C(p) ∩ aff(T ) is a vertex or an edge of C(p).
This implies that the translates of C in C∗ can only cover a small portion (of measure
zero) of T . For the rest of the points p ∈ T , C(p) is a translate of −C . Consequently,
p is covered by −T . However, that is impossible: a triangle T cannot be covered by
internally disjoint translates of −T .

Remark. There are several beautiful open questions about the density of packings of
cones in Rd , d ≥ 3, some of them are very natural and look hard. We refer the interested
reader to the forthcoming paper by Bezdek and Kuperberg [3] with the hope that it
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will be written up and published soon. Some information on these problems can also be
found in [2].

2. Preparations

In this section we introduce notation and terminology, and state auxiliary lemmas needed
in the proof.

We assume that the base B of the cone C lies in the horizontal plane π containing
the origin 0. For a real number x we let π(x) be the plane parallel to π at distance |x |
from π = π(0), where π(x) lies below π for x > 0 and above π for x < 0. This is
opposite(!) to the usual convention for the position of the coordinate system, but we find
our “reverse” convention more convenient in this paper.

Let D ⊂ π be the unit disk centered at the origin. Since our problem is invariant under
nondegenerate linear transformations, we can assume that B is sandwiched between 1

2 D
and D, that is, 1

2 D ⊂ B ⊂ D (by Löwner’s theorem [4]). Similarly, we may assume
that the tip v of C is above the origin and at distance 1 from it (so it lies in π(−1)).
The sandwiching easily implies the following two facts, whose elementary proofs are
omitted.

Fact 2.1. For every point p on the boundary of B ⊂ π , the angle between π and the
line connecting p and v is between 45◦ and 60◦.

Fact 2.2. For every p on the boundary of B ⊂ π , there is a wedge K in the plane π
with apex at p and of angle 60◦ such that K ∩ (p + 1

2 D) is contained in B; see Fig. 1.

Let C∗ be a translated copy of C . We write v(C∗) for its tip, B(C∗) for its base,
and we let a(C∗) be the vertical coordinate of the base; that is, B(C∗) lies in the plane
π(a(C∗)). So a(C∗) ∈ [0, 1] if and only if C∗ intersects π . For a translate Ci of C we
simply write ai , Bi , vi instead of a(Ci ), B(Ci ), v(Ci ).

We write dist(S1, S2) for the Euclidean distance between sets S1, S2 ⊂ R3. Of course,
the distance between S1 and S2 is the infimum of dist(x, y) with the infimum taken over
all x ∈ S1 and y ∈ S2.

We need three simple lemmas for the proof of the main theorem.

Lemma 2.3 (Avoidance Lemma). Let C1 and C2 be disjoint translates of C , both in-
tersecting π , and let 0 ≤ a2 ≤ a1 ≤ 1; see Fig. 2. Then

dist(π ∩ C1, π ∩ C2) ≥ a2.

0
p

B

p + 1

2
D

K

Fig. 1. Illustration to Fact 2.2.
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π
C1

C2 a2

a1

Fig. 2. The avoidance lemma.

For the next lemma and for the rest of the paper we set r0 = 1
12 .

Lemma 2.4 (Local Boundedness Lemma). Let r D be the disk inπ of radius r centered
at 0, where r ∈ (0, r0], and let C+ be a packing of translates of C (no−C allowed here).
Then r D intersects at most one cone from C+ with a(C∗) ≥ 2r and at most six cones
with a(C∗) < 2r .

For 0 ≤ h2 < h1 we let Cyl(r, h1, h2) denote the vertical cylinder of radius r with
axis passing through 0 and bounded from above by the plane π(h2) and from below by
π(h1). Let C0 denote the translate of C whose tip is at the origin.

Lemma 2.5 (Special Cylinder Lemma). Letα be a sufficiently small positive real num-
ber, and let β ∈ (0, α). For every R ∈ (0, r0], and for every packing C+ of translates of
C with C0 ∈ C+ there is an r with(

2β

2+ α
)6

R ≤ r ≤ R

such that C0 is the only cone of C+ intersecting the interior of Cyl(r, αr, βr); see Fig. 3.

We use these lemmas in the proof of the main theorem. Their proofs are given in
Section 5.

3. One More Lemma and Proof of the Main Theorem

We assume that r ∈ (0, r0], α > 0, and β ∈ (0, α/2] have been fixed. Let Z be the
cylinder Cyl(r, αr, βr) and let T be its axis, that is, the segment of the vertical line
through 0 between the planes π(αr) and π(βr). We also set γ = α − β and η = α2.

βr

αr

0

C0

Fig. 3. Illustration to the special cylinder lemma.
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Lemma 3.1 (Main Lemma). Let C+ be a packing of translates of C in which each
element is disjoint from T . Then

Vol

(
Z\
⋃
C+
)
≥ ηVol Z .

The proof is given in the next section. We are actually going to use the lemma for the
translates of −C in the given packing of C and −C .

Proof of Theorem 1.1. We specify the parameters now, but we work with their numeri-
cal values only later. So let α = 1/(384π), and β = γ = α/2. We choose R = r0 = 1

12 .
Lemma 2.5 applies to every positive cone Ci ∈ C and to the packing C+ consisting of

the positive cones in C. This gives, for every Ci , a cylinder Zi = Cyl(ri , αri , βri )+ vi

that is intersected only by Ci and possibly by some translates of−C in C, but by no cone
in C+\{Ci }.

We also note that all ri are larger than the fixed positive number

(
2β

2+ α
)6

R =
(

α

2+ α
)6

R,

and so

Vol Zi = πγ ri
3 ≥ πγ

(
α

2+ α
)18

R3 =: c0.

The negative cones in C are disjoint from the axis of Zi because this axis is contained in
Ci . Then the main lemma obviously can be applied to Zi and to the packing C− formed
by the negative cones in C. So the negative cones in C occupy at most a 1− η fraction of
Zi . The only positive cone intersecting Zi is Ci , and Vol(Zi ∩Ci ) ≤ (αri )

3π/3. Thus C
altogether misses at least

ηVol Zi − π
3
(αri )

3 =
(
η − α3

3γ

)
Vol Zi =

(
η − 2α2

3

)
Vol Zi = η

3
Vol Zi

of the volume of Zi , since we have chosen η = α2.
Using the avoidance lemma (Lemma 2.3) it is easy to check that the cylinders Zi are

disjoint. Consequently, for each positive cone Ci ∈ C+, an η/3 fraction of the volume
of the cylinder Zi is left uncovered by C.

The same applies to the negative cones in C as well. Now when computing the density
of C, we consider a large cube Q containing n cones from the packing, with at least half
of them positive, say. If n Vol C < 1

2 Vol Q, then the density in Q is small, smaller than 2
3

for Vol Q sufficiently large, since the cones from C that intersect Q but are not contained
in Q can cover only a small portion of Q. So we now suppose that n Vol C ≥ 1

2 Vol Q.
Then in the cylinders Zi corresponding to the positive cones from C contained in Q, a
volume of at least

n

2

η

3
c0
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is uncovered by C, while the volume of Q is at most 2n Vol C ≤ (2π/3)n. This implies
that C leaves an ε fraction of Q uncovered, where

ε = ηc0

4π
= 1

8

α21 R3

(2+ 2α)18
≈ 5.327 · 10−75.

Remark. By fine-tuning the parameters in this argument and in the proof of the main
lemma it is possible to get ε ≈ 10−42. This is much larger than the ε above but still
extremely small.

4. Proof of the Main Lemma

For simpler notation we translate the upper face of the considered cylinder to the plane
π(0). So here we assume that Z = Cyl(r, γ r, 0), γ = β − α.

We argue by contradiction; so we assume that C+ is a packing of translates of C with
T ∩⋃ C+ = ∅ that misses less than an η fraction (of the volume) of Z . We suppose that
all cones in C+ intersect Z .

We set ρ = 2
√
ηr and we let V = Cyl(ρ, γ r, γ r/2) be a smaller cylinder in the

lower half of Z .

Claim 4.1. There is a C1 ∈ C+ intersecting V such that a(C1) < γ r + 2ρ.

Proof. By the choice of ρ, the cylinder V has volume 2ηVol Z , and so it is met by some
element of C, say by C1. Since C1 is disjoint from the axis T of the cylinder Z , there exists
a halfspace H with T on its boundary and disjoint from C1. Since Vol(H∩V ) ≥ ηVol Z ,
there exists another C2 ∈ C+ intersecting V .

For contradiction let us suppose that both a(C1) ≥ γ r + 2ρ and a(C2) ≥ γ r + 2ρ.
Then both C1 and C2 intersect π(γ r) and both are at a distance of at most ρ from T ,
implying that

dist(π(γ r) ∩ C1, π(γ r) ∩ C2) ≤ 2ρ.

However, by the avoidance lemma (Lemma 2.3)

dist(π(γ r) ∩ C1, π(γ r) ∩ C2) > 2ρ,

a contradiction. Thus we have a(C1) < γ r + 2ρ or a(C2) < γ r + 2ρ, and at least one
of the cones C1 and C2 satisfies the requirements of the claim.

Now let C1 ∈ C+ be as in the claim, and let us put

a1 = min(γ r, a(C1)).

Since C1 intersects V , we have a1 ≥ γ r/2. Let C2, . . . ,Cm be the cones in C+ with
ai = a(Ci ) ≤ a1, where the notation is chosen so that a1 ≥ a2 ≥ · · · ≥ am ≥ 0.
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We denote by C̃ a general element of our packing C+. For every C̃ ∈ C+ different
from C1, . . . ,Cm we have a1 < a(C̃). For x ∈ [0, αr) we define

C̃(x) = Area(C̃ ∩ π(x) ∩ Z).

The function Ci (·): [0, γ r ]→ R is positive, continuous, and increasing on [0, ai ], and
is equal to zero on (ai , a1) for i = 1, . . . ,m. For C̃ ∈ C+ different from these Ci , the
function C(·) is nonnegative, continuous, and nondecreasing on [0, a1].

We denote by M the volume missed by C+ from Z . Set am+1 = 0. Then

M =
∫ γ r

0

(
r2π −

∑
C̃∈C+

C̃(x)

)
dx

≥
∫ a1

0

(
r2π −

∑
C̃∈C+

C̃(x)

)
dx

=
m∑

i=1

∫ ai

ai+1

(
r2π −

∑
C̃∈C+

C̃(x)

)
dx

≥
m∑

i=1

∫ ai

ai+1

(∑
C̃∈C+

C̃(ai )−
∑

C̃∈C+
C̃(x)

)
dx

≥
m∑

i=1

∫ ai

ai+1

(C1(ai )− C1(x)) dx .

Here the last inequality holds since C̃(ai ) ≥ C̃(x) for x ∈ [ai , ai+1], and hence we
can restrict the summation to the single cone C1. The previous inequality follows from∑

C̃∈C+ C(x) ≤ r2π , which holds since C+ is a packing. We need a simple claim, whose
proof is postponed to the end of this section.

Claim 4.2. For 0 ≤ x ≤ y ≤ a1 we have

C1(y)− C1(x) ≥ r

4
(y − x).

We continue the last inequality for the missed volume M :

M ≥
m∑

i=1

∫ ai

ai+1

(C1(ai )− C1(x)) dx

≥
m∑

i=1

∫ ai

ai+1

r

4
(ai − x) dx = r

8

m∑
i=1

(ai − ai+1)
2

≥ r

8
·
(∑m

1 (ai − ai+1)
)2

m
= r

8
· (a1)

2

m
≥ γ

2r3

32m
.
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By now we are almost finished with the proof. First, all Ci intersect the disk r D ⊂ π ,
and, for each i = 1, . . . ,m,

ai ≤ a1 < γ r + 2ρ < αr + 2
√
ηr = 3αr < 2r.

Thus by the last part of Lemma 2.4 we have m ≤ 6. Second, since Vol Z = γ r3π , we
have

M ≥ γ
2r3

32m
≥ γ

192π
Vol Z = ηVol Z ,

contrary to our assumption that M < ηVol Z .

Proof of Claim 4.2. We recall that C1 is the cone in C+ intersecting the smaller cylinder
V , avoiding the axis T (of V and Z ), and satisfying a(C1) < γ r + 2ρ. We write T1 for
the axis of C1. For 0 ≤ x ≤ a(C1), we let p0(x) denote the point in the slice C1 ∩ π(x)
nearest to T . Clearly, p0(x) is unique and lies on the boundary of C1 ∩π(x). We denote
by T (x) the point T ∩ π(x), and T1(x) is the point T1 ∩ π(x).

It follows easily from a(C1) < γ r + 2ρ that T1 is far from T : their distance is at least
1
2 − ρ.

Since C1 intersects V , we have |T (a1)−p0(a1)| ≤ ρ. The segment [p0(a1), v1], where
v1 is the tip of C1, lies in C1, and so, by Fact 2.1, the point [p0(a1), v1] ∩ π(x) ∈ C1 is
at distance at most ρ + (a1 − x) from T (x). This implies that, for all x ∈ [0, a1],

|T (x)− p0(x)| ≤ ρ + (a1 − x) ≤ 2
√
ηr + γ r < 3αr.

Further, for all x ∈ [0, a1], π(x) ∩ ∂C1 is a closed convex curve in π(x); see Fig. 4.
The part of this closed convex curve that lies in Z consists of connected components;
let L(x) denote the component containing p0(x). Since T1 is far from T , C1 ∩ π(x)
cannot lie completely in Z . Thus L(x) is a convex curve with two distinct endpoints.
Consequently, the length �(x) of L(x) satisfies

�(x) ≥ 2(r − |T (x)− p(x)|) ≥ 2(r − 3αr) ≥ 3
2 r.

Let p be an arbitrary point of the curve L(x), and let q be the intersection point of
π(y) and the line through p and v1. Further, let C∗, L∗, and p∗ denote the orthogonal
projection of C1 ∩ π(x), L(x), and p, respectively, onto π(y); see Fig. 5. We have

C1(y)− C1(x) = Area(((C1 ∩ π(y))\C∗) ∩ Z).

Z
C1

T1(x)
T (x)

p0(x)
L(x)

Fig. 4. Proof of Claim 4.2—the situation in the plane π(x).
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Z

T1(y)

C∗

C1 ∩ π(y)

L∗

q
p∗

Fig. 5. Proof of Claim 4.2 continued.

Since C∗ is a homothetic copy of C1 ∩ π(y) with center of homothety T1(y), the points
q, p∗, T1(y) are collinear. It follows from Fact 2.1 that |q − p∗| ≥ 1

2 (y − x).
Further, Fact 2.2 shows that the angle between the segment [q, p∗] and the tangent

line to L∗ at p∗ is at least 30◦. Define

F =
⋃

p∈L(x)

[q, p∗].

It is now clear that

Area F ≥ 1
2 (y − x)�(x) sin 30◦ = 1

4 (y − x)�(x).

It is not hard to see that F almost coincides with ((C1 ∩π(x))\C∗)∩ Z . More precisely,
let L ′ be the set of those p ∈ L(x) for which the segment [q, p∗] is contained in Z . One
can show readily that the length of L ′ is at least 2

3�(x); we omit the elementary details.
Finally we have

C1(y)− C1(x) = Area
(
((C1 ∩ π(x))\C∗) ∩ Z

)
≥ 2

3 Area F ≥ 1
6 (y − x)�(x)

≥ 1
4 (y − x)r.

5. Proof of the Auxiliary Lemmas

Proof of Lemma 2.3. The cone C1 intersects the plane π(a2) and C1 ∩ π(a2) is a ho-
mothetic copy of the base B. This homothetic copy and B(C2) are disjoint and so they
can be separated in π(a2) by a line �. For i = 1, 2 let �i be the line that is the intersection
of π with the affine hull of v(Ci ) and �. The strip between �1 and �2 separates π ∩ C1

and π ∩ C2. Its width is at least a2, as one can easily see using Fact 2.1.

Proof of Lemma 2.4. We show first that there is at most one cone C∗ ∈ C+ with
a(C∗) > 2r . If there were two, C1 and C2, then

dist(C1 ∩ π,C2 ∩ π) ≥ 2r

by the avoidance lemma (Lemma 2.3). However, since r D lies in the 2r -neighborhood
(in π ) of C1 ∩ π , C2 cannot intersect r D, a contradiction.
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Next, let C1, . . . ,Cm ∈ C+ be the cones intersecting r D. We are done if m ≤ 1. For
m ≥ 2 we may assume a(Ci ) ≤ 2r for all i ≥ 2. For each i = 2, . . . ,m there is a point
pi ∈ r D∩∂Ci . Since for i ≥ 2, π ∩Ci is a copy of the base B scaled by a factor between
1− 2r and 1, Fact 2.2 implies the existence of a planar wedge Ki ⊂ π , with apex at pi

and angle 60◦, such that Gi = (pi + ( 1
2 − r)D) ∩ Ki lies completely in Ci .

An elementary computation (using r ≤ 1
12 ) shows that Gi intersects the boundary of

the disk 1
2 D in an arc longer than 0.15π . (We omit the details of this argument.) Since

these arcs are disjoint, there are at most π/0.15π = 6.66 . . . of them. Thus m ≤ 7
follows.

Proof of Lemma 2.5. Let C0,C1, . . . ,Cm ∈ C be the cones intersecting the cylinder
Cyl(R, αR, 0) with a1 ≥ a2 ≥ · · · ≥ am .

We show first that ai < 2R for every i . This is satisfied if ai ≤ αR, so suppose
ai > αR. In this case Ci ∩ π(αR) intersects the cylinder Cyl(R, αR, 0) so the distance
between Ci ∩ π(αR) and C0 ∩ π(αR) is at most R − (α/2)R. The avoidance lemma
applied to Ci and C0 in the plane π(αR) shows that

dist(Ci ∩ π(αR),C0 ∩ π(αR)) ≥ ai − αR.

So we have ai ≤ R + (α/2)R < 2R.
With ai < 2R proved, Lemma 2.4 applies and shows that m ≤ 6.
Next we want to define r whose existence is stated in the lemma. If a1 ≤ βR, then

r = R will clearly do. So we suppose a1 > βR.
We call an index j ∈ {1, . . . ,m − 1} a big drop if

aj+1 ≤ 2β

2+ α aj .

First we assume that there is a big drop, and let j be the first big drop (that is, no i < j
is a big drop). Then, for all i < j ,

ai+1 >
2β

2+ α ai , implying aj >

(
2β

2+ α
) j−1

a1 >

(
2β

2+ α
) j−1

βR.

In this case r = 2aj/(2+ α) will do. Indeed, for i > j we have ai ≤ aj+1 ≤ βr , and
thus Ci lies completely above the considered cylinder Cyl(r, αr, βr). For i ≤ j , the
avoidance lemma (applied in π(αr)) and Fact 2.1 show that Ci ∩ π(αr) is at least at a
distance of

(ai − αr)+ α
2

r ≥ aj − α
2

r = r

from the axis of C0. This implies that Ci does not intersect the interior of Cyl(r, αr, 0).
Also,

r >

(
2β

2+ α
) j

R ≥
(

2β

2+ α
)5

R

since j ≤ m − 1 ≤ 5.
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Next, we assume that there is no big drop. Then r = 2am/(2+ α) will do. Indeed,
in this case Ci is disjoint from the interior of Cyl(r, αr, 0) for each i ≥ 1. This can be
checked the same way as in the previous paragraph. Finally,

r >

(
2β

2+ α
)m

R ≥
(

2β

2+ α
)6

R.
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