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CENTRAL LIMIT THEOREMS FOR GAUSSIAN POLYTOPES 

BY IMRE B?R?NY1 AND VAN VU2 

R?nyi Institute of Mathematics and University College London 

and Rutgers University 

Choose n random, independent points in R^ according to the standard 

normal distribution. Their convex hull Kn is the Gaussian random polytope. 

We prove that the volume and the number of faces of Kn satisfy the central 

limit theorem, settling a well-known conjecture in the field. 

1. The main result. Let tyd = ^ denote the standard normal distribution 

on R^, its density function is 

where x2 = \x\2 is the square of the Euclidean norm ofieRd. We will use this 

notation only for d > 2, for d = 1 the standard normal has density function 

^=(2?72exp|-y) 
with distribution <t>. 

Fix d > 2 and choose a set Xn = {x\,..., xn] of random independent points 
from R^ according to the normal distribution *I>. The convex hull of these points, 
Kn = ConvOq,... ,xn), is the Gaussian random polytope or Gaussian polytope 
for short. This is one of the central models in the theory of random polytopes, 
initiated by R?nyi and Sulanke in the 1960s. The main goal of this theory is to 

investigate the distributions of the key functionals (such as the volume) of random 

polytopes. 
A cornerstone in probability theory is the central limit theorem. A sequence Xn 

of random variables satisfies the central limit theorem if for every t 

limpf^S<i>i-c|>(f) 
= 0. 
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1594 I. B?R?NY AND V. VU 

It is a natural and important conjecture in the theory of random polytopes that the 

key functionals of Kn satisfy the central limit theorem, as n tends to infinity. This 

conjecture has been open for several decades, and very few partial results have 
been proved (see the next section). 

In this paper, we develop a general frame work which enables us to confirm this 

conjecture for many functionals. Due to the length of the proofs, we will focus on 

the volume and the number of faces, perhaps the two most interesting parameters. 
Some other functionals (such as the intrinsic volumes of the probability content) 
will be discussed in Section 14. 

For a convex polytope K, we use Yol(K) and fs(K) to denote its volume and 

number of faces of dimension s, respectively. Here are our main results. 

THEOREM 1.1. Let d be a fixed integer at least 2. There is a function e(n) 

tending toO as n tends to infinity such that the following holds. For any value oft, 

F/Vol(Kn)-EVol(Kn) <f 
\ VVarVol(^) 

THEOREM 1.2. Let d be a fixed integer at least 2 and s be a nonnegative 

integer at most d ? 1. There is a function s(n) tending to 0 as n tends to infinity 
such that the following holds. For any value oft, 

(2) pifs(Kn)-Efs(Kn)_ 
\ < 

V JVzrfs(Kn) 
- 

) 
- 

Remark 1.3. In both theorems, we can take s(n) = 
(logn)~(J_1)/4+o(1). 

(See Remarks 4.2, 3.3 and 8.3.) 

In the next section, we give a brief survey about the study of Gaussian polytopes 
and random polytopes in general. 

Notation. In the whole paper, we assume that n is large, whenever needed. 

The asymptotic notation are used under the assumption that n -> oo. Given non 

negative functions f(n) and g(n), we write f(n) = 0(g(n)) (f(n) = Q(g(n))) 
if there is a positive constant C, independent of n, such that f(n) < Cg(n) 

(f(n) > Cg(n)) for all sufficiently large value of n. We write f(n) = @(g(n)) 
if f(n) = 0(g(n)) and f(n) = Q(g(n)). In this case, we say that f(n) and g(n) 
have the same order of magnitude. Finally f(n) = o(g(n)) if f(n)/g(n) tends to 
zero as n tends to infinity. 

Consider a (measurable) subset SofRd. The probability content of S is 

*(5)= f f(x)dx. 

-*(0 <s(n). 
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GAUSSIAN POLYTOPES 1595 

P, E, Var denote probability, expectation, variance, respectively. Let ti, i = 

1,..., n, be independent random variables and Y = Y(t\,..., tn) be a random vari 

able depending on t\, ...,tn. E(Y\t\,.. .,ti) is the conditional expectation of Y 

conditioned on the first i variables. \e is the indicator of the event E: I# = 1 if E 

holds and 0 otherwise. 

2. History. Gaussian random polytopes were first considered by R?nyi and 

Sulanke in their classical paper [16]. Naturally, the existence of central limit the 
orems should be one of the very first questions to ask. However, early results are 

very far from a possible answer of this question, due to the lack of tools. These 

results mostly focused on expectations. In particular, R?nyi and Sulanke deter 

mined the expectation of f\(Kn) for a Gaussian polytope in R2. (Here and later f 
denotes the number of faces of dimension /.) In 1970, Raynaud [14] computed 
Efd-\(Kn) in all dimensions. The general formula is 

(3) Efs(Kn) = 
??^sd+ ^j?SA-i(7tlogn)(d-^2{l+o(l)), 

where s e {0,1,..., d ? 1} and d > 1, as n -> oo. Here ?s,d-\ is the internal 

angle of the regular (d 
? 

1)-simplex at one of its s -dimensional faces. The formula 
was proved by Affentranger and Schneider [2] and by Baryshnikov and Vitale [6]; 

simpler proofs can be found in [12]. Recently Hug and Reitzner [13] obtained an 

estimate for the variance 

(4) Y^fs(Kn) = 
0{(logn)id-^2). 

In [10, 11], Hueter stated a central limit theorem for fo(Kn), but the proof had a 

gap, namely, the claimed estimate on the variance was not correct. 

As far as the volume is concerned, Affentranger [1] determined the expectation 
ofVol(Kn): 

(5) EVol(Kn)=Kd(2\ogn)d/2(l+o(l)). 
Here Kd denotes the volume of Bd, the ?/-dimensional unit ball. An upper bound 
for the variance of Yol(Kn) is given by Hug and Reitzner [13]: 

(6) VarVol(^) = 
0((\ogn){d~3)/2). 

We are not aware of a central limit theorem for the volume, prior to this paper. 
Another popular model of random polytopes is the so-called uniform model, 

defined as follows. Let K be a convex set in R^ of volume one. Select n random 

points in K with respect to the uniform distribution and define the random polytope 
as the convex hull of these points. Similar to the situation with the Gaussian model, 
there is a vast amount of literature focusing on the expectations of the key functions 

(see [21] for a survey). As far as central limit theorems are concerned, the case d = 

2 has been studied by Groeneboom [8], Groeneboom and Cabo [7], and Hsing [9]. 
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1596 I. B?R?NY AND V. VU 

They proved central limit theorems for random polyogon in the square and the unit 

disk. But their methods do not extend to higher dimensions. 

In 2004 and 2005 there were several notable developments on the uniform 

model, especially in the case when the mother body K has smooth boundary: Vu 

[19] proved that several key functionals have distributions with exponential tails. 

Next, Reitzner [15] established a central limit theorem for a Poisson variant of the 

model. Further, Vu [20], using the results of the above two papers and a coupling 

argument, proved several central limit theorems for the uniform model. The central 

limit theorem when A' is a polytope was established by B?r?ny and Reitzner [5]. 
The framework we develop in this paper makes use of ideas from [15, 19, 20] 

and also from [5]. Moreover, due to the obvious differences between the uniform 

measure and the Gaussian one, we also need to introduce several new ideas to 

handle technical obstacles. 

Let us conclude this section with a few basic facts about the normal distribution. 

Let r be a positive number at least one. Let B(r) denote the ball of radius r centered 

at the origin and B(r) be its complement. The probability content of B(r) is 

(7) *(?(r)) = 
?{e~r2,2rd-2). 

Let H(r) be a half space at distance r from the origin [H(r) is not unique, but it 

does not matter]. The probability content of H(r) is 

(8) y(H(r)) = 
@(e-r2/2r~l). 

3. Two more models. It is hard to prove the CLT for Kn directly. We are 

going to take a detour and prove the CLT for some more convenient models, 

namely K'n and n?, and next prove that the distributions of Wol(Kn) and Vol(Kfn) 
and Vol(n?) are approximately the same. 

We define K'n first. Let co be a large constant compared to the dimension d 

(cq = lOOd will satisfy all purposes). Define R > 0 via 

(9) /?2 = 21ogrc + log(logrt)C0. 

We will use this definition later as well, for the time being we only need the fol 

lowing consequence. 

(10) ' R 
-?{n(lognyo/2 J-?U(logn)CoJ' 

where Co = 
y 

- 
^. 

Notice that the left-hand side is (up to a constant factor) the 

probability content of the complement of B(R), the ball of radius R centered at 

the origin, see (7). The probability that one of n random points falls outside B(R) 

is at most 
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GAUSSIAN POLYTOPES 1597 

By setting Co (and so Co) sufficiently large, this probability will be negligible. This 
allows us to replace the normal distribution *I> by the truncated distribution *!>', 
restricted to B(R). *' is defined so that for any region S in B(R), the measure 

of S is ̂'(S) = 
q,??f m. To be precise, the density function ^' of *' is defined as 

xlr'(x) = ?(x) heB(R) 

where I is the indicator variable. 
Let K'n be the convex hull of a set of n random points chosen independently 

in B(R) with respect to *!>'. The central limit theorem for the K'n model says the 

following. 

THEOREM 3.1. Let d be a fixed integer at least 2. There is a function e(n) 

tending to zero as n tends to infinity such that 

p/Vol(jQ-E(Vol(jQ) 
V y/VarVoK^) 

holds for all t. 

Again, it is hard to prove this theorem directly. That is why we need the second 

model, the Poisson polytope. 
We consider a Poisson point process, X(n), of intensity n and underlying dis 

tribution *; where *' is the truncated Gaussian, that is, the Gaussian restricted 
to B(R). Let 5 be a measurable subset of R^. The intersection of X (n) with S con 

sists of random points {x\,..., Xk) = X(n) D S where the number, k, of random 

points is Poisson distributed with expectation n^^S) and for fixed k, the points 
are distributed independently. The property that we need most is that if Si and S2 
are disjoint measurable sets, then the two point sets {x\,..., x^} 

= X(n) D Si and 

{yi,..., yk2} 
= X(n) H S2 are independent, k\ and ?2 are independently Poisson 

distributed. The Poisson polytope is, by definition, the convex hull of X(n). 
Another, equivalent and useful, way to look at n? is the following. First choose 

a random number n' with respect to the Poisson distribution with mean n. Next, 
generate n' random, independent points x\,..., xnt with respect to *!>', the trun 
cated normal distribution on Rd. Then Un is the convex hull, Conv{%i,..., xn'}, 
of the chosen points. It is well known that n' is very close to n with high probabil 
ity: 

P(|n7 
- 

n\ > A^Jnlogn) 
< n~A/4, 

for every constant A > 10 (the constants 4 and 10 are just convenient choices and 

play no important role). So a good approximation of the Poisson polytope n? 
is Kn> with n' Poisson distributed. Clearly, n' is concentrated on the interval / = 

[n 
? 

A^/nlogn,n + Ay/nlogn] and negligible outside this interval. The central 
limit theorem for the Poisson model is as follows. 

*(*) <s(n) 
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1598 I. B?R?NY AND V VU 

Theorem 3.2. Let d be a fixed integer at least 2. There is a function s(n) 

tending toO as n tends to infinity such that the following holds. For any value oft, 

/|Voi(n?)-EVoi(n?)| 
VVarVol(n?) 

<A-<D (t) <e(n). 

Remark 3.3. In both theorems above one can take e(n) = 

(logAz)~^-1)/4+o(1). This error term will be the dominating one when we apply 
Lemma 4.1 from the next section. 

4. The plan of the proof. From now on we focus on the volume, the proof 
for the number of faces is basically the same and will be discussed in Section 13. 

The proof is long and consists of many steps. To help the reader grasp the main 

ideas quickly, we first lay out the plan of the proof. The leading idea is coupling. 
In fact, our proof will involve two different couplings. Both of them are based on 

a simple lemma. 

LEMMA 4.1. Let Yn and Y'n be two sequences of random variables with 

means ?in and ?xn, variances o^ and a n, respectively. Assume that there are func 
tions ?\ (n), 82(n), s3(n), s^(n), all tending to zero as n tends to infinity such that: 

1/4 
- 

l?n\ <?\(n)o'n, 
\<yfn-On\ <?l(n)CJfn, 

. for any t, \Y(Yfn >t)- P(Yn > 01 < e3(n), 

for any t, 

?^<--) 
<P(t) <?4(n). 

Then there is a positive constant C such that for any t, 

4 

p(^-^<t)-nt) <Cj2?i(n). 

Basically, this lemma asserts that if Y'n satisfies the CLT (the fourth condition) 
and Yn is sufficiently close to Y'n in distribution (the first three conditions), then Yn 
also satisfies the CLT. We defer the routine proof to the end of this section. The 

lemma has been used in an implicit form in [20] and in [15]. 

Remark 4.2. We can rewrite the error term C Ya=\ ?i (n) as C max4=1 e? (n) 

(the two C's can have different values). In applications of Lemma 4.1, 8^(n) will 

be the dominating term. 

We now present the plan for the proof of Theorem 1.1, which consists of the 

following steps. 
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GAUSSIAN POLYTOPES 1599 

Step 1 (Variance). In this step, we show that the exact order of magnitude of 

VarVol(A^) is (logn)(i/~3)/2. The upper bound was obtained in [13]. We will 

prove the matching lower bound. Section 6 is devoted to this step. The necessary 

geometric tools are developed in Section 5. The variance plays a significant role 

and we will use the estimate obtained in this step several times later on. 

Step 2 (The first coupling). In this step, we couple Kn and K'n in order to show 
that they satisfy the first three conditions of Lemma 4.1. This will be done 
in Section 7. Thus, it remains to verify the fourth, and critical, condition that 

V?l(?^) satisfies the CLT. This task will take time and effort. We mention that 
the second condition of Lemma 4.1, together with Step 1, imply that the order 
of magnitude of VarVol(iQ is (logn)(J"3)/2. 
Step 3 (The second coupling). In this step which is in Section 8, we couple Un 
with K'n. Technically speaking, we are going to verify the first three conditions 
of Lemma 4.1 with respect to Vol(nn) and Vol(A^). After this, both Theo 
rem 1.1 and Theorem 3.1 follow from Theorem 3.2, the CLT for the Pois 
son model. This step is close to the coupling argument used for the uniform 

model [20]. However, the analysis for the current case is simpler, as strong con 

centration results are not needed. Again, the results imply that the order of mag 
nitude of VarVol(n?) is (logn)id~3^2). 
Step 4 (Sandwiching). In this step, we define a radius r < R but very close to R, 
and prove that K'n contains the ball B(r) with high probability, namely, with 

probability 1 ? (logn)_c. (For this end r has to be chosen carefully, see Re 
mark 9.4) By definition, Krn is contained in B(R). So with high probability, K'n 
is sandwiched between two very close balls. We will also prove that the Poisson 

polytope has the same property, that is, B(r) cn?c B(R) with high probabil 
ity. This is the content of Section 9. 

The main idea behind the proof of Theorem 3.2, following Reitzner [15], is as 
follows. It is well known that if ?i,..., f? are independent variables with bounded 

means and variances, then the distribution of the normalized version of the sum 

jyi=\ ?i is approximately Gaussian. We are going to use a strengthening of this 

result, originally due to Stein [18], which asserts that it suffices to assume that 
the & are weakly dependent. The quantitative and technical statement below is 
from Rinott [17], which is slightly stronger than an earlier one due to Baldi and 
Rinott [3]. 

THEOREM 4.3. Assume G is a graph with vertex set V(G) and edge set E(G), 
\V(G)\ = m, and maximal degree D. Assume i=v is a random variable satisfying 
\i=v\ < M almost surely for each v e V(G). Assume further that if there is no edge 

between a vertex in V\ C V(G) and a vertex of V2 C V(G) where V\ and V2 are 

disjoint, then the random variables {?v : v e V\} and {%v :v e V2} are independent. 
Then, writing ? = T,veV(G) ?u> we have 

/?-E? ^ \ DM ( 1 ^V^DM mDM2\ 
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1600 I. B?R?NY AND V. VU 

In order to apply this result we have to make some geometric preparations and 

define the dependency graph. 

Step 5 (The dependency graph). We subdivide the annulus A(R, r) = B(R) \ 
B(r) into pairwise internally disjoint cells W\, ...,Wm. The cells are nice and 

wellbehaving, and they define the dependency graph G with vertex set V(G) = 

{1,..., m} and the pair (/, j) forming an edge of G if W? and Wj are far apart. 

(The actual definition is different, but this is the essence of it.) Note that the 

dependency graph is defined by geometric conditions. We will give an upper 
bound on the maximal degree of G, and on the volume of the cells. The details 

appear in Section 10. Note that randomness does not come up here but is present 
in the background. 

Step 6 (CLT for the Poisson model). In this step, we work with the Poisson 

model Tln under condition B which says that B(r) c Tln. The Baldi-Rinott 

theorem can be applied with ?? = Wol(Un n W?) and dependency graph G. This 

is a technical step which is carried out in Section 11. It proves Theorem 3.2, the 

CLT for the Poisson model, but only under condition B. The role of the Poisson 

model is critical here, as it guarantees that ?,- and ?j are independent whenever i 

and j are not adjacent in G. 

Step 1 (Removing condition B). This is a technical step which is another (this 
time simple), application of Lemma 4.1. It proves, finally, that Vol(nn) satisfies 

the CLT (Theorem 3.2) and so it finishes the proof of the main theorem. 

The proof for Theorem 1.2 concerning the number of faces is similar and will be 

presented in Section 13. In the last Section 14, we discuss few other results which 

can be proved using the same method. 

Let us now conclude this section with the proof of Lemma 4.1. 

Proof of Lemma 4.1. We have to show that for any x 

By the third condition of the lemma 

v(Y"~?n 
<x)= 

Wn < ?n + xan) = V(Yn < ?n + xan) + 0(s3(n)). 

On the other hand, 

Y(Yfn <^n+ xan) = 
Y(Yfn <?n+ xfafn), 

where ;cr = ?n~?n + ?Sl. The first two conditions of the lemma guarantee that xf 

is between the maximum and minimum of the four values x(\ ? ?2(n)) ? s\(n). 

Moreover, the fourth condition of the lemma yields 

P(r? < Pn+x'O 
= *(*') + 0(e4(n)). 
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Further, 

<?>(x') = <?>(x) + (x,-x)<?>f(xo) 

for some xo between x and xf. The difference \x 
? 

x'\ is at most \x\s2(n) + ?\(n). 
As O'Qc) decays exponentially, it is easy to see that IjcIO'Cxo) = 0(1) and thus 

$>(xf) = <t>(x) + 0(e\ (n) + 82(n)). 

Putting everything together completes the proof: 

p( 

n~?n 
<x) = 4>(jc) + 0(e\(n) + s2(n) + s3(n) + s4(n)). D 

5. A geometric construction. Here we give a geometric construction, ? la 

Reitzner [15] and B?r?ny and Reitzner [5]. We use it in the next section for esti 

mating VarVo\(Kn) and Var fs(Kn). A similar, if more subtle, construction will be 

needed for the dependency graph as well. 

In the construction b\, ?2, are positive constants that depend on dimension 

only. Let S(r) denote the sphere of radius r centered at the origin. We define 

r2 = 2\ogn 
? 

loglogrc. 

The choice of r is not arbitrary here: it ensures that *I*(A/) = @(l/n) (see later). 
Next we choose a system of points y\, ...,ym from the sphere S(r) which is max 

imal with respect to the property that for distinct / and j 

\y? -yj\ >2b\. 

Such a system can be found by an obvious greedy algorithm. The spherical caps 
on S(r) with center at y? and radius b\ are pairwise disjoint, and the same spherical 
caps with radius 2b\ cover S(r). This implies by volume comparison 

Claim 5.1. We have 

m = ?((\ogn){d~X)>2). 

Next, for each i 
? 

1,... ,m set 

Thus \y?\ 
= r + i and we have, for all x eRd with r < \x\ < r + - that 

(id ^) = 
e(^) 

Next we let Hi denote the hyperplane with equation z y i = r2. For each i ? 

l,...,m we fix a regular (d 
? 

I)-dimensional simplex in Hi whose vertices 

y?,..., yf lie in the (d 
? 

2)-dimensional sphere 

Hins(yi,V2). 
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1602 I. B?R?NY AND V. VU 

The center of this simplex is clearly y i. The simplex A? is now defined as the convex 

hull of the y- , j = 0, 1,..., d. 

Claim 5.2. For all i 

*(A,) = 
e(I). 

Proof. It is clear that for j = 1,..., d 

\y{\=Jrl + 2<r+X- = \y?\. 

Then every x e A,- satisfies r < \x\ < r + A, and the claim follows from (11) as 

VolA,-=0(-^?). D 

As the final step of the construction, for / = 1,..., m, j 
= 0,1,..., d, let Aj 

be a homothetic copy of A,- where the center of homothety is yf and the factor of 

homothety is a small number bi > 0. 

This is our geometric construction. Now we establish several properties of this 

construction. 

Claim 5.3. We have 

+<A/) = e(i). 
Proof. The density \fr(x) satisfies (11) for all x e Aj. The claim follows as 

the volume of Aj is just bd times that of A/. D 

Assume now that Zj is an arbitrary point in Aj, j = 0, 1,..., d. We define the 

cone Ci via 

Ci = zo + pos{z7- 
- 

zo : j = 1,.. ,d). 

The following lemma is crucial since it implies the independence structure 

of Kn needed when estimating the variance. 

LEMMA 5.4. For b\ large enough and bi small enough the cone Ci contains 

all simplices A? with k^i. 

Proof. We have to check that the segment [zo, yfi 
intersects Conv{zi, 

Zd) whenever j ^ i and k e [0,1,... ,d}. This is the same as checking that the 

segment [zo, y)] 
intersects Conw{z[,..., zfd] where 

?j 
= aff{zo, Zj] H Ht. If bi is 
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GAUSSIAN POLYTOPES 1603 

small enough then the (d 
- 

1)-dimensional ball Bi = Hi n B(yi, ^j) 
is contained 

in Conv{zp ..., z'd}. It is not hard to see that, for large enough b\, the segment 

\yf, yk-] intersects //; H B(y?, ^j) 
which is a smaller shrunken copy of Bi. (Here 

again j ^ / and k e {0,1,..., d}.) But zo is very close to 
yf if the factor of homo 

thety, ?2 is very small, and then the segment [zo, yk?] 
intersects B?. D 

We need one more lemma for estimating the variance. Let Hj be the half space 

containing Akt for all k = 1,..., d except k = j, not containing A? and Aj, and 

whose bounding hyperplane touches all A^ except k = j. 

Claim 5.5. Ifbi is small enough, then 

qt(H/) 
= 0(n-1). 

Proof. Let H denote the hyperplane through the points yf (k = 0,1,..., d, 

k^ j) for this proof. It is not hard to check that the distance of H from the origin 
is at least r ? 

^-. 
The bounding hyperplane of H? tends to H as Z?2 tends to zero. 

So for small enough ?2, the distance of H? from the origin is at least r ? ?-. An 

application of (8) finishes the proof. D 

6. The variance. 

Theorem 6.1. We have VarVol(#?) = 
0((logrc)(i/-3)/2). 

Proof. The upper bound (6) has been proved by Hug and Reitzner [13]. So 
we need to give a lower bound on Var Vol(^). 

Let Xn 
= 

{x\,..., xn} denote our random sample of n points. Denote by A/ 

the event that exactly one random point (out of the sample Xn) is contained in 

each simplex A/, j = 0, 1,..., d, and no further point of Xn is contained in H+ U 

Uy=i H/ 
- Here H^ is the half space not containing the origin whose bounding 

hyperplane is Hi. Since H+ is farther from the origin than H? (j > 0), Claim 5.5 

implies V(H+) = 0(l/n). 

LEMMA 6.2. There is a positive constant b3 such that, for every i = 1,..., m 

P(Af)>&3. 

Proof. Assuming that A? has occurred, let xj e Xn denote the unique point 
of Xn in A/, j = 0, 1,..., d, and set X = Xn \ [x0,..., xd). As *(A/) 

= 
Q(l/n) 
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and 1>{HJ) 
= 0(l/n) we have 

p(A') = 
(d +1 ) 

p(*; g a/, y = o,...,d)v(x n ?//+ u y #f j 
= 0 

j 

=(d+1)?*W)(i-*(?i+u??* 

Here cis(d+l) times the implicit constant in Claim 5.5, and c\ is another constant 

that depends on d only. D 

So we can bound the expected number of A; from below: 

I m \ m 

\ i / i 

We start bounding Var V?l(?^) from below. Let F denote the position of all ran 

dom points from Xn except those in A? with I?? 
= 1, / = 1,..., m. We decompose 

the variance under condition 3r\ 

VarVol(^) = EVar(Vol(^)|5') + VarE(Vol(^)|F) 
(12) 

>EVar(Vo\(Kn)\F). 

Suppose condition F holds and I?. = 
Ia; 

= 1. Clearly, the unique jc/ e A? and 

Xj e 
Ay (x?,xj eXn) are vertices of Kn, and, because of Lemma 5.4, there is no 

edge between jc; and Xj. Then the change in Kn when x/ is moved is independent 
of the change when Xj is moved. This implies that the change in Yol(Kn) when x\ 
is moved is independent of the change when Xj is moved, showing that 

Var(Vol(tfn)|-n= E VarXiVol(^) 
i:lAi=\ 

where the variance in the sum is taken when jc,- is changing within A?. 

We now evaluate this variance. Let zj e Xn be the unique random point in 

A/ (j = 1,..., d). Denote the simplex Conv{x??, z\,..., Zd) by A. The change 
in Vo\(Kn) when jc; changes within A? equals the change in Vol(A) and 

Var,. Vol(A) = E(Vol(A) 
- 

EXi Vol(A))2. 
The base of A, Conv{zi,..., z?/}, is a fixed (d 

? 
1)-dimensional simplex, of con 

stant (d 
? 

1)-dimensional volume. Its height varies nearly between 
?(1 

? 
?2) and 

i, so the expectation E*. Vol(A) is about 0(l/r). Moreover, the height of A 
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changes on a small interval of length about bi?r, so the volume is a linear (but 
not constant) function on a positive fraction of this interval. Consequently, 

(v?i(A) - E, v?,(a,)2 = 
a(J^=?) 

= 
a(?) 

holds on a positive fraction of A?. This implies that 

\3ltX?VoI(A) = q(-1?). 

Putting this into formula (12) and using (6) completes the proof. 

The same method, with the same notation, works for Var fs(Kn), so we present 
it here. 

Theorem 6.3. We have Var fs(Kn) 
= 

0((logn)(J-3)/2). 

PROOF. The upper bound is again due to Hug and Reitzner [13]. 
The method for the lower bound is similar to the one in [15]. We assume s e 

{0,1,..., d ? 1}. Condition A/ is the same as in Lemma 6.2 except that we require 
exactly two points from Xn to be in A?. Also, we let ? denote the position of all 

random points from Xn except those two in A 9 with 1^, 
= 1, / = 1,..., m. Then 

Lemma 6.2 remains valid for the new A/. We can decompose the variance under 
condition ? the same way and we still get (12). An identical analysis applies and 

gives 

Var(MKn)\F)> ? Var,,.,,. fs(Kn) 
iiA. = i 

where the variance in the sum is taken when jc? , y i are changing within A?. Here jc? 
and y i are the two points from Xn contained in A?. The proof of the following 
claim is simple and left as an exercise. 

Claim 6.4. We have 

VarXi,yi fs(Kn) 
= G(l). 

This finishes the proof of Theorem 6.3. D 

7. The first coupling. Here we show that the random variables Vol(^) and 

Vol(A^) satisfy the first three conditions of Lemma 4.1. 

Lemma 7.1. We have 

\EVo\(Kfn)-EVo\(Kn)\ < JVarVo\(Kn)(\ogn)-c^2, 

| VarVol(^) 
- 

VarVol(ff?)| < VarVol(^)(logn)-Co/2. 
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Furthermore, for all t, 

|P(Vol(^) > t) 
- 

Y{Wo\(Kn) > t)\ < (logn)-c^2. 

Proof. Choose n points t\,..., tn in R^ with respect to the normal distribu 

tion *. Let A denote the event that all n points fall inside B(R). [Recall that R is 

defined in (9).] For every nonnegative integer i, let 5,- be the event that all n points 
fall inside B(Al+1R) but there is at least one point outside B(4l R). Trivially 

00 

1=0 

Let Y = Y(t\,..., tn) be a nonnegative random variable depending on t\,..., tn. 
Now choose n points t[,... ,t'ninRd with respect to the truncated distribution *!>' 

and define Y' accordingly. It is clear that 

E(F|A)=E(F/). 

Let c be a nonnegative constant. We say that Y is c-bounded if E(y|A) < 

Vol(B(R))c and E(Y\B?) < Vo\(B(4i+lR))c for all i > 0. 

Lemma 7.2. If Y is c-bounded then 

\E(Y) -E(Yf)\ = 0(E(Y)(logn)-Co+cd/2). 

Proof. We start with the identity 

E(Y) = E(Y | A)P(A) + E(Y |X)P(X). 
Since E(Y \ A) = E(Y'), the triangle inequality implies that 

(13) \E(Y) 
- 

E(Yf)\ < E(Yf)P(?) + E(Y\?)?(?). 

To estimate E(F| A), observe that 

(X) 

(14) E(y|?) = ^E(F|?,?)P(?,|?). 
i'=0 

The (c-boundedness) assumption of the lemma implies 

E(Y\B?A) =E(Y\Bi) <Vol(B(4i+lR))c 
= 

o(4cd(i+l)Rcd) 
= 

0(4cd(,+1)(logn)cd/2). 

Furthermore, as B? implies A, 

P(?,-|?) = ^5^ 
= O((logn)C0P(?,)). 
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On the other hand, P(5;) is at most the probability that there is a point outside 

B(4l R). By the union bound and (7), this probability is 

(15) 0(nV(B(4?R))) = 0(nexp(-42i R2 /2)(4? R)d~2). 

For i = 0, the right-hand side of (15) is 0((logrc)c?) by the definition of R. For 
i > 1, the right-hand side of (15) is at most n~21, as 

exp(-42'/f2/2) =n(-1+o(1))42' <n-2i-\ 

This shows that 

00 / 00 \ 

?E(r|5f?)P(?i|?) 
= 

olj24Cd{i+l)^??n)cd/2n'2i I = 0((logn)cd/2). 
?=0 V?=0 / 

Therefore the right-hand side of (13) is at most 

0((logn)Ci//2)P(A) = 0((lognyC(i+cd/2), 

proving the lemma. D 

Let Y be the volume. It is clear that Y is 1-bounded. Applying Lemma 7.2, we 

have 

\EWo\(K'n)-EYol(Kn)\ 
= 0(EYo\(Kn)(\ognrCo+d/2) = O ((log nrCo+d), 

since E Vol(AT,) = 
?((logn)^2). Moreover VarVo\(Kn) = 

0((logn)(d-3)/2). By 
setting co sufficiently large, it thus follows that 

lEVol(AT^) 
- E Vol(Ar?)| = 0(v/VarVol(/i:n)(logn)-Co/2). 

We will use this estimate for proving the statement about the difference between 
the two variances. But first, let Y be the square of the volume. It is clear that Y is 
2-bounded. Thus, Lemma 7.2 yields 

|EVol?)2-EVol(/:?)2| 
= 

0(E(Vol(^))2(log?)-Co+?) = O((lognrco+3d), 

since Vol(AT?)2 = 
0((logn)2d), which (by the definition of variance) implies, 

| VarVol(^) 
- 

VarVol(Jr?)| 
= 0((lognrCo+3d) + |(EVol(02 

- 
(EVo\(Kn))2\. 

On the other hand, 

|(EVol(02-(EVol(/?:?))2| 
= 

|evok^) + evo1(?:i,)||evo1(a:;)-evo1(^b)|, 
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where |E Vol(/Q -E Vol(Kn)\ is 0((logn)~CQ+d) by the previous argument. Fur 

thermore 

|EVol(^) + ENol(Kn)\ = 0(EVol(^)) = 0((logn)d'2). 

Putting everything together, we obtain 

| Var Vol?) 
- 

VarVol(#?)| = O ((log nyCo+3d) + O ((log nyc?+d (log n)d/2) 
= 

O((logn)~co+3d). 

Again, by setting co large, we have 

| VarVol?) 
- 

VarVol(^w)| = 0(VarVol(^)(logn)-C()/2), 

as claimed. 

To bound the difference between the two probabilities, define 

Y = lwo\(Kn)>t 

In this case, Y is bounded from above by 1, thus it is 0-bounded. Since E(Y) = 

?(Vol(Kn) > t), the claim follows instantly. D 

We have the following: 

Corollary 7.3. We have VarVol?) 
= 

&((logn)(d~3)/2). 

8. The second coupling. In this section we will show that the first three con 

ditions of Lemma 4.1 are satisfied for the random variables Vol(nn) and V?l(?^). 
The fourth condition is just Theorem 3.2, whose proof will come later. The first 

three conditions of Lemma 4.1 are stated next. 

LEMMA 8.1. For all sufficiently large n we have 

|E Vol(n?) 
- 

EVol(K'n)\ < n_1/2+o(iyVarVol(^), 

| VarVol(n?) - 
VarVol(0 ^ ?_1/2+o(1)VarVol(^); 

moreover, the following holds for all t: 

|P(Vol(n?) 
< t) 

- 
F(Vol(Kfn) 

< t) | < n-l/2+0(l). 

This lemma plus Theorem 3.2 imply Theorem 3.1, that is, the central limit the 

orem for Vol?), which, in turn, implies Theorem 1.1. So we will still have to 

prove Theorem 3.2, a major task which is the content of the next four sections. We 

mention further that Lemma 8.1 implies the following. 

Corollary 8.2. We have VarVol(n?) = 
&((logn){d~3)l2). 
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Remark 8.3. Let us notice that when applying Lemma 4.1, the dominating 
error term comes from Theorem 3.2. Indeed, the error terms come from the first 

coupling are at most (logn)~c, where C can be arbitrarily large. The error terms 
from Lemma 8.1 is even smaller, n_1/2+?(1). This implies the estimate on the error 
term in Remark 1.3. 

Lemma 8.1 is a consequence of the following lemma. 

LEMMA 8.4. Let A be a constant at least 10. For any integer n' between n 

and, n + A^/nlogn 

|E Vol?,) 
- E Vol?) | < n-l/2+o(l), 

| Var Vol?/) 
- 

VarVol?)| <n~l/2+o(l). 

Moreover, for all t, 

|P(Vol?,) <t)- P(Vol?) < t)\ < fl-1/2+o(1). 

Proof of Lemma 8.1 via Lemma 8.4. Let A be a constant at least 10. 
We will use the fact that the probability that a Poisson variable with mean n falls 
outside the interval I = [n 

? 
A^/nlogn, n + A^/nlogn] is less than n~A^. As 

Vol(nn) is bounded from above by Nol(B(R)), we have 

EVol(n?) = 
? E(Vol?,))P(/i 

= /i') + 0(n~A/4Vol(B(R))). 
riel 

As Vol(B(R)) = 0((lognd/2)), the last term on the right-hand side is 
0(n~A/4+o(l)) 

= 
0(n~l) as A > 10. So the first statement of Lemma 8.4 implies 

|EVol(nn) -EVol?)| < 
? |E(Vol?,)) -E(Vol?))|P(/i = *') + 0(n~l) 
riel 

<n~]/2+o0). 

Taking into account the fact that E(Vol?)) 
= 

?((logn)d/2) and 

Var(Vol(#?)) = 
@((logn){d~3)/2), one can deduce the first statement of 

Lemma 8.1. The third statement of the same lemma can be proved the same way. 
Now we turn to the second statement. For every number n' in the interval /, 

let Enf denote the event that n' is sampled (according to the Poisson distribution 
with mean n) and ?o denote the event that the sampled number does not belong to 
the interval. The events En> (with n' e I or nf = 0) form a partition of the space. 
Thus, 

VarVol(n?) = En/(Var(Vol(nn)|?n/)) + VarE(Vol(nn|?n/)), 
where nf e / or n' = 0. Notice that Vol(Tln)\En> = 

Vol?,). The rest of the proof 
is a calculation similar to the one above and is left as an exercise. D 
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Let H(r) be a half space at distance r > 0 from the origin. Define r so that the 

probability content of H(r) H B(R) is ylogn/n for some large constant y. As 

Vf(H(r)) = 
&(e-r2/2r~l), r = ?(j\og?). For the proof of Lemma 8.4 we need 

the following claim. 

CLAIM 8.5. The constant y can be chosen so that Kfn contains B(r) with 

probability at least 1 ? -. 

We explain the proof of this claim after the proof of Lemma 9.1 in the next 

section. 

Proof of Lemma 8.4. Let us consider a number n' as in the lemma. 

Let Q denote the product space B(R)n, equipped with the rc-fold product of *'. 

A point P in Q is an ordered set (x\,..., xn) of n random points (we generate the 

points one by one). The jc,- are the coordinates of P. We use Y(P) to denote the 

volume of the convex hull of P and /x to denote the expectation ofY(P). 

Remark 8.6. Of course Y(P) is just another way to express Vol(?^). It is 

however more convenient to use this notation in the proof below as it emphasizes 
the fact that F is a function from Q to R. 

Define Qf, P', p! similarly (with respect to n'). Let us first consider the expec 
tations. Consider a point P' ? 

(x\,..., xn>) in Qf and the canonical decomposition 

P' = PUQ, 

where P = (x\,...,xn) and Q = (xn+\,...,xnf). In order to compare ?i and p!, 
we rewrite /x as 

li= t Y(P)dPf. 

We have 

//-/x= f (Y(P')-Y(P))dPf. 

Now we are going to decompose Q' into three parts ?2[, Q'2> ^3 as follows: 

Q[ 
= {P'I Conv(P) does not contain the ball B(r)}\ 

Qf2 
= {Pf\Conv(P) contains the ball B(r) and B(r) does not contain Q}\ 

. n'3 
= 

n'\(?iun'2). 
The measure of Q\ is the probability that the convex hull of a set of n random 

points does not contain B(r), which is 0(\/n), according to Claim 8.5. The mea 

sure of ̂ 2 *s bounded from above by the probability that B(r) does not contain Q. 
This probability, by the union bound, is at most 

I?l x *'(B(?) = 
oQn\ogn) 

x ilrlr^i? = ?-i/2+od). 
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Since Y(Pf) and Y(P) are at most the volume of B(R), which is 0((\ogn)d/2), 
Y(P') 

- Y(P) is 0((logn)d). Thus 

(16) [ (Y(Pf) 
- 

Y(P))dPf = 0((logn)dn-l/2+o(l)) = n -^ y^a?j ,,-1/2+0(1)^ = ?-1/2+0(1) 

To estimate the integral over Q'3, recall that in this region, Conv(P) = Conv(P') 
since 

P\P = Qc B(r) C Conv(P). 

It follows that 

(17) [ (Y(P')-Y(P))dPf = 0. 
Jn>3 

Equations (16) and (17) together imply that 

/i'_/i 
= 

?-'/2+?(l), 

proving the first part of the lemma. 
The third part of the lemma follows now directly: the measure of Q\ U Qf2 

is at most n~xl2+0^\ and on the rest of ?2' the polytopes ConvP = 
K'n and 

Conv P' = 
K'n, coincide. 

The proof for the variance is similar. Notice that the variance of Yol(Kn) is 

s= 
[ \Y(P)-fi\2dPf 

and the variance of Vol(Kn>) is 

s'= [ \Y(Pf)-fif\2dP\ 
Jn' 

We have 

(18) \sf-s\ = 
\f ((Y(P/)-?,)2-(Y(P)-fi)2)dPf\< f \?>(Pf)\dP', 

where 

?(Pf) = 
(Y(Pf) 

- 
p')2 

- 
(Y(P) 

- 
/x)2. 

It is obvious that 

?>(P') = ((Y(P') 
- 

n') + {Y(P) 
- 

p))((Y(P') 
- 

?) 
- 

(Y(P) 
- 

p)). 

By the triangle inequality, 

|?>(P')l < (Y(P) + Y(Pf) + ix + fi'){\Y(P') 
- Y(p)\ + M - 

Ml) 
Since Y(Pf) and Y(P) are at most the volume of B(R), which is 0((logn)d/2), 
|?)| is 0((logn)d). Thus, by arguing as before, 

(19) f \mPf)\dPf=0((logn)dn-^2+o(l)) 
= n-[^?^. 

IQ\UQ2 
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1612 I. B?R?NY AND V. VU 

To estimate the integral over 
?2'3, notice that in this region, Conv(P) = Conv(P') 

Therefore, 

f \X>(P')\dP'< f (Y(P) + Y(Pf) + p + ?')\p'-?\dPf. 
JQ3 JQ'3 

But we just proved that |/x'-/z| < n~1/2+o(1). Furthermore, all Y(P'), Y(P), p!, fi 
are bounded from above by the volume of B(R), which is 0((\ogn)d/2). So 

(20) [ ((Y(P') 
- 

//) + (Y(P) 
- 

p))\p 
- pf\ dPf < n l/2+o(l) 

Equations (19) and (20) together imply that 

(21) \s'-s\<n-l'2+oW, 

concluding the proof. D 

9. Sandwiching K'n. By definition, Kfn is contained in B(R). In this section 
we will show that K'n contains the ball B(r) with high probability where the ra 

dius r is very close to R. Recall that R is defined in (9) via 

/?2 = 21ogrc + log(logfl)C0. 

The definition of r comes a little later, we set first p > 0 via 

(22) p 
? 2 log n ? log log n + log(c log log n) 

where c is a constant to be specified soon. Choose a system of points y\,..., ym 
from the sphere S(p) maximal with respect to the property that, for / / j, 

\y? -yj\ >2c\. 

As p = v/2Tog?(l + o(l)) as n goes to infinity, we have, just as in Claim 5.1 

m = 
Q((logn){d-l)/2). 

Define the half space H* = [x e Rd : y i x > p2} and the cap d as 

Ci = H+r\B(y/p2 + c2). 
These caps are pairwise disjoint, and for x e Ci 

As Voie,- = 
6((logn)-1/2), we have 

/cloglogn\ , /cloglog?\ (23) vi/(C,) = 6? n ) 
and ?'(C,-) = 

e^ \ )> 
since Ci C B(R). Set now r ? p 

? 
5c\/p; it is clear then that this r satisfies 

(24) 5c\<p2-r2 <\0c\. 
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LEMMA 9.1. For every C > 0 the constants c, c\ can be chosen so that the 

following holds. Kfn contains B(r) with probability at least 1 ? (\ogn)~~c. 

Remark 9.2. This lemma is an analog of a result from [4] for the uniform 

model (see Section 2 for the definition). It is also a similar to Lemma 4.2 from [19], 
which was proved using VC-dimension techniques. While in those results the 

probability that Kn does not contain B(r) is at most n~c, here we have the weaker 

bound (\ogn)~c. The same bound was required in the uniform model when K is 

apolytope; see [5]. 

Proof of Lemma 9.1. We claim first that every half space H(r) at dis 

tance r from the origin contains a C; for some / = 1,..., m. Assume y is the 

nearest point of H(r) to the origin. Then \y\ = r and j* 
= 

py/r lies on S(p). 
As the system y\,..., ym is maximal, there is a y i with \y* 

? 
y?\ < 2c\. Define 

a e (0, n/2) by sin a = c\/p\ it follows that the angle between y and any vector 

from Ci is at most 3or. Consequently, C/ is contained in the half space with nor 

mal y and at distance p cos 3a from the origin. A simple computation shows now 

that for large enough n 

5c2 
p cos 3a > p-L 

= r. 

P 

There is a constant b > 0 depending only on d such that for all 

V X " ' V (fog/!)* / 

PROOF. If B(r) is not part of K'n, then there is a half space H(r) at distance r 

from the origin which is disjoint from the random sample Xn. Then there is a cap 
Ci C H(r). Then C, DXn = 0. Consequently 

m 

P(C- ni?=0 for some i) < J2P(C' n x? = 0) 
(=1 

<?(i-v<c,)r<.?(i-?^)" 
< mexp{?bcloglogn} 

m /(logn){d~l)/2\ ~ 
(logn)bc 

~ 
V (logn)bc )' 

Here b is the constant coming from (23). D 

Claim 9.3. 

large enough n 

Choosing the constants c and c\ suitably completes the proof. D 
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Remark 9.4. It is the choice of r from (22) and (24) that produces the bound 

(log n)~c. Also this choice of r gives the estimates in the next section. For the CLT 

for the volume, we could have taken p2 
= 2 log n ? log(c log n)3 and r = p 

? 
5c2/p 

as well. This would have given 

(25) *'(C/) = 
e(^), 

and \/n~c for the probability that K'n does not contain B(r). But this choice does 

not work for fs(Kn) (see Remark 13.7). That is why we used (22) and (24) for the 
definition of r. 

The proof of Claim 8.5 goes along very similar lines. One can take p2 
= 

2 log ai 
? 

log(y'\ogn)3, for instance, and use the same argument. We omit the 

details. 

One can prove similarly that Tln contains B(r) with high probability. Here is 

the quantitative statement, the routine proof is left to the interested reader. 

LEMMA 9.5. For every C > 0 the constants c, c\ can be chosen so that the 

following holds. Tln contains B(r) with probability at least 1 ? (logn)_c. 

Remark 9.6. Note that Kn is sandwiched between B(R) and R(r) with high 
probability, and both r, R = *j2\?gn(\ + o(l)). This almost implies (5) for the 

expectation of Wol(Kn), the only trouble being that Kn can have arbitrarily large 
volume when it is not contained in B(R). 

10. The dependency graph. With the notation of the previous section we 

define the annulus A(R, r) = B(R) \ B(r), and let V/ denote the Voronoi region 
of yt (i = 1,..., m). This means that x e V? if and only if |jt 

? 
yi\ <\x 

? 
yj| for 

all j. The sets Wi = V? H A(R,r) will be called cells and will play an important 
role in the central limit theorems. The following estimate will be needed. 

CLAIM 10.1. For each i, 

PROOF. This is quite simple and similar to (23) and is therefore omitted. D 

The dependency graph G(V, E) has, by definition, vertex set V(G) = {!,..., 

m} and edge set E(G) with (i, j) e E(G) if and only if there are a? e Wi and 

aj e Wj and b e A(R, r) such that the segments [a?,b] and [b, aj] lie completely 
in A(R, r). In other words, if and only if [a?, b] n B(r) = 0 and [aj, b] D B(r) = 0 
for some a? e Wi, aj e Wj and b e A(R, r). Let D denote the maximal degree in 

the dependency graph. 
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GAUSSIAN POLYTOPES 1615 

Theorem 10.2. We have D = 
0((loglogrc)(uf-1)/2). 

Proof. This is a simple matter using elementary geometry. Observe first that 

if the segment [a, b] C A(R, r) and 2y is the angle between vectors a and b, then 

cos y >r/R. We can estimate sin y using the definitions of R and r: 

-W-Q'-^-iJ'-i'-?)' 

Suppose next that a? e Wi and let 2a,- be the angle between a,- and y,-. Set a* == 

pa?/\ai | G S(p). The maximality of the system y\,..., ym implies that \af 
? 

y?\ < 

2ci, which, in turn, shows that sina? <c\/p. Consequently a = 0((logn)~1^2). 
Assume (/, j) e E(G) and let az e W?, a? e Wj and b e A(R, r) be the vectors 

such that the segments [a,-, b] and [aj, b] are disjoint from B(r). Let 2? be the 

angle between vectors y i, y7. Then 

(/log log ft \ 

This, of course, implies that for (/, j) e E(G) 

\yj -yi\< 2Rsm? = O^loglog/i). 
This means that all yy with (/, j) ?(G) are contained in a ball, centered at y; 
and of radius Oi^/loglogn). Since all yj e S(p) and since they are at distance 

2c\ apart, the usual volume estimate gives the statement of the theorem. D 

We establish one more inequality here. 

CLAIM 10.3. For each i, 

vow,) = e(^Y V V l?g ft / 

Proof. For each t e [r, R], Wt n S(t) has constant, that is, 0(1) (d 
- 

^-di 
mensional volume, so Vol(W?) = 0(R 

? 
r), and 

R-r =-(R2 
- 

r2) = -0 (log log w) 

as we have seen in the previous proof. D 
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1616 I. B?R?NY AND V. VU 

11. Central limit theorem for the Poisson model. We are going to apply the 
Baldi-Rinott theorem for Un conditioned on B(r) c nn. This condition will be 

denoted by B. Recall from Lemma 9.5 that 

P(5(r)cnn)>l-(logn)-c. 
Assume condition B holds and define the random variable ?,- = Vol(W/ Pi n?). 

Clearly, ? := Y!\ Hi = Vol(n?) 
- 

Vol(?(r)). This shows that, under condition B, 
the CLT for ? holds if and only if it holds for Vol(I"I?). 

CLAIM 11.1. Assume condition B holds. Given disjoint subsets V\, V2 of the 
vertex set of the dependency graph with no edge between them, the random vari 

ables {?; :i eV\} are independent of the random variables {?/ : j e V2}. 

Proof. The intersection Wi n Yln is determined by the facets of Un inter 

secting Wi. These facets are determined by their vertices. If there are no common 

vertices for the facets intersecting the W? with i e V\ and the Wj with j e V2? then 

the corresponding ?; are independent. This is exactly how the dependency graph 
has been defined. D 

Write P*, E*, Var* for P, E, Var under condition B. In the next section we will 

prove the following estimates. 

Lemma 11.2. We have 

|E*Vol(n?) -EVol(n?)| < (logrcrCo/VVarVol(n?), 

I Var*Vol(n?) 
- 

VarVol(n?)| < 
(logft)-Co/4VarVol(nn), 

|p*(Voi(nn) < t) 
- 

p(voi(n?) < t)\ < (iogft)Co/4. 

The inequality for the variances shows that 

Var* Vol(n?) = ?(VarVol(nn)) = 
Q((logn)(d-3)/2). 

We have seen that the maximal degree in G is 0((loglogft)^_1)/2) (Theo 
rem 10.2), and & = Vol(W?) = 0(log\ogn/^/logn). So the Baldi-Rinott theorem 

applies and gives the following CLT. 

Theorem 11.3. Let d be a fixed integer at least 2. For any value oft, 

I /lVol(nn)-E*Vol(n,)l \ _ I _ /(loglogn)^4)/2\ 

II VVar*Vol(nn) -) {)r V (log^-D/4 )' 
This theorem and Lemma 11.2 show that Vbl(n?) and Vol(nn)|? satisfy con 

ditions of Lemma 4.1. So our main central limit theorem, Theorem 1.1, follows as 

soon as we prove Lemma 11.2. This is our next (and final) task. 
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12. Proof of Lemma 11.2. This is similar to, and much simpler than, the 

proof in Section 7. The first step is a copy of Lemma 7.1. 

LEMMA 12.1. Let B denote the condition that B(r) C K'n. Then we have, for 

large enough n, 

\E(Vol(K'n)\B) -EVoKO < dogft)"Co/2, 

| Var(Vol(^)|5) 
- 

VarVol(^)| < (logn)-Co/2. 

Furthermore, for all t, 

|P(Vol(ff?) 
< t\B) 

- 
P(Vol?) < t)\ < (logn)-c^2. 

PROOF. We use the first few lines of the proof of Lemma 7.2 with condition A 

replaced by B, events 5,- do not appear yet. Then (13) says that 

(26) \E(Y\B) -E(Y)\ < (E(Y\B) + E(Y\B))P(B), 
where Y = Y(t\,..., tn) is a c-bounded, nonnegative random variable. 

When Y is just the volume, Y is bounded by 0((logn)d^2) so its expecta 

tion, under any condition, is bounded the same way. Since P(B) < 
(logft)~c? by 

Lemma 9.1, we are finished with the first inequality. 
The third is proved by setting Y = Ivoi(/r )<r- The second inequality follows the 

same way as the corresponding inequality for variances in Lemma 7.1. D 

We show finally how this lemma implies Lemma 11.2. 

Proof of Lemma 11.2. We give the proof for E first. As before, write E'n 
for the event that \X(n)\ = ri'. 

|E*Vol(n?)-EVol(n?)| = 
?(E(Vol?,)|Z?) 

- 
EVol(Kfn,))P(n 

= 
nf)\ o I 

< 
][](logft'rCo/2P(ft 

= /!') + 0((logn)d/2nA/4) 
riel 

= 
0((logn)~c^2). 

This suffices for the expectations as VarVol(n?) = 
&((logn)^d~3^2) by Corol 

lary 8.2. Of course, we chose Co large enough. 
The proof for Var* and P* is similar and is left to the reader. D 

We want to emphasize here that the proofs of Theorems 3.2, 3.1 and 1.1 have 

finally been completed at this point. 
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13. Proof of Theorem 1.2. The proof of Theorem 1.2 follows the plan in 

Section 4 closely. In fact, most of the arguments are the same as in the proof of 

Theorem 1.1, except for a few technical modifications, and a single extra difficulty: 

finding the right bound M on the number of s -faces intersecting cell W?. Thus, 
instead of working out all details, we only state the main steps and point out what 

modifications are needed, plus explain how the bound M can be found. 
We have seen in Theorem 6.3 that the variance satisfies 

War(fs(Kn)) = @{(logn){d-1^2). 

13.1. The first coupling. Lemma 7.1 still holds if one replaces Vol by fs. No 

tice that the proof of this lemma only requires the c-bounded property. The number 

of faces has this property (for some sufficiently large constant c). Indeed, one can 

show that with very high probability (say 1 ? n~lO0d) the number of vertices is 

at most (logn)d. This, together with a simple geometric argument shows that the 

number of faces is c-bounded for some constant c. The same proof goes for the 

square of the number of faces. 

After the first coupling, it is left to prove the following variant of Theorem 3.1. 

THEOREM 13.1. Let s be an integer between 0 and d ? 1. There is a func 
tion s(n) tending to zero as n tends to infinity such that for all t 

13.2. The second coupling. The proof for the second coupling is almost the 

same as before. A small technical modification one needs to make here is to intro 

duce a new part ?2q in the partition which contains those P' where Conv(P') has 

more than (say) i\ogn)d vertices. The probability of Q'0 will be less than n~xl2. 

Now define Q'3 
= 

?2\(?2q U Q[ U Q2). The rest of the proof is the same. In fact, 
since both the expectation and variance of fs(Kfn) are also polylogarithmic in n 

(similar to those of the volume), the error term n-l/2+?W remains unchanged in 

all these estimates. 

After the second coupling one needs the fs variant of Theorem 3.2. 

THEOREM 13.2. Let d be a fixed integer at least 2 and 0 < s < d - 1. There 

is a function s(n) tending toO as n tends to infinity such that the following holds. 

For any value oft, 

Ip(^ 
- 

y <,)-.w| <.o.). 
I V VVar/5(n?) / I 

Remark 13.3. One can take e(n) = 
(\ogn)~(d~l)/4+o(l). This error term 

will be the dominating one when we apply, twice, Lemma 4.1. 
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13.3. The dependency graph. The dependency graph is the same as before 

with 

m = 
@((logn)id-l)/2), D = 

<9((loglogft)(i/-1)/2) 

and 

*,(Wi) = 0((loglog/i)//i). 

For proper accounting fs(Tln) we have to define the random variable & = 

f(Wi,s) suitably. For this purpose we use Reitzner's method from [15]. For an 

5-dimensional face, L, of Tln, let f(W?, L) denote the number of vertices of L 

contained in Wi, and set 

/(W/,J) = ^?/(W/,L). 

Since n? is simplicial and has no vertex on the boundary of any W,- with 

probability one, fs(Tln) = T!?LX f(W?,s). The expected number of \X(n) H 
Wi\ = ?(loglogn), which, in turn, shows that the expectation of f(Wi,s) is 

Q (log log n). But there is an extra difficulty here: we need a bound M on each 

f(Wi,s) when applying the Baldi-Rinott theorem. The condition B(r) c Tln is 
not enough and we have to introduce a new condition, to be denoted by Z?/ : 

\X(n)HWi\ <C2 log log n for each /, 

where ci is a large constant. It is straightforward to check that for any C > 0, 
C2 can be chosen so large that 

P(Bi holds) >l-(lognyc. 

Then the union bound shows that 

P(Bi fails for some i) = 0((logn)~c+{d-l)l2). 

It is clear that if L is an s -face of Yln contributing to F(Wi,s), then all vertices 
of L belong to a cell Wj with /, j connected in G or to W/. There are at most D 
such cells. So under condition 5/, there are at most C2Dloglogn vertices in the 

union of these cells. This shows that M = 
(loglogrc)^ works and the application 

of the Baldi-Rinott theorem goes through. 

Again we have to remove the conditions B, B\,..., Bm. This is done in the 
same way as in Section 12. 

REMARK 13.4. This is where the careful choice of r (in fact, p) pays off. 
With the more generous selection p2 

= 2 log n ? log(c log n)3, we would only have 

f(Wi,s) = 
0((logn)d/2), and the right-hand side in the estimate of the Baldi 

Rinott theorem does not tend to zero. 
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14. Concluding remarks. Our plan can be used for many other parameters. 
In certain cases, one merely has to repeat the proof. In others, however, there are 

substantial technical difficulties. Let us present two representative examples. 

The surface area of Kn. The proof is more or less the same as the proof for 

the volume. The reader is invited to work out the details. In fact, the result holds 

for all intrinsic volumes, but the estimate for variance is not straightforward. 

The probability content of Kn. The probability content of Kn is ty(Kn). For 

this parameter, the general plan still works, but there is a nonnegligible difficulty. In 

the proof of the second coupling, we used the fact that the expectation and variance 

of the random variable under study (such as the volume, number of faces, or even 

the surface area) are both poly logarithmic in n. Thus, the error term n-l/2+?(l) 

is dominating and one can finish the proof easily. For the case of the probability 
content, it is no longer true, as the variance is n~2+?^l\ To overcome this obsta 

cle, we can follow [20] and start by proving a sharp concentration result, which 

gives a tight control on the tail Y(P) 
? 

?x and Y(Pf) 
? 

//. Such a concentration 

result is available thanks to the method developed in [19]. The details will appear 
elsewhere. 
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