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Assume K ⊂ R
d is a convex body and Xn ⊂ K is a random sample of n

uniform, independent points from K. The convex hull of Xn is a convex poly-
tope Kn called random polytope inscribed in K. We are going to investigate
various properties of this polytope: for instance how well it approximates K,
or how many vertices and facets it has. It turns out that Kn is very close
to the so called floating body inscribed in K with parameter 1/n. To show
this we develop and use the technique of cap coverings and Macbeath regions.
Its power will be illustrated, besides random polytopes, on several examples:
floating bodies, lattice polytopes, and approximation problems.

1 Introduction

We write K or Kd for the set of convex bodies in R
d, that is, compact convex

sets with nonempty interior in R
d. Assume K ∈ K and x1, . . . , xn are random,

independent points chosen according to the uniform distribution in K. The
convex hull of these points, to be denoted by Kn, is called a random poly-
tope inscribed in K. Thus Kn = [x1, . . . , xn] where [S] stands for the convex
hull of the set S. The study of random polytopes began with Sylvester’s fa-
mous “four-point question” [55]. For more information and recent results on
the four-point question see [7] and [8].

Starting with the work of Rényi and Sulanke [39] there has been a lot of
research to understand the asymptotic behaviour of random polytopes. Most
of it has been concentrated on the expectation of various functionals associated
with Kn. For instance the number of vertices, f0(Kn), or more generally, the
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number of k-dimensional faces, fk(Kn), of Kn, or the volume missed by Kn,
that is vol(K \Kn). The latter quantity measures how well Kn approximates
K. As usual we will denote the expectation of fk(Kn) by Efk(Kn), and that
of vol(K \Kn) by E(K,n).

In their 1963 paper [39] Rényi and Sulanke made a surprising discovery.
Already in the planar case, the expectation of the number of vertices, f0(Kn),
depends heavily on the boundary structure of K. It is of order lnn when K
is a convex polygon, and is of order n1/3 when K is a circle (or any other
smooth enough convex body). Similarly, E(K,n) is of order n−2/3 for smooth
convex bodies in R

2 and (lnn)/n for convex polygons. What is the reason for
such a different behaviour?

The aim of this survey is to give a thorough introduction to the theory
of random polytopes. There are two kinds of results concerning E(K,n) and
Efk(Kn): precise asymptotic and order of magnitude. We mainly focus on the
second type of results and only mention some precise asymptotics. Along the
way we will see why such a different behaviour of E(K,n) is quite natural.
We will introduce the notion of caps, M -regions, and cap coverings of convex
bodies. They constitute a method to handle the boundary structure of convex
bodies. The technique of M -regions and cap coverings can be used for other
problems as well: several applications will be presented, some of them coming
from my paper [6]. This survey contains very little new material. I will indicate
at the end of some sections where the results come from and mention if they
are new.

I am not quite sure I organized the material of the survey in a concise
way. There were too many directions to talk about: random polytopes, M -
regions, cap coverings, technical preparations and lemmas, probabilistic tools,
and further applications. It is difficult to order them linearly (as a survey
should be written). Here is the contents, section by section:

1. Introduction
2. Computing Eφ(Kn)
3. Minimal caps and a general result
4. The volume of the wet part
5. The economic cap covering theorem
6. Macbeath regions
7. Proofs of the properties of Macbeath regions
8. Proof of the cap covering theorem
9. Auxiliary lemmas from probability

10. Proof of Theorem 3.1
11. Proof of Theorem 4.1
12. Proof of (4)
13. Expectation of fk(Kn)
14. Proof of Lemma 13.2
15. Further results
16. Lattice polytopes
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17. Approximation
18. How it all began: segments on bdK

The next section presents a sketch of the method for computing expectations
directly. The main results for random polytopes are contained in Section 3.
Notation and terminology, including the wet part and the floating body are
introduced there. Important properties of the wet part are given in Section
4. The economic cap covering theorem, together with a corollary, is stated
next. Macbeath regions are defined and their properties stated in Section 6.
The proofs of these results are given in Sections 7 to 12. Some of them can
be skipped on first reading, although the proofs use concepts and methods
from proofs from previous sections. We treat separately the expectation of the
number of k-dimensional faces of Kn in Section 13 and 14. This proof is new,
using the cap covering technique in a slightly different way and avoiding the
probabilistic tools. Further results, including some spectacular new theorems,
are explained without proof in Section 15. Applications of the cap-covering
technique are given in Sections 16 and 17. The final section is devoted to the
origins of the method.

2 Computing Eφ(Kn)

The method for computing Eφ(Kn) goes back to the 1963 paper of Rényi and
Sulanke [39] and is the following. Let P be a polytope and write F for the set
of facets of P . Assume the function φ is of the form

φ(P ) =
∑

F∈F
φ(F ).

Such functions are fd−1, volume, or surface area. The orientation of the facet
is given by the outer normal to P at F . As Kn is a simplicial polytope with
probability one, each facet is of the form [xi1 , . . . , xid

]. We write 1{E} for the
indicator function of the event E. Then, assuming volK = 1,

Eφ(Kn) =
∑

1≤i1<···<id≤n

∫

K

. . .

∫

K

1{[xi1 , . . . , xid
] ∈ F ]} ×

×φ([xi1 , . . . , xid
])dx1 . . . dxn

=
(
n

d

)∫

K

. . .

∫

K

1{[x1, . . . , xd] ∈ F}φ([x1, . . . , xd])dx1 . . . dxn.

We will denote by V = V (x1, . . . , xd) the volume of the smaller cap cut off
from K by aff{x1, . . . , xd} (which is a hyperplane, almost surely). Here, we
used aff S for the affine hull of S. Since F = [x1, . . . , xd] is a facet, if and only
if xd+1, . . . , xn are all on one side of aff{x1, . . . , xd}, we have the following
theorem.
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Theorem 2.1. Under the above conditions,

Eφ(Kn) =
(
n

d

)∫

K

. . .

∫

K

[(1− V )n−d + V n−d]φ(F )dx1 . . . dxd. (1)

One can give precise estimates for this integral in several special cases. For
instance if φ = fd−1, then φ(F ) = 1 and the above formula can be directly
evaluated for smooth convex sets and for polygons in the plane. In [39], Rényi
and Sulanke prove that, for smooth convex sets of area one,

Ef1(Kn) =
(

2
3

)1/3

Γ

(
5
3

)(∫

bd K

κ1/3ds
)
n1/3(1 + o(1)),

where κ is the curvature and integration is by arc length ds on the boundary
bdK of the convex body. For polygons, direct computation in [39] shows that

Ef1(Kn) =
2
3
f0(K) lnn (1 + o(1)).

Of course, f1 = f0 in these cases. The computation reveals that, for smooth
bodies, the vertices of Kn are distributed evenly near bdK, the boundary of
K, while for polygons, they are concentrated near the vertices of the orig-
inal polygon. This is a first level explanation for the different behaviour of
Ef0(Kn).

For smooth convex bodies in higher dimension Eφ(Kn) can sometimes
be evaluated using the Blaschke-Petkantschin [43] integral formula. We will
return to this in Section 15.

Remark. Equation (1) was used first by Rényi and Sulanke [39] in the planar
case.

3 Minimal Caps and a General Result

Recalling that K denotes the set of all convex bodies in R
d, we will write K1 for

the set of those K ∈ K that have unit volume, volK = 1. This is convenient
since then the Lebesgue measure and the uniform probability measure on
K ∈ K1 coincide.

Assume a ∈ R
d is a unit vector and t ∈ R. Then the halfspace H = H(a ≤

t) is defined as
H(a ≤ t) = {x ∈ R

d : a · x ≤ t},
where a · x is the scalar product of a and x.

A cap of K ∈ K is simply a set of the form C = K ∩ H where H is a
closed halfspace. The width of the cap, w(C) is the usual width of C in the
normal direction of H. We define the function v : K → R by

v(x) = min{vol(K ∩H) : x ∈ H and H is a halfspace},
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This function is going to play a central role in what follows. The minimal
cap belonging to x ∈ K is a cap C(x) with x ∈ C(x) and volC(x) = v(x). The
minimal cap C(x) need not be unique, so our notation is a little ambiguous
but this will not cause any trouble.

The level sets of v are defined as

K(v ≥ t) = {x ∈ K : v(x) ≥ t}.

The wet part of K with parameter t > 0 is

K(t) = K(v ≤ t) = {x ∈ K : v(x) ≤ t}.

The name comes from the mental picture when K is a three dimensional
convex body containing t units of water. We call K(v ≥ t) the floating body
of K with parameter t > 0 as, in a similar picture, this is the part of K that
floats above water (cf. [10] and [32]). The floating body is the intersection of
halfspaces, so it is convex.

The general behaviour of E(K,n) was described in [10]: E(K,n) is of the
same order of magnitude as the volume of the wet part with t = 1/n. This
works for general convex bodies K ∈ K, not only when K is smooth or is a
polytope. Precisely, we have the following result.

Theorem 3.1. For every d ≥ 2 there are constants c0, c1, c2 > 0 such that
for every K ∈ K1 and n ≥ c0

c1 volK(1/n) ≤ E(K,n) ≤ c2 volK(1/n).

It will be convenient to use the �, � and ≈ notation. For instance, f(n) �
g(n) means that there is a constant b such that f(n) ≤ bg(n) for all values of
n. This notation always hides a constant which, as a rule, does not depend on
n but may depend on dimension. With this notation, the above theorem can
be formulated in the following way.

Theorem 3.2. For large enough n and for every K ∈ K1,

volK(1/n)� E(K,n)� volK(1/n).

The content of Theorem 3.2 is that, instead of determining E(K,n), one can
determine the volume of the wet part (which is usually simpler) and obtain
the order of magnitude of E(K,n). The reader will have no difficulty under-
standing that for the unit ball Bd in R

d the wet part Bd(v ≤ t) is the annulus
Bd \ (1− h)Bd where h is of order t2/(d+1). Thus

E(Bd, n) ≈ volBd(1/n) ≈ n−2/(d+1).

Similarly, for the unit cubeQd in R
d the floating body with parameter t (in the

subcube [0, 1/2]d) is bounded by the hypersurface {x ∈ R
d :
∏
xi = ddt/d!}.



82 Imre Bárány

From this, the volume of the wet part can be determined easily (see also
Section 12),

E(Qd, n) ≈ volQd(1/n) ≈ (lnn)d−1

n
.

This is the second level of explanation for the very different behaviour of
E(K,n): the volume of the wet part varies heavily depending on the boundary
structure of K.

4 The Volume of the Wet Part

By the theorems of the previous section, the order of magnitude of E(K,n) is
determined by that of volK(1/n). In this section we state several results on
the function t �→ volK(t). In particular, we are interested in the cases when
this function is maximal and minimal.

The wet part K(t) = K(v ≤ t) is a kind of inner parallel body to the
boundary of K. We note first that the function v : K → R is invariant (or
rather equivariant) under non-degenerate linear transformations A : R

d → R
d.

Precisely, recalling the notation v(x) = vK(x), we have

vAK(Ax) = |detA|vK(x)

since CAK(Ax) = A(CK(x)). This also shows that the quantity

volK(v ≤ t volK)
volK

(2)

is invariant under non-degenerate linear transformations.

Theorem 4.1. Assume K ∈ K1 and t ≥ 0. Then

volK(t)� t

(
ln

1
t

)d−1

. (3)

This theorem is best possible (apart from the implied constant) as shown by
polytopes. We need the following definition. A tower of a polytope P is a
chain of faces F0 ⊂ F1 ⊂ . . . ,⊂ Fd−1 where Fi is i-dimensional. Write T (P )
for the number of towers of P .

Theorem 4.2. Assume P ∈ K1 and t ≥ 0. Then

volP (t) =
T (P )
dd−1d!

t

(
ln

1
t

)d−1

(1 + o(1)).

The result is due to Schütt [50], and independently to Bárány and Buchta [9].
It is used in the proof of the following theorem.
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Theorem 4.3. Assume P ∈ K1 and t ≥ 0. Then

E(P, n) =
T (P )

(d+ 1)d−1(d− 1)!
(lnn)d−1

n
(1 + o(1)).

This is a difficult theorem whose proof is based on work of Affentranger and
Wieacker [1] and Bárány and Buchta [9]. Here we will only prove Theorem 4.2
in the simpler form saying that

volP (t)� T (P )t
(

ln
1
t

)d−1

, (4)

where the implied constant depends on dimension only.
Concerning the upper bound on the volume of the wet part, or on E(K,n),

the following result of Groemer [22] gives a complete answer.

Theorem 4.4. Among all convex bodies in K1, E(K,n) is maximal for ellip-
soids, and only for ellipsoids.

The affine isoperimetric inequality (cf. Blaschke [14] and Schütt [52]) expresses
a similar extremal property of ellipsoids.

Theorem 4.5. For all convex bodies in K1,

lim sup
t→0

t−
2

d+1 volK(t)

is maximal for ellipsoids, and only for ellipsoids.

In case of smooth convex bodies in R
d more precise information is available.

Theorem 4.6. For a convex body K ∈ K1 with C2 boundary and positive
curvature κ at each point of bdK,

E(K,n) = c(d)
(∫

bd K

κ
1

d+1 dS
)
n−

2
d+1 (1 + o(1)),

where dS denotes integration over bdK.

The above results show that one can determine E(K,n) and volK(t) for
smooth convex bodies and for polytopes. What happens between these two
extreme classes of convex bodies is not a mystery: it is the usual unpredictable
behaviour. Using the above results and a general theorem of Gruber [24] one
can show the following.

Theorem 4.7. Assume ω(n) → 0 and Ω(n) → ∞. Then for most (in the
Baire category sense) convex bodies in K1 one has, for infinitely many n,

E(K,n) ≥ ω(n)n−
2

d+1 ,

and also, for infinitely many n,

E(K,n) ≤ Ω(n)
(lnn)d−1

n
.
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There is, of course, an analogous theorem for K(t) with ω(t) and Ω(t) whose
formulation and proof are left to the interested reader.

We will only prove Theorem 4.1 and inequality (4).

5 The Economic Cap Covering Theorem

Everything interesting that can happen to a convex body happens near its
boundary. The technique of cap coverings andM -regions is a powerful method
to deal with the boundary structure of convex bodies. The proof of the eco-
nomic cap covering theorem (see [10] and [4]) is based on this technique. It
says the following.

Theorem 5.1. Assume K ∈ K1 and 0 < ε < ε0 = (2d)−2d. Then there
are caps C1, . . . , Cm and pairwise disjoint convex sets C ′

i, . . . , C
′
m such that

C ′
i ⊂ Ci, for each i, and

(i)
⋃m

1 C
′
i ⊂ K(ε) ⊂

⋃m
1 Ci,

(ii) volC ′
i � ε and volCi � ε for each i,

(iii) for each cap C with C ∩K(v > ε) = ∅ there is a Ci containing C.

The meaning is that the caps Ci cover the wet part, but do not “over cover”
it. In particular,

mε� volK(ε)� mε. (5)

The next corollary expresses a certain concavity property of the function
ε �→ volK(ε). It says that, apart from the constant implied by the� notation,
the dth root of volK(ε) is a concave function. This will be sufficient for our
purposes, that is, for the proof of Theorem 3.2.

Corollary 5.1. If K ∈ K1, ε ≤ ε0, and λ ≥ 1, then

volK(ε)� λ−d volK(λε). (6)

The proof of the above results relies heavily on the Macbeath regions and
their properties. They are defined, with their properties explained, in the
next section.

6 Macbeath Regions

Macbeath regions, or M -regions, for short, were introduced in 1952 by A.
M. Macbeath [34]: given a convex body K ∈ Kd, and a point x ∈ K, the
corresponding M -region is, by definition,

M(x) = MK(x) = K ∩ (2x−K).
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So M(x) is, again, a convex set. It is centrally symmetric with centre x. We
define the blown-up version of the M -region as follows

M(x, λ) = MK(x, λ) = x+ λ [(K − x) ∩ (x−K)] .

This is just a blown-up copy of M(x) from its centre x with scalar λ > 0.
We define the function u : K → R by

u(x) = volM(x).

The level sets of u are defined the same way as those of v,

K(u ≤ t) = {x ∈ K : u(x) ≤ t}, K(u ≥ t) = {x ∈ K : u(x) ≥ t}.

We note that the function u : K → R, just like v, is invariant (or rather
equivariant) under non-degenerate linear transformations A : R

d → R
d. That

is,
uAK(Ax) = |detA|uK(x)

since MAK(Ax) = A(MK(x)). This also shows that the quantity

volK(u ≤ t volK)
volK

(7)

is invariant under non-degenerate linear transformations, cf. (2).
M -regions have an important property that can often be used with induc-

tion on dimension. Namely, assume H is a hyperplane and x ∈ K ∩H. Then,
as it is very easy to see,

MK∩H(x) = MK(x) ∩H. (8)

The convexity of K(u ≥ t) is not as simple as that of K(v ≥ t) and we
state it as a separate lemma.

Lemma 6.1. The set K(u ≥ t) is convex.

Proof (cf. Macbeath [34]). We check first that 1
2 (M(x)+M(y)) ⊂M(1

2 (x+y)).
So assume a ∈M(x), that is a ∈ K and a ∈ 2x−K, or a = 2x− k1 for some
k1 ∈ K. Similarly b ∈ M(y) implies b ∈ K and b = 2y − k2 for some k2 ∈ K.
Then, by the convexity of K, (a+ b)/2 ∈ K and

a+ b
2

= x+ y − k1 + k2
2

∈ 2
x+ y

2
−K,

implying the claim. Now the Brunn-Minkowski inequality [46] together with
the containment 1

2 (M(x) +M(y)) ⊂ M(1
2 (x + y)) implies that the function

u1/d is concave. Thus, in particular, the level sets K(u ≥ t) are convex. ��
The computation of u(x) is simpler than that of v(x) since one does not have
to minimize. It turns out that v(x) ≈ u(x), when x is close to the boundary
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of K. A word of warning is in place here: closeness to the boundary is to be
expressed equivariantly, that is, in terms of how small v(x) or u(x) is, as both
u and v are affinely equivariant.

We now list several properties of these functions and their interrelations.
The proofs are technical and will be given in the next section which can be
skipped on first reading. In each one of these lemmas we assume that K is a
convex body in K1 and ε0 = d−13−d.

Lemma 6.2. If x, y ∈ K and M(x, 1/2) ∩M(y, 1/2) 	= ∅, then

M(y, 1) ⊂M(x, 5).

Lemma 6.3. We have u(x) ≤ 2v(x), for all x ∈ K.

Lemma 6.4. If x ∈ K and v(x) ≤ ε0, then

C(x) ⊂M(x, 2d).

Lemma 6.5. If x ∈ K and v(x) ≤ ε0, then v(x) < (2d)du(x).

Lemma 6.6. If x ∈ K and u(x) ≤ (3d)−dε0, then v(x) < (2d)du(x).

Lemma 6.7. K(v ≥ ε) contains no line segment on its boundary.

Lemma 6.8. Assume C is a cap of K and C ∩ K(v ≥ ε) = {x}, a single
point. If ε < ε0, then volC ≤ dε and

C ⊂M(x, 2d).

Lemma 6.9. Every y ∈ K(ε) is contained in a minimal cap C(x) with
volC(x) = ε and x ∈ bdK(v ≥ ε).

Lemma 6.10. If ε ≤ ε0, then K(v ≤ ε) ⊂ K(u ≤ 2ε). If ε ≤ (2d)−dε0, then
K(u ≤ ε) ⊂ K(v ≤ (2d)dε).

The importance of these lemmas lies in the fact that they show u ≈ v near the
boundary of K in a strong sense. Namely, under the conditions of Lemma 6.4
the minimal cap is contained in a blown-up copy of the Macbeath region. On
the other hand, “half” of the Macbeath region is contained in the minimal
cap. Precisely, if C = K ∩H(a ≤ t) is a minimal cap, then

M(x) ∩H(a ≤ t) ⊂ C(x). (9)

This shows that there is a two-way street between C(x) and M(x): C(x) can
be replaced by M(x) and M(x) by C(x) whenever it is more convenient to
work with the other one.

Remark. Lemma 6.4 was proved first by Ewald, Larman, and Rogers in [21],
they show C ⊂ M(x, 3d). The slightly better constant here is new and so
is the proof (given in the next section) and it comes from an effort to use
affine-invariant methods when the statement is affinely invariant.
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7 Proofs of the Properties of the M -regions

Proof of Lemma 6.2 (from the ground breaking paper by Ewald, Larman,
Rogers [21]). Assume a is the common point of M(x, 1/2) and M(y, 1/2).
Then

a = x+
1
2
(x− k1) = y +

1
2
(k2 − y)

for some k1, k2 ∈ K implying y = 3x−k1−k2. Suppose now that b ∈M(y, 1).
Then b ∈ K ⊂ x+ 5(K − x) clearly, and b = y + (y − k3) with some k3 ∈ K.
Consequently

b = 2y − k3 = 6x− 2k1 − 2k2 − k3

= x+ 5
(
x−

[
2
5
k1 +

2
5
k2 +

1
5
k3

])
∈ x+ 5(x−K).

��
Lemma 6.3 follows from (9). Lemma 6.4 is also from [21], the proof below is
a slight improvement on the constant.

Proof of Lemma 6.4. The basic observation is that if C(x) = K ∩H(a ≤ t) is
a minimal cap, then x is the centre of gravity of the section K ∩ H(a = t).
This can be checked by a routine variational argument. We first prove the
following.

Claim 7.1 Assume C(x) has width w, and K contains a point k in the hy-
perplane H(a = t+ 2w). Then C(x) ⊂M(x, 2d).

Proof. Assume that, on the contrary, there is a point z ∈ C(x) which is not
in M(x, 2d). Then z /∈ x+ 2d(x−K) implying

z∗ = x− 1
2d

(z − x) /∈ K.

Let L be the two-dimensional plane containing x, k and z, then z∗ ∈ L as
well, and our problem has become a simple planar computation. Fix a coor-
dinate system to L with x lying at the origin and the hyperplane H(a = t)
intersecting L in the y axis. In this setting z∗ = − 1

2dz. The line aff{k, z},
resp. aff{k, z∗} intersects the y axis at the points u ∈ K (since k, z ∈ K)
and u∗ /∈ K (since k ∈ K and z∗ /∈ K). As x is the centre of gravity of the
(d− 1)-dimensional section, (d− 1)‖u∗‖ > ‖u‖ must hold. Write k = (k1, k2)
and z = (z1, z2); the conditions imply that k1 = 2w and z1 ∈ [−w, 0]. It is not
hard to check that

‖u‖ =
|k1z2 − z1k2|
k1 − z1

and ‖u∗‖ =
|k1z2 − z1y2|

2dk1 + z1
.

Then (d−1)‖u∗‖ ≥ ‖u‖ implies (d−1)(k1−z1) ≥ 2dk1+z1 or −dz1 ≥ (d+1)k1
contradicting k1 = 2w and z1 ∈ [−w, 0]. ��
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The rest of the proof is what I like to call trivial volume estimates. We show
that if C(x) = K ∩H(a ≤ t) is a minimal cap of width w and v(x) ≤ ε0, then
the width of K in direction a is at least 3w. Assume the contrary and let

A = max{vol d−1(K ∩H(a = τ))}.

Then 1 = volK ≤ 3wA and v(x) ≥ wA/(d3d) and so v(x) ≥ 1/(d3d) contra-
dicting v(x) ≤ ε0. ��
Lemma 6.5 follows immediately.

Proof of Lemma 6.6. Assume that u(x) ≤ (2d)−dε0. Let C(x) = K ∩H(a ≤ t)
be the minimal cap at x. Suppose its width is w. We show that the width
of K in direction a is at least 3w. This implies the lemma via Lemma 6.4.
Assume the contrary. With the same setting as in the previous proof one sees
that vol d−1(K ∩ H(a = t)) ≥ A/3d−1. As x is the centre of gravity of this
section, the Löwner-John theorem implies that

vol d−1(M(x) ∩H(a = t)) ≥ A

(3(d− 1))d−1

and u(x) ≥ 2/(3d)d follows. ��
Proof of Lemma 6.7. Let x, y ∈ bdK(v ≥ ε) and assume z = 1

2 (x + y) is
also in bdK(v ≥ ε). Then there is a minimal cap C(z) of volume ε. C(z)
cannot contain x (or y) in its interior as otherwise a smaller “parallel” cap
would contain x (or y). Then C(z) must contain both x and y in its bounding
hyperplane. Then it is a minimal cap for both x and y. But both x and y
cannot be the centre of gravity of the section K ∩H(a = t) at the same time
unless x = y. ��
Proof of Lemma 6.8. Denote the set of outer normals to K(v ≥ ε) at z ∈
bdK(v ≥ ε) by N(z). It is well known (see [41]) that as K(v ≥ ε) is a convex
body, N(z) coincides with the cone hull of its extreme rays.

For b ∈ Sd−1 define Cb as the unique cap Cb = K ∩ H(b ≤ t) such that
Cb ∩K(v ≥ ε) 	= ∅ but Cb ∩ intK(v ≥ ε) = ∅.

We show first that if b is the direction of an extreme ray of N(z), then
volCb = ε. To prove this we use a classical result of Alexandrov (see [46])
stating that at almost every point z on the boundary of a convex body the
supporting hyperplane is unique. This shows that if z ∈ bdK(v ≥ ε) is such
a point then N(z) ∩ Sd−1 is a unique vector, to be denoted by b(z). In this
case, of course, volCb(z) = ε .

Notice next that N(z) is the polar of the minimal cone whose apex is z
and which contains K(v ≥ ε) (see [41] again). So there is a vector w ∈ Sd−1

such that w · b = 0 and w · x < 0 for all x ∈ N(z), x 	= λb (λ > 0) and such
that there are points z(t) ∈ bdK(v ≥ ε) for all small enough t > 0 with

‖(z(t)− z)− tw‖ = o(t),
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as t → 0. Choose now a subsequence zk ∈ bdK(v ≥ ε) very close to z(1/k)
with unique tangent hyperplane to K(v ≥ ε) (using Alexandrov’s theorem).
We may assume that lim b(zk) exists and equals b0 ∈ Sd−1. It is easily seen
that b0 ∈ N(z). Assume b0 	= b. Then, since b(zk) ∈ N(zk),

0 ≥ b(zk) · (y − zk),

for every y ∈ K(v ≥ ε). In particular, for y = z we get

0 ≥ b(zk) · (y − zk) = −1
k
b(zk) · u− o(1/k) > − 1

2k
b(zk) · u− o(1/k) > 0,

for large enough k, a contradiction proving b0 = b. The continuity of the map
b �→ volCb implies volCb = ε.

Now let C = K∩H(a ≤ t) be the cap in the statement of the lemma. Then
−a ∈ N(x) and thus −a is in the cone hull of extreme rays of N(x). Thus,
by Carathédory’s theorem, −a is in the cone hull of b1, . . . , bd ∈ Sd−1, where
each bi represents an extreme ray of N(z). Then C is contained in ∪Cbi . This
implies that volC ≤ d volCbi = dε. Also, each Cbi is a minimal cap, so by
Lemma 6.4 it is contained in M(x, 2d). Consequently,

C ⊂
d⋃

1

Cbi ⊂M(x, 2d).

��
Proof of Lemma 6.9. The minimal cap C(y) = K ∩ H(a ≤ t) is internally
disjoint from the floating body K(v ≥ ε). Let τ be the maximal number
with H(a ≤ τ) internally disjoint from K(v ≥ ε). By Lemma 6.7 the cap
C = K ∩ H(a ≤ τ) contains a unique point x ∈ bdK(v ≥ ε). The proof of
Lemma 6.8 gives that

y ∈ C(y) ⊂ C ⊂
d⋃

1

Cbi

where each Cbi is a minimal cap. ��
Proof of Lemma 6.10. We prove the first inclusion by showing that K(u >
2ε) ⊂ K(v > ε). As both sets are convex, it suffices to see that x ∈ bdK(u >
2ε) implies v(x) ≥ ε. The condition says that u(x) = 2ε and Lemma 6.3 gives
2ε = u(x) ≤ 2v(x).

The proof of the second inclusion is similar, just Lemma 6.5 is needed. ��
Remark. Most of the results here come from [21], [10] and [4]. But as I
mentioned at the end of the previous section, some of the proofs here are new.

8 Proof of the Cap Covering Theorem

We start with a definition. If a cap C = K ∩ H(a ≤ t) has width w, then
H(a = t− w) is a supporting hyperplane to K. The centre of the cap is the
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centre of gravity of the set K ∩H(a = t− w). The blown-up copy of C from
its centre by a factor λ > 0 is denoted by Cλ. It is clear that Cλ lies between
hyperplanes H(a = t−w) and H(a = t−w+λw), and convexity implies that

K ∩H(a ≤ t− w + λw) ⊂ Cλ, (10)

and so volK ∩H(a ≤ t− w + λw) ≤ λd volC.
Choose a system of points x1, . . . , xm on the boundary of the floating body

K(v ≥ ε) which is maximal with respect to the property

M(xi, 1/2) ∩M(xj , 1/2) = ∅,

for each i, j distinct. Such a maximal system is finite since the M -regions
are pairwise disjoint, all of them are contained in K and volM(xi, 1/2) =
2−du(xi) ≥ (6d)−dv(x) = (6d)−dε.

Claim 8.1 For each y ∈ K(ε) there is an x ∈ bdK(v ≥ ε) with y ∈M(x).

Proof. Assume this is false for some y ∈ K(ε). So for each x ∈ bdK(v ≥ ε),
we have y /∈ M(x) = K ∩ (2x − K) implying that 2x − y /∈ K, for each
x ∈ K(v ≥ ε). In other words, a homothetic copy of K[ε] blown up from y
by a factor of 2 is disjoint from K. Let H(a ≤ t) be the halfspace containing
K and disjoint from the homothetic copy, and let H(a ≤ τ) be the parallel
halfspace disjoint from K[ε] with its bounding hyperplane tangent to K[ε].
The cap K ∩H(a ≤ τ) has volume at most dε by Lemma 6.8. The width of
K ∩ H(a ≤ t) is at most twice the width of K ∩ H(a ≤ τ). Thus we have,
using (10),

1 = volK = vol(K ∩H(a ≤ t)) ≤ 2d vol(K ∩H(a ≤ τ)) ≤ 2ddε,

contradicting ε ≤ ε0. ��
It will be easy to see now that

K(ε) ⊂
m⋃

1

M(xi, 5).

Indeed, for each y ∈ K(ε) there is an x ∈ bdK[ε] with y ∈M(x). By the max-
imality of the system x1, . . . , xm, there is an xi with M(x, 1/2)∩M(xi, 1/2) 	=
∅. Lemma 6.2 shows then that y ∈M(xi, 5).

We have now a covering of K(ε) with M -regions. We are going to turn
it into a covering with caps. The minimal cap at xi is given by C(xi) =
K ∩H(ai ≤ ti), let wi be its width. Define

C ′
i = M(xi, 1/2) ∩H(ai ≤ ti) and Ci = K ∩H(ai ≤ ti + 5wi).

It is evident that the C ′
i are pairwise disjoint convex sets, each contained in Ci

and volC ′
i ≥ 1

2 volM(xi,
1
2 ) ≥ 1

2 (2d)−dε by Lemma 6.5. On the other hand,
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M(xi, 5) lies between hyperplanes H(ai = ti − wi) and H(ai = ti + 5wi) and
so it is contained in Ci. Finally, (10) shows that volCi ≤ 6d volC(xi) = 6dε.

So far this is the proof of (i) and (ii) of the theorem. We now show how
one can enlarge Ci to satisfy (iii).

This is quite simple. With the previous notation, take Ci = K ∩H(ai ≤
ti + (10d − 1)wi). The new Ci satisfy (i) and (ii) and volCi � ε. Moreover,
M(xi, 10d) ⊂ Ci.

Consider now a cap C, disjoint from K(v > ε). We may assume that our C
is maximal in the sense that C ∩K(v ≥ ε) is nonempty. Then, by Lemma 6.7,
the intersection C ∩K(v ≥ ε) is a single point, say x, and by Lemma 6.8

C ⊂M(x, 2d).

By the maximality of the system x1, . . . , xm, there is an xi with M(x, 1) ⊂
M(xi, 5). We claim that M(x, 2d) ⊂ M(xi, 10d). This will prove what we
need.

The claim follows from a more general statement.

Fact. Assume A and B are centrally symmetric convex sets with centre a and
b respectively. If B ⊂ A and λ ≥ 1, then

b+ λ(B − b) ⊂ a+ λ(A− a). (11)

Proof. We may assume a = 0. Let c ∈ B, we have to prove that b+ λ(c− b) ∈
λA. B is symmetric, so 2b − c ∈ B ⊂ A, and A is symmetric, so c − 2b ∈ A.
Also, A is convex and c ∈ B ⊂ A, thus (1/2)(c+ (c− 2b)) = c− b ∈ A. Then
c ∈ A and c− b ∈ A imply λc ∈ λA and λ(c− b) ∈ λA. But b+ λ(c− b) lies
on the segment connecting λc and λ(c− b),

b+ λ(b− c) =
1
λ

(λc) +
(

1− 1
λ

)
λ(c− b) ∈ A,

proving the fact. ��
Proof of Corollary 5.1. Let C1, . . . , Cm be the economic cap covering from
Theorem 5.1. We will show that

K(λε) ⊂
m⋃

1

Cdλ
i .

This will prove what we want.
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Consider x ∈ K(λε), we may assume x /∈
⋃
Ci. The minimal cap C(x) =

K∩H(a ≤ t) has centre z and width w. The segment [x, z] intersects bdK(v ≥
ε) at the point y, and let y ∈ H(a = t− w′) and set t′ = w − w′. Now

ε = v(y) ≤ vol(K ∩H(a ≤ t− w′)) =
∫ t−w′

t−w

vol d−1(K ∩H(a = τ))dτ

≤ t′ max{vol d−1(K ∩ (H(a = τ)) : t− w ≤ τ ≤ t− w′}
≤ t′ max{vol d−1(K ∩ (H(a = τ)) : t− w ≤ τ ≤ t}.

On the other hand

λε ≥ v(x) = vol(K ∩H(a ≤ t))

≥ 1
d
t′ max{vol d−1(K ∩ (H(a = τ)) : t− w ≤ τ ≤ t},

where the last inequality holds since the double cone whose base is the maxi-
mal section K ∩H(a = τ) is contained in C(x). Now t/t′ = ‖z − x‖/‖z − y‖
and we get

‖z − x‖ ≤ dλ‖z − y‖.
Consider now the cap Ci = K ∩ H(ai ≤ ti) that contains y. Let zi be the
centre of Ci and write yi for the intersection of [zi, x] ∩H(ai = ti). The line
aff{z, x} intersects the hyperplanes H(ai = ti), H(ai = ti − wi) respectively
at y′ and z′. It is easy to check that the points z′, z, y, y′, x come in this order
on aff{z, x}. Consequently,

‖x− zi‖
‖yi − zi‖

=
‖x− z′‖
‖y′ − z′‖ ≤

‖x− z‖+ ‖z − z′‖
‖y − z‖+ ‖z − z′‖ ≤

‖x− z‖
‖y − z‖ ≤ dλ.

So indeed x ∈
⋃m

1 C
dλ
i . ��

9 Auxiliary Lemmas from Probability

We will need an upper and lower bound for the quantity P{x /∈ Kn} where x
is a fixed point of K and the random polytope Kn varies. The lower bound is
simple: if C(x) is the minimal cap of x, then clearly

P{x /∈ Kn} ≥ P{Xn ∩ C(x) = ∅} = (1− v(x))n, (12)

where Xn is the random sample of n points from K generating Kn.
We mention at once that this implies the lower bound in Theorem 3.2, or,

what is the same, in Theorem 3.1.
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Proof (of the lower bound in Theorem 3.1). Using the above inequality we
get, for all t > 0 that

E(K,n) =
∫

K

P{x /∈ Kn}dx ≥
∫

K

(1− v(x))ndx

≥
∫

K(t)

(1− v(x))ndx ≥
∫

K(t)

(1− t)ndx ≥ (1− t)n volK(t).

Choosing here t = 1/n gives the lower bound with c1 = 1/4, for instance.
Note that c1 is universal, it does not depend on the dimension. ��
We need an upper bound on P{x /∈ Kn},

P{x /∈ Kn} ≤ 2
d−1∑

i=0

(
n

i

)(
u(x)

2

)i(
1− u(x)

2

)n−i

. (13)

Proof. We are going to use the following equality which is due to Wendel [58].
Assume M is an 0-symmetric d-dimensional convex body, and let Xn be a
random sample of uniform, independent points from M . Then

P{0 /∈ conv Xn} = 2−n+1
d−1∑

i=0

(
n− 1
i

)
. (14)

(I will give a proof of this result at the end of the section.)
Let x ∈ K be fixed and define N(x) = Xn ∩M(x). Setting n(x) = |N(x)|

we have

P{x /∈ Kn} =
n∑

m=0

P{x /∈ Kn|n(x) = m}P{n(x) = m}

≤
n∑

m=0

P{x /∈ conv N(x)|n(x) = m}P{n(x) = m}

= 2
n∑

m=0

2−m
d−1∑

i=0

(
m− 1
i

)
P{n(x) = m}.

We used Wendel’s equality. P{n(x) = m} is a binomial distribution with
parameter u = u(x). Thus



94 Imre Bárány

P{x /∈ Kn} ≤ 2
n∑

m=0

2−m
d−1∑

i=0

(
m− 1
i

)(
n

m

)
um(1− u)n−m

= 2
d−1∑

i=0

n∑

m=0

(
m− 1
i

)(
n

m

)(u
2

)m

(1− u)n−m

≤ 2
d−1∑

i=0

n∑

m=i+1

(
m

i

)(
n

m

)(u
2

)m

(1− u)n−m

= 2
d−1∑

i=0

(
n

i

) n∑

m=i

(
n− i
m− i

)(u
2

)m

(1− u)n−m

= 2
d−1∑

i=0

(
n

i

) n−i∑

k=0

(
n− i
k

)(u
2

)k+i

(1− u)n−i−k

= 2
d−1∑

i=0

(
n

i

)(u
2

)i (
1− u

2

)n−i

.

��
Proof of Wendel’s equality. We start with the following simple fact. Assume
H1, . . . , Hn are hyperplanes in R

d in general position that is, every d of them
has exactly one point in common and no d + 1 of them intersect. The set
R

d \ ∪n
1Hi is the disjoint union of pairwise disjoint open sets, to be called

cells. Each cell is a convex polyhedron.

Claim 9.1 The number of cells is exactly
∑d

i=0

(
n
i

)
.

Proof. We prove this by induction on d. Everything is clear when d = 1.
Assume d > 1 and the statement is true in R

d−1. Let a ∈ R
d be a unit vector

in general position and let C be one of the cells. If min{a ·x : x ∈ C} is finite,
then it is reached at a unique vertex of C which is the intersection of some
d hyperplanes Hi1 , . . . , Hid

. There are
(
n
d

)
such minima and each one comes

from a different cell. So exactly
(
n
d

)
cells have a finite minimum in direction

a. Let K be a number smaller than each of these
(
n
d

)
minima. The rest of the

cells are unbounded in this direction, so they all intersect the hyperplane H
with equation a · x = K . The induction hypothesis can be used in H (which
is a copy of R

d−1) to show that the number cells, unbounded in direction a is∑d−1
i=0

(
n
i

)
. This finishes the proof of the claim. ��

Now for the proof of Wendel’s equality. The basic observation is that choosing
the points x1, . . . , xn and choosing the points ε1x1, . . . , εnxn (where each εi =
±1) is equally likely. So we want to see that, out of the 2n such choices, how
many will not have the origin in their convex hull. If 0 /∈ [ε1x1, . . . , εnxn],
then all the εixi are contained in the open halfspace {x ∈ R

d : a · x > 0} for
some unit vector a ∈ R

d. The conditions a · (εixi) > 0 show that all halfspaces
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containing each εixi (i = 1, . . . , n, the εi are fixed) have their normal a in the
cone

n⋂

1

{y ∈ R
d : y · (εixi) > 0}.

So the question is how many such cones there are. Or, to put it differently,
when you delete the hyperplanes Hi = {y ∈ R

d : y · xi = 0} i = 1, . . . , n
from R

d you get pairwise disjoint open cones Cα; how many such cones are
there? Surprisingly, this number is independent of the position of the xi (if
they are in general position and, in the given case, they are). We claim that
this number is equal to

2
d−1∑

i=0

(
n− 1
i

)
.

This will, of course, prove Wendel’s equality (14).
Consider now the hyperplane H∗ = {y ∈ R

d : y · xn = 1}. The cones Cα

come in pairs, Cα together with −Cα and only one of them intersects H∗. So
the question is this. If you delete the hyperplanes Hi, i = 1, . . . , n − 1 from
H∗, how many connected components are left? This is answered by Claim 9.1,
there are exactly

d−1∑

i=0

(
n− 1
i

)

such cells. ��

10 Proof of Theorem 3.1

We only have to prove the upper bound. We start with the integral represen-
tation of E(K,n) and use the upper bound from (13),

E(K,n) =
∫

K

P{x /∈ K}dx

≤
∫

K

2
d−1∑

i=0

(
n

i

)(
u(x)

2

)i(
1− u(x)

2

)n−i

dx

≤ 2
d−1∑

i=0

(
n

i

)∫

K

(
u(x)

2

)i(
1− u(x)

2

)n−i

dx.

K is the disjoint union of the sets Kλ, for λ = 1, 2, . . . , n, where

Kλ = K((λ− 1)/n ≤ u < λ/n).

We integrate separately on each Kλ using that, on Kλ, u(x) < λ/(2n) and
1− u(x)/2 ≤ exp{−(λ− 1)/(2n)}. Thus
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∫

Kλ

(
u(x)

2

)i(
1− u(x)

2

)n−i

dx�
(
λ

2n

)i

exp{−(λ− 1)/4} volK(u ≤ λ/n).

We continue the inequality for E(K,n),

E(K,n) � 2
d−1∑

i=0

(
n

i

) n∑

λ=1

(
λ

2n

)i

exp{−(λ− 1)/4} volK(u ≤ λ/n)

�
n∑

λ=1

d−1∑

i=0

(
n

i

)(
λ

2n

)i

exp{−(λ− 1)/4} volK(u ≤ λ/n)

=
Λ∑

λ=1

..+
n∑

λ=Λ+1

.. ,

where Λ = (2d)−dε0n = d−1(6d)−dn. Note that
(
n

i

)(
λ

2n

)i

� λi.

So we have, using Lemma 6.10 and Corollary 5.1,

Λ∑

λ=1

..�
Λ∑

λ=1

dλd−1 exp{−(λ− 1)/4} volK(v ≤ (2d)dλ/n)

�
Λ∑

λ=1

λd−1 exp{−(λ− 1)/4}λd volK(v ≤ 1/n)

� volK(v ≤ 1/n).

Estimating the second sum is simpler, since one can use the trivial inequality
volK(u ≤ λ/n) ≤ 1 to get

n∑

Λ+1

..�
n∑

Λ+1

λd−1 exp{−(λ− 1)/4} volK(v ≤ (2d)dλ/n)

�
n∑

Λ+1

λd−1 exp{−(λ− 1)/4}

� volK(v ≤ 1/n).

Thus we have E(K,n)� volK(1/n). ��
Remark. This proof comes from the paper [10].

11 Proof of Theorem 4.1

We start with introducing further notation. Fix a ∈ Sd−1 and let H(a = t0)
be the hyperplane whose intersection with K has maximal (d−1)-dimensional
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volume among all hyperplanes H(a = t). Assume the width of K in direction
a is at most 2t0; if this were not the case we would take −a instead of a. As
a will be fixed during this proof we simply write H(t) = H(a = t). Assume
further that H(0) is the tangent hyperplane to K. Define

Q(t) = H(t) ∩K and q(t) = vol d−1Q(t).

The choice of t0 ensures that, for t ∈ [0, t0],

q(t) ≥
(
t

t0

)d−1

q(t0) and 2t0q(t0) ≥ volK = 1. (15)

Claim 11.1 For ε > 0 and for t ∈ [0, t0],

Q(t)
(
uQ(t) ≤ ε/(2t)

)
⊂ K(uK ≤ ε) ∩H(t).

Proof. We are going to show that x ∈ H(t) ∩K implies uK(x) ≤ 2tuQ(t)(x).
This of course proves the lemma.

Notice first that M(x) lies between hyperplanes H(0) and H(2t). Thus

u(x) =
∫ 2t

0

vold−1(M(x) ∩H(τ))dτ ≤ 2t vold−1(M(x) ∩H(t)),

since M(x) is centrally symmetric, so its largest section is the middle one.
Observe next that

M(x) ∩H(t) = MQ(t)(x),

which follows from (8). Consequently u(x) ≤ 2t vol d−1MQ(t)(x) = 2tuQ(t)(x).
��

We show next that, for ε ∈ [0, 1],

volK(u ≤ ε)� ε

(
ln

1
ε

)d−1

. (16)

Then Lemma 6.10 implies that, for ε ≤ (2d)−2dε0,

volK(v ≤ ε) ≥ volK(u ≤ (2d)−dε)� ε

(
ln

1
ε

)d−1

.

When ε ≥ (2d)−2d the statement of the theorem follows from the fact that
ε �→ volK(v ≤ ε) is an increasing function of ε.

We prove (16) by induction on d. The case d = 1 trivial. We will need the
induction hypothesis in its invariant form (7): for Q ∈ Kd−1 and for η > 0

volQ(uQ ≤ η volQ)
volQ

≥ cd−1η

(
ln

1
η

)d−2

.
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We have

volK(u ≤ ε) ≥ vol (K(u ≤ ε) ∩H(a ≤ t))

=
∫ t0

0

vol d−1 (K(u ≤ ε) ∩H(t)) dt

≥
∫ t0

0

vol d−1Q(t)
(
uQ(t) ≤ ε/(2t)

)
dt

according to Claim 11.1. Define η = η(t) = ε/(2tq(t)) and let t1 be the unique
solution to η(t) = 1 between 0 and t0. The induction hypothesis implies that
for t ∈ [t1, t0],

vol d−1Q(t)(uQ(t) ≤ ηq(t)) ≥ cd−1q(t)η
(

ln
1
η

)d−2

= cd−1
ε

2t

(
ln

2tq(t)
ε

)d−2

≥ cd−1
ε

2t

(
ln

(
2t
ε

(
t

t0

)d−1
))d−2

,

where the last inequality comes from (15). We continue with volK(u ≤ ε),

volK(u ≤ ε) ≥
∫ t0

t1

cd−1
ε

2t

(
ln
(

2tdq(t0)
εtd−1

0

))d−2

dt.

Define α by αd = 2q(t0)/(εtd−1
0 ) and set t2 = 1/α. In view of (15) again,

t1 ≤ t2 ≤ t0. Substitute now τ = αt with τi = αti, i = 0, 2. We finally have

volK(u ≤ ε) ≥
∫ t0

t1

cd−1
ε

2τ
(ln τ)d−2dτ

=
εcd−1

2(d− 1)

(
ln
t0(2q(t0))1/d

(εtd−1
0 )1/d

)d−1

≥ εcd−1

2(d− 1)

(
1
d

ln
1
ε

)d−1

,

where the last inequality follows from (15).

Remark. This is the only proof known for Theorem 4.1 and it comes from [10].
The best possible constant in the inequality probably goes with the simplex.
Note that in the proof we made full use of the two-way street between minimal
caps and M -regions.

12 Proof of (4)

This is a repetition of the previous computation, just the inequalities go the
other direction. We need to know vol�(v ≤ t), where � is the d-dimensional
simplex.
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Lemma 12.1. For all t ≤ e−d+1,

vol�(v ≤ t vol�)
vol� � t

(
ln

1
t

)d−1

.

We remark that the function on the left hand side of this inequality increases
with t while the one on the right hand side increases on [0, e−d+1] and decreases
afterwards. That is the reason for the condition t ≤ e−d+1.

Proof. We use induction on d; d = 1 is simple, d = 2 needs a bit of special
care and is left to the reader. We may assume that � is the regular simplex
of volume 1, as our inequality is in equivariant form. Let w0, . . . , wd be the
vertices and ai the unit outer normals to the facet opposite to wi, i = 0, . . . , d.
Then ai ·wi = hi and ai ·wj = h∗i with h∗i > hi, and for every x ∈ � there is
an i with

hi ≤ ai · x ≤ hi +
d

d+ 1
(h∗i − hi).

This is quite easy to check. Consequently,

vol�(v ≤ t) ≤
d∑

0

vol d−1{x ∈ � : v(x) ≤ t, ai · x ≤ hi +
d

d+ 1
(h∗i − hi)}.

Each term in the last sum is the same, so we work with i = 0 only. Assume
w0 = 0, then h0 = 0 as well and we set h∗ = h∗0 and drop the subscript 0.
Define

Qh = �∩H(a = h),

which is a regular and (d− 1)-dimensional simplex. Note that

vol�∩H(a ≤ h) =
h

d
vol d−1Qh =

(
h

h∗

)d

follows easily. If x ∈ Qh and v(x) ≤ t with minimal cap C(x), then

t ≥ v(x) ≥ 1
d

min(h, h∗ − h) vol d−1Qh ∩ C(x) ≥ 1
d

min(h, h∗ − h)vQh
(x).

For 0 ≤ h ≤ h∗/2 the minimum is h, and for h ≥ h∗/2 it is at least h∗/(d+1).
Using this we can estimate now

vol�(v ≤ t) ≤ (d+ 1)
∫ d

d+1 h∗

0

vol d−1{x ∈ Qh : v(x) = h, a · x = h}dh

�
∫ h∗/2

0

vol d−1Qh(vQh
≤ td/h)dh+

+
∫ d

d+1 h∗

h∗/2

vol d−1Qh(vQh
≤ td(d+ 1)/h∗)dh.
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The induction hypothesis gives us directly that the second integral is bounded
by � t(ln 1/t)d−2. The first integral is to be split at h0 which is defined by

e−d+1 =
td

h0 vol d−1Qh0
=
(
h0

h∗

)d

.

The integral below h0 is smaller than vol� ∩ H(a ≤ h0) = ed−1t. On the
remaining interval the induction hypothesis gives
∫ h∗/2

h0
[..] ≤

∫ h∗/2

h0

td

h

(
ln
h vol d−1Qh

td

)d−2

dh

=
td

d− 1

[(
ln
h∗ vol d−1Qh∗/2

2td

)d−1

−
(

ln
h0 vol d−1Qh0

td

)d−1
]

� t

(
ln

1
t

)d−1

.

��
Remark. The last step of the proof can be used to show that most of�(v ≤ t)
is concentrated near the vertices of the simplex in the following sense;

vol
[
�(v ≤ t) ∩ {x ∈ � : ln

1
t
≤ ax ≤ d

d+ 1
h∗}
]
≤ t

(
ln

1
t

)d−2

ln ln
1
t
.

The proof is straightforward.

Now we turn to the proof of inequality (4).
We triangulate first the polytope P by simplices �i using vertices of P

only. Clearly, if v(x) ≤ t, then vi
(x) ≤ t for the simplex containing x.

Consequently

volP (v ≤ t) ≤
∑

vol�i(vi
≤ t) ≤

∑
t

(
ln

vol�i

t

)d−1

� t

(
ln

1
t

)d−1

.

The implied constant turns out to be proportional to the number of simplices
needed for the triangulation. The argument for the slightly better constant
in (4) goes as follows. The last remark gives that P (v ≤ t) is concentrated
near the vertices of P . Assume 0 is a vertex of P and H(a ≤ 0) is a halfspace
(with outer unit normal a) intersecting P only at 0. One shows first that, with
τ = ln 1

t ,

P (v ≤ t) ∩H(a ≤ τ)� t

(
ln

1
t

)d−1

,

where the implied constant is proportional to the number of towers of the
section P ∩ H(a = h), h very small but positive. This can be proved by
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induction on d using the same integration on the sections P ∩H(a = h) as in
the proof of Lemma 12.1. The number of towers of this section is the number
of towers of P incident to the vertex 0. Summing over all vertices gives the
required constant.

Remark. These proofs are from [10] and [4].

13 Expectation of fk(Kn)

The following simple identity is due to Efron [20]; for K ∈ K1,

Ef0(Kn) = nE(K,n− 1). (17)

The proof is straightforward,

Ef0(Kn) =
n∑

i=1

P{xi is a vertex of Kn}

= nP{x1 is a vertex of Kn} = nP{x1 /∈ [x2, . . . , xn]}
= nP{x /∈ Kn−1} = nE(K,n− 1),

where the last probability is taken with both Kn−1 and x varying.
Theorem 3.2 determines then the order of magnitude of Ef0(Kn) as well.

The expectation of fk(Kn), for k = 1, . . . , d − 1, must be close to that of
Ef0(Kn) since, as n goes to infinity, Kn looks locally like a “random” trian-
gulation of R

d−1 where you don’t expect vertices of high degree. We have the
following theorem from [4].

Theorem 13.1. For large enough n, for all K ∈ K1 and for all k =
0, 1, . . . , d− 1,

n volK(1/n)� Efk(Kn)� n volK(1/n).

The lower bound in case k = 0 follows from Efron’s identity and the lower
bound in Theorem 3.1. The following fact will simplify the proof of Theo-
rem 13.1.

Lemma 13.1. For all 0 ≤ i < j ≤ d− 1,

fi(Kn) ≤
(
j + 1
i+ 1

)
fj(Kn).

Proof. Almost surely Kn is a simplicial polytope. Double counting the pairs
(Fi, Fj) where Fi and Fj are faces of dimension i and j of Kn with Fi ⊂ Fj

we have
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fi(Kn) =
∑

Fi

1 ≤
∑

(Fi,Fj)

1 ≤
(
j + 1
i+ 1

)
fj(Kn).

��
So we see that for the upper bound in Theorem 13.1 it suffices to show the
following.

Lemma 13.2. For large enough n and for all K ∈ K1,

Efd−1(Kn)� n volK(1/n).

For the proof of this lemma we need a corollary to the economic cap covering
theorem. To state it, some preparation is necessary.

Assume x1, . . . , xk ∈ K, set L = aff{x1, . . . , xk} and define

v(L) = max{v(x) : x ∈ L}.

We write Kk for the set of ordered k-tuples (x1, . . . , xk) with xi ∈ K for each
i.

Corollary 13.1. If K ∈ K1, k = 1, 2, . . . , d and ε ≤ ε0, then

{(x1, . . . , xk) ∈ Kk : v(L) ≤ ε} ⊂
m⋃

1

(Ci, . . . , Ci),

where C1, . . . , Cm is the set of caps from Theorem 5.1.

Proof. This is where we use part (iii) of Theorem 5.1. If v(L) ≤ ε, then L
and K(v > ε) are disjoint. By separation, there is a halfspace H, containing
L which is disjoint from K(v > ε). Then the cap C = K ∩H is also disjoint
from K(v > ε). Clearly, C contains x1, . . . , xk. Consider now Ci from the cap
covering with C ⊂ Ci. It is evident that

(x1, . . . , xk) ∈ (C, . . . , C) ⊂ (Ci, . . . , Ci).

��

14 Proof of Lemma 13.2

We are going to use (1) when φ(F ) is equal to one if F = [x1, . . . , xd] is a facet
of Kn and 0 otherwise. Recall that V (x1, . . . , xd) is the volume of the smaller
cap cut off from K by aff{x1, . . . , xd} which is a hyperplane with probability
one. Now Theorem 2.1 says that

Efd−1(Kn) =
(
n

d

)∫

K

. . .

∫

K

[(1− V )n−d + V n−d]dx1 . . . dxd. (18)
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We split the domain of integration into two parts: K1 is the subset
of Kd where the function V is smaller than (c lnn)/n, and K2 is where
V ≥ (c lnn)/n. The constant c will be specified soon. Clearly V ≤ 1/2. The
integrand over K2 is estimated as follows:

(1− V )n−d + V n−d ≤ exp{−(n− d)V }+ 2−(n−d)

≤ 2 exp{−(n− d)(c lnn)/n}
= 2n−c(n−d)/n,

which is smaller than n−(d+1) if c is chosen large enough (depending only on
d). Then the contribution of the integral on K2 to Efd−1(Kn) is at most 1/n,
so it is very small since, trivially, Efd−1(Kn) is at least one.

Now let h be an integer with 2−h ≤ (c lnn)/n. For each such h let Mh

be the collection of caps {C1, . . . , Cm(h)} forming the economic cap covering
from Theorem 5.1 with ε = 2−h.

Assume now that (x1, . . . , xd) ∈ K1. We will denote by C(x1, . . . , xd) the
cap cut off from K by the hyperplane aff{x1, . . . , xd}, clearly volC(x1, . . . , xd)
= V (x1, . . . , xd). We associate with (x1, . . . , xd) the maximal h such that, for
some Ci ∈Mh, C(x1, . . . , xd) ⊂ Ci. It follows that

V (x1, . . . , xd) ≤ volCi � 2−h (19)

and, by the maximality of h,

V (x1, . . . , xd) ≥ 2−h−1, (20)

since otherwise C(x1, . . . , xd) would be contained in a cap from Mh+1.
For such an (x1, . . . , xd) we have

(1−V )n−d+V n−d ≤ 2(1−V )n−d ≤ 2(1−2−h−1)n−d ≤ 2 exp{−(n−d)2−h−1}.

Now we integrate overK1 by integrating each (x1, . . . , xd) on its associated
Ci ∈Mh. In the expression (18) the integral on Ci ∈Mh is bounded by

2 exp{−(n− d)2−h−1}(volCi)d � exp{−(n− d)2−h−1}(2−h)d,

as all the xi come from Ci. Summing this for all Ci ∈ Mh and all h ≥ h0

where h0 = �(c lnn)/n� we get that

Efd−1(Kn) �
(
n

d

) ∞∑

h0

∑

Ci∈Mh

exp{−(n− d)2−h−1}2−hd

�
(
n

d

) ∞∑

h0

exp{−(n− d)2−h+1}2−hd|Mh|

�
(
n

d

) ∞∑

h0

exp{−(n− d)2−h+1}2−h(d−1) volK(2−h),
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where the last inequality follows from (5).
The rest of the proof is a direct computation using Corollary 5.1. We sum

first for h ≥ h1 where h1 is defined by 2−h1 ≤ 1/n < 2−h1+1. The sum from
h1 to infinity is estimated via

∞∑

h1

.. ≤
∞∑

h1

exp{−(n− d)2−h+1}2−h(d−1) volK(1/n)

≤ volK(1/n)
∞∑

h1

2−h(d−1) ≤ n−(d−1) volK(1/n).

When h0 ≤ h < h1, we set h = h1 − k, so k runs from 1 to k1 = ln lnn+ ln c.
Then we use Corollary 5.1 to show that

volK(2−h) ≤ volK(2k/n)� 2kd volK(1/n).

Thus

h1−1∑

h0

..�
k1∑

k=1

exp{−(n− d)2−h1+k−1}2(−h1+k)(d−1)2kd volK(1/n)

� n−(d−1) volK(1/n)
k1∑

k=1

exp{−(n− d)2k/n}2k(d−1)2kd

� n−(d−1) volK(1/n)
∞∑

k=1

exp{−2k−1 + 2dk ln 2}

� n−(d−1) volK(1/n).

Remark. This proof shows that Efd−1(Kn)� volK(1/n). Then Ef0(Kn)�
volK(1/n) follows from Lemma 13.1. Efron’s identity implies that Ef0(Kn) ≈
E(K,n). Thus the proof of Lemma 13.2 is a new proof of the upper bound in
Theorem 3.2. We mention further that the proof of Efd−1(Kn)� volK(1/n)
presented here is new and uses the cap covering theorem in a different and
apparently more effective way than the previous proof from [4].

15 Further Results

There is a huge number of papers devoted to random polytopes and this survey
is too short to explain or even mention most of them. We only consider the
random variables fi(Kn) and volKn, or rather vol(K \Kn), although several
other functionals of Kn have been investigated, like surface area, mean width,
and other intrinsic volumes, and the Hausdorff distance of K and Kn. The
interested reader should consult the survey papers [60], [49].
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Also, other models of random polytopes have been thoroughly studied. The
random sample may come from the normal distribution, or from the boundary
of K. Here a recent result of Schütt and Werner [54] should be mentioned.
In a long and intricate proof they show the precise asymptotic behaviour of
vol(K \ Kn) when K is a smooth convex body and the random points are
chosen from the boundary of K according to some probability distribution.

Many papers have been devoted to deriving precise asymptotic formu-
lae for E(K,n) and Efi(Kn) for special classes of convex bodies: for smooth
convex bodies and polytopes. The starting point is usually the formula in
Theorem 2.1: assuming V ≤ 1

2 the term V n−d is exponentially small and we
obtain

Eφ(Kn) =
(
n

d

)∫

K

. . .

∫

K

(1− V )n−dφ(F )dx1 . . . dxd +O(2−n).

Here one can apply an integral transformation using the Blaschke-Petkantschin
identity [43] and the integral becomes an integral over all hyperplanes E meet-
ing K;

Eφ(Kn) = Cd

(
n

d

)∫
(1− V )n−dgK(E)μ(dE) +O(2−n),

where μ(dE) represents integration over the Grassmannian of hyperplanes
and

gK(E) = (d− 1)!
∫

K∩E

. . .

∫

K∩E

φ([x1, . . . , xd])×

× vol d−1([x1, . . . , xd])dx1 . . . dxd,

where the dxi now denote integration in E. The main contribution in the
integral above arises when V is close to 1/n and so it depends on the local
boundary properties of K. This works when K is smooth and φ = fd−1 and
gives (see Raynaud [35] and Wieacker [59])

Efd−1(Kn) = bd

∫

bd K

κ1/(d+1)dSn
d−1
d+1 (1 + o(1)),

where κ > 0 is the Gauss curvature and bd is a constant. The method does
not quite work for f0(Kn) for general smooth convex bodies, but it does for
the Euclidean ball [59], which can be used to establish the result

Ef0(Kn) = b′d

∫

bd K

κ1/(d+1)dSn
d−1
d+1 (1 + o(1))

for smooth enough convex bodies, see Bárány [5] and Schütt [53]. This implies,
via Efron’s identity (17), a similar asymptotic formula for E(K,n).

The precise asymptotic formula for f0(Kn) and E(K,n) when K is a poly-
tope is given by Theorem 4.2 plus Efron’s identity.
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Besides many results on the expectation of various functionals of Kn, very
little has been known about the distribution of these functionals up to quite
recently. A notable exception is Groeneboom’s result [23] establishing a cen-
tral limit theorem in the following from. For a polygon P is the plane, the
distribution of f0(Pn) is close to the normal. Precisely, if P has r vertices,
then

f0(Pn)− 2
3r lnn

√
10
27r lnn

→ N (0, 1)

in distribution, where N (0, 1) is the standard normal distribution. Further,
Cabo and Groeneboom [18] proved, in a version suggested by Buchta [17],
that

E(P, n)− 2
3r

ln n
n√

28
27r

ln n
n2

→ N (0, 1),

again in distribution. Groeneboom showed the central limit theorem for the
case of the unit disk and f0, with the variance evaluated numerically. Hsing
[26] proved that

E(B2, n)− c1n−2/3

√
c2n−5/3

→ N (0, 1)

in distribution, again. The explicit constants c1 and c2 have been determined
by Buchta [17]. The asymptotic distribution of the Hausdorff distance between
a planar convex body K and Kn has been determined with high precision by
Bräker, Hsing, and Bingham [16].

In a series of remarkable papers Reitzner [36], [37] has established an upper
bound on the variance of the missed volume and fi(Kn) in the case of smooth
convex bodies K:

var vol(K \Kn) ≤ c(K)n−(d+3)/(d+1)

var fi(Kn) ≤ c(K)n(d−1)/(d+1),

where the constants c(K) depend on K and dimension only. These estimates
imply a strong law of large numbers for the corresponding functionals. In a
recent and very interesting paper [38] Reitzner has given a lower bound for the
variance (smooth convex bodies) which are of the same order of magnitude
as the upper bounds above. Using this he has been able to show that both
the missed volume and the number of i-dimensional faces of Kn satisfy the
central limit theorem, a real breakthrough result in the theory of random
polytopes. His argument is based on several ingredients: (1) a general central
limit theorem of Rinott [40] where only partial independence of the random
variables in question is required, (2) the right estimate for the variance, and
(3) the precise comparison of random polytopes and polytopes obtained from
a Poisson process X(n) of intensity n intersecting the smooth convex body
K.



Random Polytopes 107

These results have been extended to the case when K is a polytope in R
d

by Reitzner and myself [12]. Using geometric properties of polytopes and their
u and v functions, combined with the cap-covering technique we could show
that

var vol(K \Kn) ≈ n−2(lnn)d−1,

var fi(Kn) ≈ (lnn)d−1.

The implied constants depend on the polytope P in question. The central
limit theorem, both for missed volume and fi, follows the same way as in
Reitzner’s paper [37]. It is more difficult to measure the partial dependence of
the underlying graph. These new results open the possibility for the central
limit theorem for the missed volume of general convex bodies, not only smooth
ones or for polytopes. I conjecture, for instance, that

var vol(K \Kn) ≈ volK(1/n)
n

for all convex bodies with the implied constants depending only on dimension.
Almost at the same time and from a completely different and unexpected

direction, strong concentration results for random polytopes have been proved
by Van Vu [57]. He uses a probabilistic and combinatorial technique which
has been very powerful in other cases as well (cf. [56], [28]) for proving tail
estimates. I state his result only for the random variable Yn = vol(K \Kn).
The setting is this. Given a K ∈ K1, ε > 0 small, and x ∈ K with v(x) < ε,
define Sx,ε as the set of points y ∈ K such that the segment [x, y] is disjoint
from K(v ≥ ε). So Sx.ε is the union of all ε-caps containing x. Define g(ε) =
sup{volSx,ε : x ∈ K(ε)} and let A = 3g(ε) and B = 36ng(ε)2 volK(v ≤ ε).
With this notation the following holds.

Theorem 15.1. There are positive constants α, c and ε0 such that for every
K ∈ K1 and for every n and λ satisfying (α lnn)/n < ε < ε0 and 0 < λ ≤
B/(4A2) = n volK(v ≤ ε) we have

P{|Yn − EYn| ≥
√
λB} ≤ 2 exp{−λ/4}+ exp{−cεn}.

This is a very strong result implying, for instance, large deviation inequalities
for Y and good bounds on the centred moments of Y , or on how close Yn is
to E(Yn). In the particular case of smooth convex bodies, Vu strengthens the
above inequality showing that B can be chosen of the same order of magnitude
as the variance of Yn. The interested reader can learn a lot from Vu’s excellent
paper [57].

It should be mentioned that Calka and Schreiber [19] have recently proved
a large deviation inequality for f0(Kn) in the case when K is the unit ball.
The exponent in their estimate is n(d−1)/(3d+5), the same that Vu proves for
smooth convex bodies.
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16 Lattice Polytopes

Originally, Macbeath [34] introduced M -regions in order to study integer
points in convex bodies. He observed the following interesting fact. The in-
teger convex hull of K is defined as [K ∩ Z

d], that is, the convex hull of
the lattice points in K. If z ∈ Z

d is a vertex of the integer convex hull of K,
then uK(z) < 2d. This follows from Minkowski’s classical theorem:MK(z) is a
centrally symmetric convex body with centre z ∈ Z

d. If it has volume at least
2d, then it contains another lattice point, say y, and by central symmetry, it
also contains 2z − y ∈ Z

d. But then z is not a vertex of the integer convex
hull because it is contained in the segment [y, 2z − y].

Macbeath mentions that uK(x) “is the most interesting function that one
can associate with a convex set”.

In 1963, G. E. Andrews [2] proved a remarkable theorem saying that a
lattice polytope P ⊂ R

d of volume V > 0 cannot have more than

const V
d−1
d+1

vertices or facets. Alternative proofs were later found by Arnol’d [3], Konya-
gin and Sevastyanov [31], Schmidt [44], Bárány and Vershik [13]. Here is yet
another proof, from [11], based on the technique of M -regions. What we will
present here is a sketch of the proof of

fd−1(P )� V
d−1
d+1

since this is another application of the technique of M -regions and cap cover-
ings.

We start the proof by fixing ε = (2(10d)d(d + 1)!V )−1. Note that in this
way εV < ε0. Let F be a facet of P and let xF be the point on bdP (v ≥ εV )
where the tangent hyperplane to P (v ≥ εV ) is parallel to F . According to
Lemma 6.7, xF is unique. Let CF stand for the cap cut off from K by the
hyperplane parallel to F and passing through xF .

Lemma 16.1. For distinct facets F and G of P

M(xF , 1/2) ∩M(xG, 1/2) = ∅.

To see this assume this intersection is nonempty. Then, by Lemma 6.2,
M(xG, 1) ⊂M(xF , 5). Further, Lemma 6.8 combined with (11) shows that

G ⊂ CG ⊂M(xG, 2d) ⊂M(xF , 10d),

where the last containment is a simple consequence of M(xG, 1) ⊂M(xF , 5).
Even simpler is

F ⊂ CF ⊂M(xF , 2d) ⊂M(xF , 10d).

Now M(xF , 10d) contains both facets F and G so it contains d + 1 affinely
independent lattice points. Thus its volume is at least 1/d!. Then, using again
Lemma 6.3,
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1
d!
≤ volM(xF , 10d) = (10d)du(xF ) ≤ (10d)d2v(xF )

≤ 2(10d)dεV =
1

(d+ 1)!
.

This is a contradiction (due to the choice of ε), finishing the proof. ��
So the halfM -regionsM(xF , 1/2), for all facets F , are pairwise disjoint. Their
“half” M(xF , 1/2) ∩ C(F ) lies completely in P (ε). Then, by Theorem 4.5
combined with (7),

∑

F

1
2

volM(xF , 1/2) ≤ volP (v ≤ εV )� ε
2

d+1V � V
d−1
d+1 ,

where the summation is taken over all facets F of P . Now, again by Lemma
6.6,

volM(xF , 1/2) = 2−du(xF ) ≥ 2−d(2d)−dv(xf )� εV � 1.

The last two formulae show that the number of facets of P is � V
d−1
d+1 .

We mention that this implies, via a trick of Andrews, the following slightly
stronger theorem whose proof can be found in [11].

Theorem 16.1. For a lattice polytope P ∈ R
d with volume V > 0

T (P )� V
d−1
d+1 .

Remark. The result and the proof is originally from [10], and the presentation
here is close to the one in [6]. The same applies to the next section.

17 Approximation

There are two types of problems in the theory of approximation of a K ∈ K
by polytopes belonging to a certain class P of polytopes. The first type is
asking for a lower bound, that is, a statement of the form: no polytope P ∈ P
approximates K better than some function of K and P. The second is asking
for the existence of a polytope P ∈ P which approximatesK well, hopefully as
well as the previous function. To be less vague, we consider inscribed polytopes
only (that is P ⊂ K) and we measure approximation by the relative missed
volume, that is, by

appr(K,P ) =
vol(K \ P )

volK
.

In this section we show how the cap-covering technique can be used to
attack both type of approximation problems. As expected, the results do not
give precise constants but tell the right order of magnitude.

We start with the problem of the second type. C. Schütt [52] proved two
very neat and general results.
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Theorem 17.1. Given K ∈ K1 and t ∈ (0, t0] (where t0 depends only on the
dimension), there is a polytope P with K(v ≥ t) ⊂ P ⊂ K for which

f0(P )� volK(t)
t

.

Theorem 17.2. Given K ∈ K1 and t ∈ (0, t0] (where t0 depends only on the
dimension), there is a polytope P with K(v ≥ t) ⊂ P ⊂ K for which

fd−1(P )� volK(t)
t

.

This means that appr(K,P ) ≤ volK(t) and the lost volume is “t per vertex”,
and “t per facet”, respectively. We will see below that, for smooth bodies,
this is the best possible order of magnitude. Schütt’s proof of these theo-
rems is direct and technical. Here I present a simple argument showing the
power and efficacy of the cap covering method. Nevertheless, this argument
gives weaker constants than Schütt’s original theorem and does not extend to
approximation by circumscribed polytopes (cf. [52]).

As the theorems are affinely invariant, we may assume that K is in stan-
dard position, i.e., it is sandwiched between two balls, both centred at the
origin with the radius of the larger at most d times that of the smaller. For
both theorems, start with setting τ = λt (where λ is a constant depending on
d only) and choose a system of points {x1, . . . , xm} from bdK(v ≥ τ) max-
imal with respect to the property that the M(xi, 1/2) are pairwise disjoint.
The economic cap covering argument shows that

m� volK(τ)
τ

� volK(t)
t

.

We start with the case of the facets which is simpler. Fix λ = 6−d. Let
C(xi) be a minimal cap, and define

P = K \ ∪m
1 C(xi)6.

We will show that (1) no z ∈ bdK belongs to P , and (2) K(v ≥ t) ⊂ P . This
clearly suffices for the facet case.

To see (1), assume z ∈ bdK, and let z∗ ∈ bdK(v ≥ τ) be the point on
the segment connecting z and the origin (which is inside K(v ≥ τ) if t is small
enough). Maximality implies the existence of i withM(z∗, 1/2)∩M(xi, 1/2) 	=
∅, and by Lemma 6.2,M(z∗, 1) ⊂M(xi, 5). It is easy to see, using the standard
position of K, that z ∈M(z∗, 1), and so

z ∈M(z∗, 1) ⊂M(xi, 5) ⊂ C(xi)6.

To check that (2) also holds, we write

volC(xi)6 ≤ 6d volC(xi) = 6dτ = t,
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so u(x) ≤ t for every point x cut off from K by one of the caps C(xi)6.
For the proof of the vertex case set λ = d−16−d. Let yi be the intersection,

with bdK, of the halfline through xi starting from the origin, and define

P = [y1, y2, . . . , ym].

Clearly P ⊂ K. So we have to show K(v ≥ t) ⊂ P . Assume the contrary,
then there is a halfspace H1 with P ∩ H1 = ∅ whose bounding hyperplane
is tangent to K(v ≥ t). Note that no yi is in H1. Let H2 be the halfspace
whose bounding hyperplane is parallel to that of H1, and which is tangent to
K(v ≥ τ) at the point z. Set Cj = K ∩ Hj , j = 1, 2. Lemma 6.8 says that
volC2 ≤ dτ .

By the maximality of the xi, M(z, 1/2) intersects some M(xi, 1/2) and so

yi ∈M(xi, 1) ⊂M(z, 5).

Here yi ∈ M(xi, 1) follows from the standard position of K. It is not hard
to see that the cap C6

2 contains M(z, 5). Further, the cap C6
2 is contained

in the cap C1 as their bounding hyperplanes are parallel and volC1 ≥ t (by
Lemma 6.8), while, by the same lemma, volC6

2 ≤ 6d volC2 ≤ 6ddτ = t. Thus
yi ∈ C1 ⊂ H1, a contradiction.

We turn now to the first type of approximation question. We will consider
here the family of all polytopes inscribed in K with at most n s–dimensional
faces. Denote this class of polytopes by Pn(K, s). The usual question of ap-
proximation by inscribed polytopes with at most n vertices, the case Pn(K, 0)
in our notation, is well understood, see [25]. Given a smooth enough convex
body K, for every polytope in Pn(K, 0)

appr(K,P ) ≤ c(d,K)n−
2

d−1 (1 + o(1)),

as n→∞. In the other direction, there exist polytopes P in Pn(K, 0) with

appr(K,P ) ≥ c(d,K)n−
2

d−1 (1 + o(1)).

Here even the constant, and its dependence on K and d, are almost com-
pletely known. In the same paper, Gruber proves an asymptotic formula for
circumscribed polytopes with at most n facets, and in [33], Ludwig gives ex-
act asymptotic formulae for the unrestricted case with n vertices and n facets,
respectively. (Approximation is measured as the relative volume of the sym-
metric difference of P and K.)

Is there a similar estimate for Pn(K, s) when 0 < s < d− 1? Or a weaker
one, giving the order of magnitude of appr(K,P )? This unusual approximation
question has come up in connection with the integer convex hull (cf. [11]).

Again, M -regions and cap coverings are going to help. I present the basic
ideas of the proof in the case when K = Bd, the unit ball in R

d. This ex-
tends without serious difficulty to convex bodies whose Gaussian curvature is
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bounded away from 0 and ∞. It should be mentioned that K. Böröczky Jr in
[15] has worked out several other cases of this type, for instance, inscribed,
circumscribed, and unrestricted polytopes with at most n s-dimensional faces
(again when 0 < s < d − 1). His approach is different: it is based on local
quadratic approximation of the boundary and uses power diagrams. Here is
the result for the unit ball.

Theorem 17.3. For every polytope P ∈ Pn(Bd, s), and for large n

appr(Bd, P )� n−
2

d−1 .

The proof below is based on an idea from [11] which is used there when
s = d − 1. This particular case, when K = Bd, was first proved by Rogers
[42]. We mention that the theorem holds for smooth convex bodies, not only
for the Euclidean ball. But the technique and the arguments are simpler and
cleaner in the case of Bd. The interested reader will have no difficulty in
extending the proof below to smooth convex bodies.

We may suppose that

vol(Bd \ P ) ≤ b1n−
2

d−1 ,

for any particular constant b1 of our choice ( b1 depending on d), as otherwise
there is nothing to prove. We assume further that s ≥ 1.

Let F1, . . . , Fn denote the s-dimensional faces of P and let xi be the nearest
point of Fi to the origin. The minimal cap C(xi) has width hi. It is not
hard to check that Fi ⊂ C(xi). Also, vol(C(xi) \ P ) ≥ 1

2 volC(xi). This
means that volC(xi) must be small, and so hi must be small. Consequently,

volC(xi) ≈ h
d+1
2

i , as a quick computation reveals.
Choose next a subsystem {xi1 , . . . , xim

} from the xi which is, as we are
used to it by now, maximal with respect to the property that the M -regions
M(xij

, 1/2) are pairwise disjoint. To have simple notation set zj = xij
. By

Lemma 6.2, every C(xi) is contained in some M(zj , 5). So writing V for the
set of vertices of P we clearly have

V ⊂ ∪n
1Fi ⊂ ∪n

1C(zi) ⊂ ∪m
1 M(zj , 5).

Fix ρ = b2n
− 1

d−1 , where b2 is to be defined later. We want to show that
the set V +ρBd covers at most half of Sd−1 = bdBd. We estimate the surface
area of this set by that of Sd−1 ∩ ∪m

1 (M(zj , 5) + ρBd), which is clearly
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�
m∑

1

(
ρ+ h

1
2
j

)d−1

=
m∑

j=1

d−1∑

k=0

(
d− 1
k

)
h

k
2
j ρ

d−1−k

=
d−1∑

k=0

(
d− 1
k

)
ρd−1−k

⎛

⎝
m∑

j=1

h
k
2
j

⎞

⎠

≤
d−1∑

k=0

(
d− 1
k

)
ρd−1−km

⎛

⎝ 1
m

m∑

j=1

h
d+1
2

j

⎞

⎠

k
d+1

= m

⎛

⎝ρ+

(
1
m

m∑

1

h
d+1
2

j

) 1
d+1
⎞

⎠
d−1

,

where we used the inequality between the kth and (d+ 1)st means.
We claim now that the last expression is smaller than half the surface area

of Sd−1 if the constants b1, b2 are chosen suitably. Indeed, as m ≤ n,

ρ = b2n
− 1

d−1 ≤ b2m− 1
d−1 .

Next, as the M(zj , 1/2) are pairwise disjoint and one quarter of their volume

is contained in Bd \ P ,
∑m

j=1 h
d+1
2

j � b1n
− 2

d−1 . This implies

(
1
m

∑
h

d+1
2

j

) 1
d+1

≤ b
1

d+1
1 m− 1

d−1 .

We just proved that

V + ρBd � m

⎛

⎝ρ+

(
1
m

m∑

1

h
d+1
2

j

) 1
d+1
⎞

⎠
d−1

≤ m

(
(b2 + b

1
d+1
1 )m− 1

d−1

)d−1

=
(
b2 + b

1
d+1
1

)d−1

,

where the constant implied by � depends only on d. So choosing b1 and b2
suitably we can assure that V +ρBd misses at least half of Sd−1. Consequently,

Sd−1 \ (V +
ρ

2
Bd)

contains many pairwise disjoint caps of radius ρ/2. This is shown by a greedy
algorithm: assume the centres yp ∈ Sd−1 \ (V + ρBd) of these caps Cp have
been chosen for p = 1, 2, . . . , q and the caps are pairwise disjoint. The caps
with centres yp and radius ρ cover at most

qρd−1 vol d−1S
d−1
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of Sd−1. So as long as this is smaller than the surface area of

Sd−1 \ (V + ρBd),

there is room to choose the next centre yq+1. The algorithm produces as many
as � ρ−(d−1) � n pairwise disjoint caps. They are all disjoint from P , so the
volume missed by P is

∑
volCp � nρd+1 � n−

2
d−1 ,

finishing the proof of Theorem 17.3.

18 How It All Began: Segments on the Surface of K

The technique of M -regions and cap coverings was invented by Ewald, Lar-
man, and Rogers in their seminal paper [21]. Their aim was to answer a
beautiful question of Vic Klee [29], [30]: “Can the boundary of a convex body
contain segments in all directions?” (this is the title of [30].) After partial
results by McMinn, Besicovitch, Pepe, and Grünbaum and Klee the following
basic result was proved in [21].

Theorem 18.1. Let S(K) denote the set of unit vectors v ∈ R
d such that the

boundary of the convex body K ⊂ R
d contains a segment parallel with v. Then

S(K) has σ-finite (d− 2)-dimensional Hausdorff measure.

For the proof they invent and develop the technique of cap covering. They
prove Lemma 6.4 and Lemma 6.2 which is one of the key steps and lies at the
core of the method. It is in this paper where the first economic cap covering
is proved and used. The target is to cover the boundary (not the wet part)
with caps that have the same width.

Lemma 18.1. Assume K ∈ K contains a ball of radius r and is contained in
a ball of radius R. Given a positive ε ≤ ε0, there are caps C1, . . . , Cm with

(i) bdB ⊂ ∪m
1 Ci,

(ii) the width of Ci is between 2ε and 36dε,
(iii)

∑m
1 volCi � ε volK.

Here ε0 and the constant in � depend on d, r,R only.

Thus the caps Ci constitute an “economic cap covering” of bdK in the sense
that each Ci has minimal width ≈ ε and their total volume is � ε volK. We
have seen several versions and strengthenings of this result. It is worth men-
tioning that the economic cap covering lemma is a relative of the Besicovitch
covering theorem.

Theorem 18.1 says that, for every convex body, the set of exceptional di-
rections is small. Precisely, it has σ-finite 1-codimensional Hausdorff measure.
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(Exceptional direction means here a direction contained in bdK.) That the
exceptional set is small is important and useful in other cases as well, for
instance, in integral geometry. It is shown in [21] that the set of exceptional
r-flats has σ-finite 1-codimensional Hausdorff measure in the space of all r-
flats. (Here K ∈ K, of course, and an r-flat is exceptional if it intersects bdK
in a set of dimension r.)

The method of [21] was simplified by Zalgaller [61], and developed further
by Ivanov [27], and Schneider [45], [48]. Ivanov shows that the union of all
lines in R

d that meet bdK in a segment has σ-finite (d − 1)-dimensional
Hausdorff measure. A consequence is that for almost all points x /∈ K the
shadow boundary of K under central projection from x is sharp. (The reader
will have no difficulty stating the analogous consequence of Theorem 18.1.)
The following results of Schneider [45] and [48] have applications in integral
geometry. The proof method is based on that of [21] but is much more involved.

Theorem 18.2. Let K,K ′ ∈ K. The set of all rotations ρ ∈ SO(d) for which
K and ρK ′ contain parallel segments lying in parallel supporting hyperplanes
has σ-finite 1-codimensional Hausdorff measure.

Theorem 18.3. Let K,K ′ ∈ K. The set of all rigid motions ρ for which K
and ρK ′ have an exceptional common boundary point is of Haar measure zero.

Here a point x, common to bdK and bdK ′, is exceptional if the normal cones
to K at x and to K ′ at x contain a common halfline.

Schneider gives a sketch of the proof of Theorem 18.1 in [47], and a full
proof, containing Zalgaller’s simplification, in his excellent book [46]. The
interested reader is advised to consult these references.
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