Balanced partitions of vector sequences ${ }^{*}$

Imre Bárány ${ }^{\mathrm{a}, \mathrm{b}}$, Benjamin Doerr ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Rényi Institute, P.O. Box 127, Budapest 1364, Hungary
${ }^{\text {b }}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
${ }^{\text {c }}$ Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Received 29 March 2004; accepted 6 October 2005
Available online 7 December 2005
Submitted by V. Mehrmann

Abstract

Let $d, r \in \mathbb{N}$ and $\|\cdot\|$ be any norm on \mathbb{R}^{d}. Let B denote the unit ball with respect to this norm. We show that any sequence v_{1}, v_{2}, \ldots of vectors in B can be partitioned into r subsequences V_{1}, \ldots, V_{r} in a balanced manner with respect to the partial sums: For all $n \in \mathbb{N}, \ell \leqslant r$, we have $\left\|\sum_{i \leqslant k, v_{i} \in V_{\ell}} v_{i}-\frac{1}{r} \sum_{i \leqslant k} v_{i}\right\| \leqslant$ 2.0005d. A similar bound holds for partitioning sequences of vector sets. Both results extend an earlier one of Bárány and Grinberg [I. Bárány, V.S. Grinberg, On some combinatorial questions in finite-dimensional spaces, Linear Algebra Appl. 41 (1981) 1-9] to partitions in arbitrarily many classes.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Discrepancy; Balanced partition; Vector balancing game

1. Introduction

Let $d, N \in \mathbb{N}$. We use the short-hand $[N]:=\{1, \ldots, N\}$. Let $\|\cdot\|$ be any norm on \mathbb{R}^{d} and $B=\left\{v \in \mathbb{R}^{d} \mid\|v\| \leqslant 1\right\}$ its unit ball. In this paper, we give extensions of the Bárány-Grinberg theorem to partitions into more than two classes. In its most general version, this theorem states the following [1].

[^0]Theorem 1. Let $V_{1}, \ldots, V_{N} \subseteq B$ such that $0 \in \operatorname{conv}\left(V_{i}\right)$ for all $i \in[N]$. Then there are $v_{i} \in V_{i}$ such that for all $n \in[N]$,

$$
\left\|\sum_{i \in[n]} v_{i}\right\| \leqslant 2 d .
$$

The most interesting special case of Theorem 1 is that all V_{i} are of the form $V_{i}=\left\{v_{i},-v_{i}\right\}$, cf. [2] as well. In this case, Theorem 1 yields that for any sequence v_{1}, \ldots, v_{N} of vectors in B there are signs $\varepsilon_{i} \in\{-1,1\}$ such that $\left\|\sum_{i \in[n]} \varepsilon_{i} v_{i}\right\| \leqslant 2 d$ for all $n \in[N]$. In other words, there is a partition [$N]=I_{1} \dot{\cup} I_{2}$ such that $\left\|\sum_{i \in I_{j} \cap[n]} v_{i}-\frac{1}{2} \sum_{i \in[n]} v_{i}\right\| \leqslant d$ for all $n \in[N]$ and $j \in[2]$. This partitioning version of the Bárány-Grinberg theorem was extended to partitions into $r>2$ classes with error bound $(r-1) d$ in [3]. In the following section, we show that the factor $(r-1)$ can be replaced by a constant.

In the third section of this paper, we show that if the stronger condition $\sum_{v \in V_{i}} v=0$ (instead of $0 \in \operatorname{conv}\left(V_{i}\right)$) holds for all $i \in[N]$, then for each $i \in[N]$ there are r distinct vectors $v_{i \ell} \in V_{i}$, $\ell \in[r]$, such that $\left\|\sum_{i \in[n]} v_{i \ell}\right\| \leqslant 5 d$ holds for all $n \in[N]$ and $\ell \in[r]$, where $r \leqslant \max \left\{\mid V_{i} \| i \in\right.$ [$N]$].

It is worth mentioning here that the results hold for all norms in \mathbb{R}^{d}. This is due to the fact that proofs use linear dependences among some vectors, with the norm playing very little role. But most likely, much better bounds are valid for particular norms. For instance, it is conjectured that for $r=2$ and Euclidean norm the best bound is of order \sqrt{d}. This was proved by Spencer [4] when $N=\mathrm{O}(d)$, but the general case when N is arbitrary is open.

In the proofs of both results below we invoke the recursive method of [3], which states, roughly speaking, that if one can guarantee the existence of a 2-partition with good bound on its discrepancy, then one can guarantee the existence of an r-partition with a slightly weaker bound on its discrepancy. Precisely, we have the following:

Theorem 2. Let $r \geqslant 2$ be an integer. Let v_{1}, \ldots, v_{n} be a sequence of vectors and \mathscr{E} be a set of subsets of [n]. Assume that for all integers $1 \leqslant r_{1}<r_{0} \leqslant r$ and all $V_{0} \subseteq[n]$ there is a $V_{1} \subseteq V_{0}$ such that for all $E \in \mathscr{E}$,

$$
\left\|\sum_{i \in V_{1} \cap E} v_{i}-\frac{r_{1}}{r_{0}} \sum_{i \in V_{0} \cap E} v_{i}\right\| \leqslant K .
$$

Then there is a partition $V=V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ such that for all $\ell \in[r]$ and $E \in \mathscr{E}$ we have

$$
\left\|\sum_{i \in V_{\ell} \cap E} v_{i}-\frac{1}{r} \sum_{i \in V \cap E} v_{i}\right\| \leqslant C(r) K,
$$

where $C(r)$ is an absolute constant satisfying $C(r) \leqslant 2.0005$ for all $r \in \mathbb{N}$.
Note that the assumption of the theorem is equivalent to saying that for all integer $1 \leqslant r^{\prime}$, $r^{\prime \prime}<r_{0} \leqslant r$ with $r^{\prime}+r^{\prime \prime}=r_{0}$ and all $V_{0} \subseteq[n]$ there is a partition $V^{\prime} \dot{\cup} V^{\prime \prime}=V_{0}$ such that for all $E \in \mathscr{E}$

$$
\left\|\sum_{i \in V^{\prime} \cap E} v_{i}-\frac{r^{\prime}}{r_{0}} \sum_{i \in V_{0} \cap E} v_{i}\right\| \leqslant K \quad \text { and } \quad\left\|\sum_{i \in V^{\prime \prime} \cap E} v_{i}-\frac{r^{\prime \prime}}{r_{0}} \sum_{i \in V_{0} \cap E} v_{i}\right\| \leqslant K .
$$

The proof of Theorem 2 starts with setting $V_{0}=V$ and proceeds by partitioning V^{\prime} and $V^{\prime \prime}$ further. Details can be found in [3].

Theorem 2 was worked out only in the context of hypergraph coloring (Theorem 3.6 in [3]), which in our language means $v_{i}=\mathbf{1}_{d}$ for all $i \in[n]$. However, the proofs easily reveal that all results hold as well for the general setting of Theorem 2.

2. Vector partitioning

Assume V is a finite or infinite sequence of vectors v_{1}, v_{2}, \ldots We introduce the (non-standard) notation $\sum_{k} V=\sum_{i=1}^{k} v_{i}$. Further, for a subsequence X of V we define $\sum_{k} X=\sum_{i \leqslant k, v_{i} \in X} v_{i}$. Theorem 3. For every sequence $V \subset B$, and for every integer $r \geqslant 2$, there is a partition of V into r subsequences X_{1}, \ldots, X_{r} such that for all k and j

$$
\sum_{k} X_{j} \in \frac{1}{r} \sum_{k} V+C(r) d B
$$

Proof. Assume $r_{0}=r_{1}+r_{2}$ (with positive integers r_{1}, r_{2}). We are going to construct a partition of V into subsequences Y_{1} and Y_{2} such that for each k and for $j=1,2$,

$$
\sum_{k} Y_{j} \in \frac{r_{j}}{r_{0}} \sum_{k} V+d B
$$

This implies the theorem via Theorem 2.
For the construction of Y_{1}, Y_{2} we use a modified version of the method of "floating variables" as given in [1]. Define $V_{k}=\left\{v_{1}, v_{2}, \ldots, v_{k+d}\right\}, k=0,1,2, \ldots$ We are going to construct mappings $\beta_{k}: V_{k} \rightarrow\left[-r_{1}, r_{2}\right]$ and subsets $W_{k} \subset V_{k}$ with the following properties (for all k):
(i) $\sum_{V_{k}} \beta_{k}(v) v=0$,
(ii) $\beta_{k}(v) \in\left\{-r_{1}, r_{2}\right\}$ whenever $v \in W_{k}$,
(iii) $\left|W_{k}\right|=k$ and $W_{k} \subset W_{k+1}$.

The construction is by induction on k. For $k=0, W_{0}=\emptyset$ and $\beta_{0}=0$ clearly suffice. Now assume that β_{k} and W_{k} have been constructed and satisfy (i) to (iii). The $d+1$ vectors in $V_{k+1} \backslash W_{k}$ are linearly dependent, so there are $\alpha(v) \in \mathbb{R}$ not all zero such that

$$
\sum_{V_{k+1} \backslash W_{k}} \alpha(v) v=0
$$

Putting $\beta_{k}\left(v_{k+d+1}\right)=0$, we have

$$
\sum_{W_{k}} \beta_{k}(v) v+\sum_{V_{k+1} \backslash W_{k}}\left(\beta_{k}(v)+t \alpha(v)\right) v=0
$$

for all $t \in \mathbb{R}$. For $t=0$ all coefficients lie in $\left[-r_{1}, r_{2}\right]$. Hence for a suitable $t=t^{*}$, all coefficients still belong to $\left[-r_{1}, r_{2}\right]$, and $\beta_{k}(v)+t \alpha(v) \in\left\{-r_{1}, r_{2}\right\}$ for some $v=v^{*} \in V_{k+1} \backslash W_{k}$. Set now $W_{k+1}=W_{k} \cup\left\{v^{*}\right\}$ and $\beta_{k+1}(v)=\beta_{k}(v)$, if $v \in W_{k}$, and $\beta_{k+1}(v)=\beta_{k}(v)+t^{*} \alpha(v)$, if $v \in V_{k+1} \backslash W_{k}$. Now W_{k+1} and β_{k+1} satisfy the requirements. Moreover, $\beta_{k+1}(v)=\beta_{k}(v)$ for all $v \in W_{k}$.

We now define the subsequences Y_{1} and Y_{2}. Put v_{i} into Y_{1} if $v_{i} \in W_{k}$ and $\beta_{k}\left(v_{i}\right)=r_{2}$ for some k, and put v_{i} into Y_{2} if $v_{i} \in W_{k}$ and $\beta_{k}\left(v_{i}\right)=-r_{1}$ for some k. As $\beta_{k}(v)=\beta_{k+1}(v)$ once $v \in W_{k}$,
this definition is correct for all vectors that appear in some W_{k}. The remaining (at most d) vectors can be put into Y_{1} or Y_{2} in any way. Set $\gamma(v)=r_{2}$, if $v \in Y_{1}$, and $\gamma(v)=-r_{1}$, if $v \in Y_{2}$.

Clearly, $r_{2} \sum_{k} Y_{1}-r_{1} \sum_{k} Y_{2} \in r_{0} d B$ for all $k \leqslant d$. For $k>d$ we have, with $k=h+d$,

$$
\begin{aligned}
r_{2} \sum_{k} Y_{1}-r_{1} \sum_{k} Y_{2} & =\sum_{V_{h}} \gamma(v) v=\sum_{V_{h}} \gamma(v) v-\sum_{V_{h}} \beta_{h}(v) v \\
& =\sum_{V_{h}}\left(\gamma(v)-\beta_{h}(v)\right) v=\sum_{V_{h} \backslash W_{h}}\left(\gamma(v)-\beta_{h}(v)\right) v .
\end{aligned}
$$

The last sum contains at most d non-zero terms, each having norm at most r_{0}. Thus

$$
r_{2} \sum_{k} Y_{1}-r_{1} \sum_{k} Y_{2} \in r_{0} d B
$$

for every k. Adding this to the trivial equation $r_{1} \sum_{k} Y_{1}+r_{1} \sum_{k} Y_{2}=r_{1} \sum_{k} V$ (expressing that Y_{1}, Y_{2} form a partition of V), we obtain

$$
\sum_{k} Y_{1} \in \frac{r_{1}}{r_{0}} \sum_{k} V+d B
$$

for every k.

3. Vector selection

Let now V_{1}, \ldots, V_{N} be a sequence of finite subsets of B such that $\left|V_{i}\right| \geqslant r$ for all $i \in[N]$. An r-selection of $\left(V_{i}\right)$ is a mapping $\chi:[N] \times[r] \rightarrow \mathbb{R}^{d}$ such that $\chi(i,[r])$ is an r-element subset of V_{i} for all $i \in[N]$. For such a χ, we define its discrepancy with respect to $\left(V_{i}\right)$ by

$$
\operatorname{disc}\left(\chi,\left(V_{i}\right)_{i \in[N]}\right)=\max _{n \in[N]} \max _{\ell \in[r]}\left\|\sum_{i \in[n]}\left(\chi(i, \ell)-\frac{1}{\left|V_{i}\right|} \sum_{v \in V_{i}} v\right)\right\| .
$$

Theorem 4. There is an r-selection with discrepancy at most $5 d$.
We mention that this theorem also holds for infinite sequences of finite subsets of B.
To prove the theorem, we apply the following lemma twice.
Lemma 5. Let $r \in \mathbb{N}, r \geqslant 2$. Let $V_{1}, \ldots, V_{N} \subseteq B$ such that $\left|V_{i}\right| \geqslant r$ for all $i \in[N]$. Then for all $k \in[r]$ there are $U_{i} \subseteq V_{i}$ such that $\left|U_{i}\right|=k$ for all $i \in[N]$ and $\max _{n \in[N]} \| \sum_{i \in[n]}\left(\sum_{v \in U_{i}} v-\right.$ $\left.\frac{k}{\left|V_{i}\right|} \sum_{v \in V_{i}} v\right) \| \leqslant 2 d$.

Proof. We give an algorithm for the construction of the sets U_{i}. For each $i \in[N], v \in V_{i}$ put $x_{i v}=$ $\frac{k}{\left|V_{i}\right|}$. We iteratively change these numbers to zeros and ones in such a way that $U_{i}:=\left\{v \in V_{i} \mid x_{i v}=\right.$ 1\} gives the desired solution. For the start let $n=1$. What we do is the following: View those $x_{i v}$ such that $x_{i v} \notin\{0,1\}$ and $i \leqslant n$ as variables. If there is exactly one solution to the linear system

$$
\begin{align*}
& \sum_{i \in[N]} \sum_{v \in V_{i}}\left(x_{i v}-\frac{k}{\left|V_{i}\right|}\right) v=0, \tag{1}\\
& \sum_{v \in\left[\left|V_{i}\right|\right]} x_{i v}=k, \quad i \in[N], \tag{2}\\
& x_{i v} \in[0,1], \quad i \in[N], \quad v \in V_{i},
\end{align*}
$$

then increase n by one and try again. Otherwise our existing solution may be changed in such a way that at least one more variable $x_{i v}$ becomes 0 or 1 . If n reaches N and no solution can be found, then stop and change the remaining non-integral values of $x_{i v}$ to 0 or 1 in such a way that (2) is still fulfilled.

Assume that in some step of this iteration no solution can be found. Then there are at least as many constraints containing variables as there are variables. Let q be the number of constraints of type (2) that contain a variable. Then the total number of constraints containing variables is at most $d+q$, and the number of variables is at least $2 q$. Hence $q \leqslant d$ holds if no non-trivial solution can be found, and at most $q+d \leqslant 2 d$ of the $x_{i v}, i \leqslant n$, are not in $\{0,1\}$. Denote the set of these pairs (i, v) by I. Since the remaining $x_{i v}, i \leqslant n$, are not changed anymore, our final solution \tilde{x} satisfies

$$
\begin{aligned}
\sum_{i \in[n]} \sum_{v \in V_{i}}\left(\tilde{x}_{i v}-\frac{k}{\left|V_{i}\right|}\right) v & =\sum_{i \in[n]} \sum_{v \in V_{i}}\left(x_{i v}-\frac{k}{\left|V_{i}\right|}\right) v+\sum_{(i, v) \in I}\left(\tilde{x}_{i v}-x_{i v}\right) v \\
& =\sum_{(i, v) \in I}\left(\tilde{x}_{i v}-x_{i v}\right) v .
\end{aligned}
$$

Since $|I| \leqslant 2 d$, we conclude $\left\|\sum_{i \in[n]} \sum_{v \in V_{i}}\left(\tilde{x}_{i v}-\frac{k}{\left|V_{i}\right|}\right) v\right\| \leqslant 2 d$ for all $n \in[N]$. Since $\tilde{x}_{i v} \in$ $\{0,1\}$, putting $U_{i}:=\left\{v \in V_{i} \mid \tilde{x}_{i v}=1\right\}$ gives the desired solution.

Proof of the theorem. Let us assume first that $\left|V_{i}\right|=r$ for all $i \in[N]$. Then, by the above lemma, for all integers r_{1}, r_{2} such that $r=r_{1}+r_{2}$ there are $U_{i}^{(1)} \dot{\cup} U_{i}^{(2)}=V_{i}$ such that $\left|U_{i}^{(j)}\right|=r_{j}$ and $\left\|\sum_{i \in[n]}\left(\sum_{v \in U_{i}^{(j)}} v-\frac{r_{j}}{r} \sum_{v \in V_{i}} v\right)\right\| \leqslant 2 d$. Hence from Theorem 2, we obtain an r-selection (actually an r-partition) of $\left(V_{i}\right)$ such that

$$
\left\|\sum_{i \in[n]}\left(\chi(i, \ell)-\frac{1}{r} \sum_{v \in V_{i}} v\right)\right\| \leqslant 2 C(r) d
$$

for all $n \in[N], \ell \in[r]$.
If $\left|V_{i}\right|>r$ for some i, apply the Lemma 5 (with $k=r$) to obtain $\tilde{V}_{i} \subseteq V_{i}$ such that $\left|\tilde{V}_{i}\right|=r$ and $\left\|\sum_{i \in[n]}\left(\sum_{v \in \tilde{V}_{i}} v-\frac{r}{\left|V_{i}\right|} \sum_{v \in V_{i}} v\right)\right\| \leqslant 2 d$. By the above, there is an r-selection for $\left(\tilde{V}_{i}\right)$ such that

$$
\left\|\sum_{i \in[n]}\left(\chi(i, \ell)-\frac{1}{r} \sum_{v \in \tilde{V}_{i}} v\right)\right\| \leqslant 2 C(r) d
$$

for all $n \in[N], \ell \in[r]$. Note that, trivially, χ is also an r-selection for $\left(V_{i}\right)$. It satisfies

$$
\begin{aligned}
& \left\|\sum_{i \in[n]}\left(\chi(i, \ell)-\frac{1}{\left|V_{i}\right|} \sum_{v \in V_{i}} v\right)\right\| \\
& \quad \leqslant\left\|\sum_{i \in[n]}\left(\chi(i, \ell)-\frac{1}{r} \sum_{v \in \tilde{V}_{i}} v\right)\right\|+\left\|\sum_{i \in[n]}\left(\frac{1}{r} \sum_{v \in \tilde{V}_{i}} v-\frac{1}{\left|V_{i}\right|} \sum_{v \in V_{i}} v\right)\right\| \\
& \quad \leqslant 2 C(r) d+\frac{1}{r} 2 d
\end{aligned}
$$

for all $n \in[N]$ and $\ell \in[r]$. By noting that $C(2)=1$ and $C(r) \leqslant 2.0005$ for all $r \in \mathbb{N}$, we obtain the constant of 5 .

We may remark that a closer inspection of $C(r)$ for small r yields better constants. For example, easy calculations by hand or Lemma 3.5 in [3] show that $C(r)+\frac{1}{r} \leqslant 2.1$ for $r \leqslant 10$ (for $r=7$ observe that $\left.C(7) \leqslant \max \left\{\frac{1}{3}+C(3), \frac{1}{4}+C(4)\right\}\right)$. Hence the bound $C(r) \leqslant 2.0005$ implies $C(r)+\frac{1}{r} \leqslant 2.1$ for all $r \in \mathbb{N}$, leading to a constant of 4.2 instead of 5 .

The following is an immediate consequence of Theorem 4.
Corollary 6. Let $r, N \in \mathbb{N}$. For $i \in[N]$ let $V_{i} \subseteq B$ such that $\sum_{v \in V_{i}} v=0$ and $\left|V_{i}\right| \geqslant k$. Then there is a k-selection of $\left(V_{i}\right)$ such that

$$
\left\|\sum_{i \in[n]} \chi(i, \ell)\right\| \leqslant 5 d
$$

for all $n \in[N]$ and $\ell \in[r]$.
This answers a question of Emo Welzl concerning multi-class extensions of Theorem 1 posed at the Oberwolfach Seminar on "Discrepancy Theory and its Applications" in March 2004. It is clear that the stronger assumption $\sum_{v \in V_{i}} v=0$ is necessary. Already for $d=1$ and $r=2$, the sequence $V_{i}=\left\{-\frac{1}{2}, 1\right\}$ shows that $0 \in \operatorname{conv}\left(V_{i}\right)$ does not suffice.

Acknowledgments

We thank the organizers of the Oberwolfach Seminar on "Discrepancy Theory and its Applications" (March 2004) as well as the Oberwolfach crew for providing us with surroundings that resulted in this paper.

The first named author is grateful to Microsoft Research (Redmond, WA) as part of the research on this paper was carried out on a very pleasant and fruitful visit there. For the same nice reason, the second author would like to thank Joel Spencer and the Courant Institute of Mathematical Sciences (New York City).

References

[1] I. Bárány, V.S. Grinberg, On some combinatorial questions in finite-dimensional spaces, Linear Algebra Appl. 41 (1981) 1-9.
[2] J. Beck, V.T. Sós, Discrepancy theory, in: R. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Elsevier, 1995, pp. 1405-1446.
[3] B. Doerr, A. Srivastav, Multicolour discrepancies, Combinatorics, Probability and Computing 12 (2003) 365-399.
[4] J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986) 55-65.

[^0]: ${ }^{4}$ Partially supported by Hungarian National Foundation Grants T 046246 and T 037846.

 * Corresponding author. Tel.: +49 6819325 104; fax: +49 6819325199.

