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Abstract

Let d, r ∈ N and ‖ · ‖ be any norm on Rd . Let B denote the unit ball with respect to this norm. We show
that any sequence v1, v2, . . . of vectors in B can be partitioned into r subsequences V1, . . ., Vr in a balanced
manner with respect to the partial sums: For all n ∈ N, � � r , we have ‖ ∑

i�k,vi∈V�
vi − 1

r

∑
i�k vi‖ �

2.0005d. A similar bound holds for partitioning sequences of vector sets. Both results extend an earlier one
of Bárány and Grinberg [I. Bárány, V.S. Grinberg, On some combinatorial questions in finite-dimensional
spaces, Linear Algebra Appl. 41 (1981) 1–9] to partitions in arbitrarily many classes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let d, N ∈ N. We use the short-hand [N ] := {1, . . . , N}. Let ‖ · ‖ be any norm on Rd and
B = {v ∈ Rd |‖v‖ � 1} its unit ball. In this paper, we give extensions of the Bárány–Grinberg
theorem to partitions into more than two classes. In its most general version, this theorem states
the following [1].
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Theorem 1. Let V1, . . . , VN ⊆ B such that 0 ∈ conv(Vi) for all i ∈ [N ]. Then there are vi ∈ Vi

such that for all n ∈ [N ],∥∥∥∥∥∥
∑
i∈[n]

vi

∥∥∥∥∥∥ � 2d.

The most interesting special case of Theorem 1 is that all Vi are of the form Vi = {vi, −vi}, cf.
[2] as well. In this case, Theorem 1 yields that for any sequence v1, . . . , vN of vectors in B there
are signs εi ∈ {−1, 1} such that ‖ ∑

i∈[n] εivi‖ � 2d for all n ∈ [N ]. In other words, there is a

partition [N ] = I1∪̇I2 such that ‖ ∑
i∈Ij ∩[n] vi − 1

2

∑
i∈[n] vi‖ � d for all n ∈ [N ] and j ∈ [2].

This partitioning version of the Bárány–Grinberg theorem was extended to partitions into r > 2
classes with error bound (r − 1)d in [3]. In the following section, we show that the factor (r − 1)

can be replaced by a constant.
In the third section of this paper, we show that if the stronger condition

∑
v∈Vi

v = 0 (instead
of 0 ∈ conv(Vi)) holds for all i ∈ [N ], then for each i ∈ [N ] there are r distinct vectors vi� ∈ Vi ,
� ∈ [r], such that ‖ ∑

i∈[n] vi�‖ � 5d holds for all n ∈ [N ] and � ∈ [r], where r � max{|Vi ||i ∈
[N ]}.

It is worth mentioning here that the results hold for all norms in Rd . This is due to the fact that
proofs use linear dependences among some vectors, with the norm playing very little role. But
most likely, much better bounds are valid for particular norms. For instance, it is conjectured that
for r = 2 and Euclidean norm the best bound is of order

√
d. This was proved by Spencer [4]

when N = O(d), but the general case when N is arbitrary is open.
In the proofs of both results below we invoke the recursive method of [3], which states,

roughly speaking, that if one can guarantee the existence of a 2-partition with good bound on its
discrepancy, then one can guarantee the existence of an r-partition with a slightly weaker bound
on its discrepancy. Precisely, we have the following:

Theorem 2. Let r � 2 be an integer. Let v1, . . . , vn be a sequence of vectors and E be a set of
subsets of [n]. Assume that for all integers 1 � r1 < r0 � r and all V0 ⊆ [n] there is a V1 ⊆ V0
such that for all E ∈ E,∥∥∥∥∥∥

∑
i∈V1∩E

vi − r1

r0

∑
i∈V0∩E

vi

∥∥∥∥∥∥ � K.

Then there is a partition V = V1∪̇ . . . ∪̇Vr such that for all � ∈ [r] and E ∈ E we have∥∥∥∥∥∥
∑

i∈V�∩E

vi − 1

r

∑
i∈V ∩E

vi

∥∥∥∥∥∥ � C(r)K,

where C(r) is an absolute constant satisfying C(r) � 2.0005 for all r ∈ N.

Note that the assumption of the theorem is equivalent to saying that for all integer 1 � r ′,
r ′′ < r0 � r with r ′ + r ′′ = r0 and all V0 ⊆ [n] there is a partition V ′∪̇V ′′ = V0 such that for all
E ∈ E∥∥∥∥∥∥

∑
i∈V ′∩E

vi − r ′

r0

∑
i∈V0∩E

vi

∥∥∥∥∥∥ � K and

∥∥∥∥∥∥
∑

i∈V ′′∩E

vi − r ′′

r0

∑
i∈V0∩E

vi

∥∥∥∥∥∥ � K.
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The proof of Theorem 2 starts with setting V0 = V and proceeds by partitioning V ′ and V ′′ further.
Details can be found in [3].

Theorem 2 was worked out only in the context of hypergraph coloring (Theorem 3.6 in [3]),
which in our language means vi = 1d for all i ∈ [n]. However, the proofs easily reveal that all
results hold as well for the general setting of Theorem 2.

2. Vector partitioning

Assume V is a finite or infinite sequence of vectors v1, v2, . . . We introduce the (non-standard)
notation

∑
k V = ∑k

i=1 vi . Further, for a subsequence X of V we define
∑

k X = ∑
i�k,vi∈X vi .

Theorem 3. For every sequence V ⊂ B, and for every integer r � 2, there is a partition of V

into r subsequences X1, . . . , Xr such that for all k and j

∑
k

Xj ∈ 1

r

∑
k

V + C(r)dB.

Proof. Assume r0 = r1 + r2 (with positive integers r1, r2). We are going to construct a partition
of V into subsequences Y1 and Y2 such that for each k and for j = 1, 2,∑

k

Yj ∈ rj

r0

∑
k

V + dB.

This implies the theorem via Theorem 2.
For the construction of Y1, Y2 we use a modified version of the method of “floating variables” as

given in [1]. Define Vk = {v1, v2, . . . , vk+d}, k = 0, 1, 2, . . . We are going to construct mappings
βk : Vk → [−r1, r2] and subsets Wk ⊂ Vk with the following properties (for all k):

(i)
∑

Vk
βk(v)v = 0,

(ii) βk(v) ∈ {−r1, r2} whenever v ∈ Wk ,
(iii) |Wk| = k and Wk ⊂ Wk+1.

The construction is by induction on k. For k = 0, W0 = ∅ and β0 = 0 clearly suffice. Now
assume that βk and Wk have been constructed and satisfy (i) to (iii). The d + 1 vectors in Vk+1 \ Wk

are linearly dependent, so there are α(v) ∈ R not all zero such that∑
Vk+1\Wk

α(v)v = 0.

Putting βk(vk+d+1) = 0, we have∑
Wk

βk(v)v +
∑

Vk+1\Wk

(βk(v) + tα(v))v = 0

for all t ∈ R. For t = 0 all coefficients lie in [−r1, r2]. Hence for a suitable t = t∗, all coef-
ficients still belong to [−r1, r2], and βk(v) + tα(v) ∈ {−r1, r2} for some v = v∗ ∈ Vk+1 \ Wk .
Set now Wk+1 = Wk ∪ {v∗} and βk+1(v) = βk(v), if v ∈ Wk , and βk+1(v) = βk(v) + t∗α(v), if
v ∈ Vk+1 \ Wk . Now Wk+1 and βk+1 satisfy the requirements. Moreover, βk+1(v) = βk(v) for
all v ∈ Wk .

We now define the subsequences Y1 and Y2. Put vi into Y1 if vi ∈ Wk and βk(vi) = r2 for some
k, and put vi into Y2 if vi ∈ Wk and βk(vi) = −r1 for some k. As βk(v) = βk+1(v) once v ∈ Wk ,
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this definition is correct for all vectors that appear in some Wk . The remaining (at most d) vectors
can be put into Y1 or Y2 in any way. Set γ (v) = r2, if v ∈ Y1, and γ (v) = −r1, if v ∈ Y2.

Clearly, r2
∑

k Y1 − r1
∑

k Y2 ∈ r0dB for all k � d. For k > d we have, with k = h + d,

r2

∑
k

Y1 − r1

∑
k

Y2 =
∑
Vh

γ (v)v =
∑
Vh

γ (v)v −
∑
Vh

βh(v)v

=
∑
Vh

(γ (v) − βh(v))v =
∑

Vh\Wh

(γ (v) − βh(v))v.

The last sum contains at most d non-zero terms, each having norm at most r0. Thus

r2

∑
k

Y1 − r1

∑
k

Y2 ∈ r0dB

for every k. Adding this to the trivial equation r1
∑

k Y1 + r1
∑

k Y2 = r1
∑

k V (expressing that
Y1, Y2 form a partition of V ), we obtain∑

k

Y1 ∈ r1

r0

∑
k

V + dB

for every k. �

3. Vector selection

Let now V1, . . . , VN be a sequence of finite subsets of B such that |Vi | � r for all i ∈ [N ]. An
r-selection of (Vi) is a mapping χ : [N ] × [r] → Rd such that χ(i, [r]) is an r-element subset of
Vi for all i ∈ [N ]. For such a χ , we define its discrepancy with respect to (Vi) by

disc(χ, (Vi)i∈[N ]) = max
n∈[N ] max

�∈[r]

∥∥∥∥∥∥
∑
i∈[n]


χ(i, �) − 1

|Vi |
∑
v∈Vi

v




∥∥∥∥∥∥ .

Theorem 4. There is an r-selection with discrepancy at most 5d.

We mention that this theorem also holds for infinite sequences of finite subsets of B.
To prove the theorem, we apply the following lemma twice.

Lemma 5. Let r ∈ N, r � 2. Let V1, . . . , VN ⊆ B such that |Vi | � r for all i ∈ [N ]. Then for all
k ∈ [r] there are Ui ⊆ Vi such that |Ui | = k for all i ∈ [N ] and maxn∈[N ] ‖ ∑

i∈[n](
∑

v∈Ui
v −

k
|Vi |

∑
v∈Vi

v)‖ � 2d.

Proof. We give an algorithm for the construction of the sets Ui . For each i ∈ [N ], v ∈ Vi put xiv =
k

|Vi | . We iteratively change these numbers to zeros and ones in such a way that Ui := {v ∈ Vi |xiv =
1} gives the desired solution. For the start let n = 1. What we do is the following: View those xiv

such that xiv /∈ {0, 1} and i � n as variables. If there is exactly one solution to the linear system

∑
i∈[N ]

∑
v∈Vi

(
xiv − k

|Vi |
)

v = 0, (1)

∑
v∈[|Vi |]

xiv = k, i ∈ [N ], (2)

xiv ∈ [0, 1], i ∈ [N ], v ∈ Vi,
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then increase n by one and try again. Otherwise our existing solution may be changed in such a
way that at least one more variable xiv becomes 0 or 1. If n reaches N and no solution can be
found, then stop and change the remaining non-integral values of xiv to 0 or 1 in such a way that
(2) is still fulfilled.

Assume that in some step of this iteration no solution can be found. Then there are at least as
many constraints containing variables as there are variables. Let q be the number of constraints
of type (2) that contain a variable. Then the total number of constraints containing variables is
at most d + q, and the number of variables is at least 2q. Hence q � d holds if no non-trivial
solution can be found, and at most q + d � 2d of the xiv , i � n, are not in {0, 1}. Denote the
set of these pairs (i, v) by I . Since the remaining xiv , i � n, are not changed anymore, our final
solution x̃ satisfies

∑
i∈[n]

∑
v∈Vi

(
x̃iv − k

|Vi |
)

v=
∑
i∈[n]

∑
v∈Vi

(
xiv − k

|Vi |
)

v +
∑

(i,v)∈I

(x̃iv − xiv)v

=
∑

(i,v)∈I

(x̃iv − xiv)v.

Since |I | � 2d, we conclude ‖ ∑
i∈[n]

∑
v∈Vi

(x̃iv − k
|Vi | )v‖ � 2d for all n ∈ [N ]. Since x̃iv ∈

{0, 1}, putting Ui := {v ∈ Vi |x̃iv = 1} gives the desired solution. �

Proof of the theorem. Let us assume first that |Vi | = r for all i ∈ [N ]. Then, by the above
lemma, for all integers r1, r2 such that r = r1 + r2 there are U

(1)
i ∪̇U

(2)
i = Vi such that |U(j)

i | = rj

and ‖ ∑
i∈[n](

∑
v∈U

(j)
i

v − rj
r

∑
v∈Vi

v)‖ � 2d . Hence from Theorem 2, we obtain an r-selection

(actually an r-partition) of (Vi) such that∥∥∥∥∥∥
∑
i∈[n]


χ(i, �) − 1

r

∑
v∈Vi

v




∥∥∥∥∥∥ � 2C(r)d

for all n ∈ [N ], � ∈ [r].
If |Vi | > r for some i, apply the Lemma 5 (with k = r) to obtain Ṽi ⊆ Vi such that |Ṽi | = r

and ‖ ∑
i∈[n](

∑
v∈Ṽi

v − r
|Vi |

∑
v∈Vi

v)‖ � 2d . By the above, there is an r-selection for (Ṽi) such
that ∥∥∥∥∥∥

∑
i∈[n]


χ(i, �) − 1

r

∑
v∈Ṽi

v




∥∥∥∥∥∥ � 2C(r)d

for all n ∈ [N ], � ∈ [r]. Note that, trivially, χ is also an r-selection for (Vi). It satisfies∥∥∥∥∥∥
∑
i∈[n]


χ(i, �) − 1

|Vi |
∑
v∈Vi

v




∥∥∥∥∥∥

�

∥∥∥∥∥∥
∑
i∈[n]


χ(i, �) − 1

r

∑
v∈Ṽi

v




∥∥∥∥∥∥ +
∥∥∥∥∥∥
∑
i∈[n]


1

r

∑
v∈Ṽi

v − 1

|Vi |
∑
v∈Vi

v




∥∥∥∥∥∥
� 2C(r)d + 1

r
2d
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for all n ∈ [N ] and � ∈ [r]. By noting that C(2) = 1 and C(r) � 2.0005 for all r ∈ N, we obtain
the constant of 5. �

We may remark that a closer inspection of C(r) for small r yields better constants. For exam-
ple, easy calculations by hand or Lemma 3.5 in [3] show that C(r) + 1

r
� 2.1 for r � 10 (for

r = 7 observe that C(7) � max{ 1
3 + C(3), 1

4 + C(4)}). Hence the bound C(r) � 2.0005 implies
C(r) + 1

r
� 2.1 for all r ∈ N, leading to a constant of 4.2 instead of 5.

The following is an immediate consequence of Theorem 4.

Corollary 6. Let r, N ∈ N. For i ∈ [N ] let Vi ⊆ B such that
∑

v∈Vi
v = 0 and |Vi | � k. Then

there is a k-selection of (Vi) such that∥∥∥∥∥∥
∑
i∈[n]

χ(i, �)

∥∥∥∥∥∥ � 5d

for all n ∈ [N ] and � ∈ [r].
This answers a question of Emo Welzl concerning multi-class extensions of Theorem 1 posed

at the Oberwolfach Seminar on “Discrepancy Theory and its Applications” in March 2004. It is
clear that the stronger assumption

∑
v∈Vi

v = 0 is necessary. Already for d = 1 and r = 2, the

sequence Vi = {− 1
2 , 1} shows that 0 ∈ conv(Vi) does not suffice.
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