BORSUK'S THEOREM AND THE NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES

I. BÁRÁNY (Budapest) and L. LOVÃSZ (Szeged), corresponding member of the Academy

1. Introduction

Let $C^{n}=\left\{x \in \mathbf{R}^{n}:\left|x_{i}\right| \leqq 1 i=1, \ldots, n\right\}$ be the n-dimensional cube and A be a d-dimensional subspace of \mathbf{R}^{n} having no point in common with the ($n-d-1$)dimensional faces of C^{n}. We want to find a lower bound on the number of vertices of the polytope $A \cap C^{n}$. More generally, given an n-dimensional centrally symmetric polytope K (whose center is at the origin) and a d-dimensional subspace $A \subset \mathbf{R}^{n}$, find lower bound on the number of vertices of $A \cap K$. We are going to prove two theorems concerning this question. These theorems have several interesting corollaries, for instance the following "lower bound"-type one. Every d-dimensional, centrally symmetric simplicial polytope has at least 2^{d} facets. (In fact this theorem is equivalent to our main result when $K=C^{n}$.)

This question was motivated by the following problem of Erdös [2]. Given $a_{1}, \ldots, a_{n} \in \mathbf{R}^{d}$ vectors of at most unit length, at least how many of the 2^{n} vectors $\sum_{i=1}^{n} \varepsilon_{i} a_{i}\left(\varepsilon_{i}=+1\right.$ or -1$)$ lie in the ball $\sqrt{d} B^{d}$, where B^{d} is the euclidean unit ball of \mathbf{R}^{d}. Erdős conjectured that this number is at least $c(d) 2^{n} n^{-\frac{d}{2}}$ for some positive constant $c(d)$ depending only on d. This conjecture has been proved very recently by J. Beck [1]. In this paper we do not contribute to this problem because our results would imply only that the number in question is at least $2^{n-d} /\binom{n}{d}$.

In the proofs we shall need Borsuk's theorem on antipodal maps. A continuous map $\varphi: S^{n} \rightarrow \mathbf{R}^{m}$ is said to be antipodal if $\varphi(-x)=-\varphi(x)$ for every $x \in S^{n}$.

Borsuk's theorem. If $m<n$, then there is no antipodal map $\varphi: S^{n} \rightarrow S^{m}$.
This theorem is equivalent to the following.
If $\varphi: S^{n} \rightarrow \mathbf{R}^{n}$ is an antipodal map, then there exists an $x \in S^{n}$ with $\varphi(x)=0$.
We shall prove the following extension of Borsuk's theorem.
If $\varphi: S^{n} \rightarrow S^{m}$ is antipodal, then the n-dimensional measure of $\varphi\left(S^{n}\right)$ is not less than the (n-dimensional) measure of S^{n}.

2. Notation and results

Let K be a convex polytope in \mathbf{R}^{n}. The support of $x \in K$ is defined as the minimal face of K containing x. A face is understood to be closed. If x lies in ∂K, the boundary of K, then $t(x)=t(x, K)$ denotes the set of outer normals of unit length to K at x. It is clear that $t(x) \subset S^{n-1}$ is nonempty. The set $t(x)$ consists of one point
if the boundary of K is smooth at x. The d-dimensional outer angle of K at $x(d=1,2, \ldots, n)$ is defined as

$$
\alpha_{d}(x, K)=\frac{\lambda_{d-1}(t(x))}{\lambda_{d-1}\left(S^{d-1}\right)}
$$

where λ_{d-1} is the $(d-1)$-dimensional Lebesgue measure in \mathbf{R}^{n} and S^{d-1} is supposed to be isometrically imbedded into \mathbf{R}^{n}. Obviously,

$$
\alpha_{d}(x, K)=\left\{\begin{array}{l}
0, \text { if the support of } x \text { is more than }(n-d) \text {-dimensional, } \\
\infty, \text { if the support of } x \text { is less than }(n-d) \text {-dimensional. }
\end{array}\right.
$$

Let $\mathscr{A}^{(d)}$ denote the set of d-dimensional subspaces of \mathbf{R}^{n}. We shall consider sections of type $A \cap K$ where $K \subset \mathbb{R}^{n}$ is a centrally symmetric n-dimensional polytope (with center at the origin) and $A \in \mathscr{A}^{(d)}$. A section $A \cap K$ is called regular if A has no point in common with the ($n-d-1$)-dimensional faces of K.

Theorem 1. Let K be a centrally symmetric, n-dimensional polytope and $A \in \mathscr{A}^{(d)}$. Then

$$
\begin{equation*}
\sum_{x \in \operatorname{vert}(A \cap K)} \alpha_{d}(x, K) \geqq 1 \tag{1}
\end{equation*}
$$

where vert $(A \cap K)$ is the set of vertices of $A \cap K$.
Corollary 1. If $A \cap K$ is a regular section, then

$$
|\operatorname{vert}(A \cap K)| \geqq \frac{1}{\alpha_{d}(K)}
$$

where $\alpha_{d}(K)=\max \left\{\alpha_{d}(x, K)\right.$: the support of x is $(n-d)$-dimensional $\}$.
Corollary 2. Any regular, d-dimensional section of C^{n} has at least 2^{d} vertices.
Corollary 3. Any d-dimensional, centrally symmetric, simplicial polytope has at least 2^{d} facets.

Corollary 4. [cf. Erdős, Beck]. If $a_{1}, \ldots, a_{n} \in B^{d}$, then at least $2^{n-d} /\binom{n}{d}$ vectors out of the 2^{n} vectors $\sum_{i=1}^{n} \varepsilon_{i} a_{i}\left(\varepsilon_{i}=+1\right.$ or -1$)$ lie in the ball $\sqrt{d} B^{d}$.

Let $\mathscr{L}^{(n-d)}=\mathscr{L}^{(n-d)}(K)$ be the set of all $(n-d)$-dimensional faces of K. To present our next theorem we define a map $\varphi: S^{n-d} \rightarrow \operatorname{sel}_{n-d} K$ to be special if
(i) φ is antipodal
(ii) for each $L \in \mathscr{L}^{(n-d)}$ either $L \subset \varphi\left(S^{n-d}\right)$ or int $L \cap \varphi\left(S^{n-d}\right)=\varnothing$.

Here int L denotes the relative interior of the face L.
We mention that some projections $\pi: \mathbf{R}^{n} \rightarrow A$ (where $A \in \mathscr{A}^{(n-a+1)}$) induce a special map $\varphi_{\pi}: S^{n-d} \rightarrow \mathrm{~s}^{\operatorname{kel}_{n-d}} K$ in a natural way. Suppose that π is a projection such that the image of every $L \in \mathscr{L}^{(n-d+1)}$ is $(n-d+1)$-dimensional. Then π, restricted to K is one-to-one on every face $L \in \mathscr{L}^{(n-d+1)}$. On the other hand, $\pi(K)$ is a convex polytope whose boundary is the "same" as S^{n-d}, and π has an inverse
on this boundary. Denoting this inverse by φ_{π} we have the induced special map $\varphi_{\pi}: S^{n-d} \rightarrow \mathrm{~s}^{\operatorname{kel}}{ }_{n-d} K$.

Our next theorem gives a lower bound on the number of vertices of a regular section of K through the following discrete linear program.

$$
\left\{\begin{array}{lll}
\operatorname{minimize} & \sum_{\mathscr{\mathscr { L } (n - d)}} x(L) & \tag{2}\\
\text { subject to } & x(L)=0 \text { or } 1 & (\forall L), \\
& x(L)=x(-L) & (\forall L), \\
& \sum_{\substack{L \in \mathcal{\mathcal { P } ^ { n } - d)} \\
L \in \varphi\left(S^{n-d}\right)}} x(L) \geqq 2 & (\forall \varphi \text { special }) .
\end{array}\right.
$$

Denote the minimum of this problem by M. In other words, M is the minimum size of a centrally symmetric set of $(n-d)$-faces of K meeting all special images of S^{n-d}.

Theorem 2. Every regular section of a centrally symmetric n-dimensional polytope K has at least M vertices.

Corollaries 2, 3 and 4 follow from this theorem as well. Moreover we can sharpen Corollary 2 (and, similarly Corollary 3):

Corollary 2^{\prime}. Any regular d-dimensional section of C^{n} has at least 2^{d} vertices. Equality holds if and only if the section is a d-dimensional parallelepiped.

Further we have
Corollary 5. Every d-dimensional regular section of the d-dimensional octahedron has exactly $2\binom{n}{d-1}$ vertices.

Corollary 6. Every 2-dimensional regular section of the dodecahedron (icosahedron) has at least 6 (resp. 10) vertices.

The proof of Theorem 1 will be based on the following extension of Borsuk's theorem.

Theorem 3. If $\varphi: S^{k} \rightarrow S^{n}$ is an antipodal map, then $\lambda_{k}\left(\varphi\left(S^{k}\right)\right) \geqq \lambda_{k}\left(S^{k}\right)$. Here λ_{k} is the k-dimensional Lebesgue measure (both in \mathbf{R}^{k+1} and \mathbf{R}^{n+1}) normalized so that $\lambda_{k}\left(S^{k}\right)$ equals the k-dimensional mesaure of any copy of S^{k} isometrically imbedded into S^{k}.

Let us mention two open problems: The first one arises from an attempt to find an alternative proof of Theorem 3. Let $K \subset \mathbf{R}^{n}$ be a symmetric convex polytope and φ : vert $K \rightarrow \mathbf{R}^{m}-\{0\}$ such that for every vertex v, if v_{1}, \ldots, v_{r} are the neighbours of v then there exist coefficients $\lambda_{1}, \ldots, \lambda_{r}>0$ such that

$$
\varphi(v)=\lambda_{1} \varphi\left(v_{1}\right)+\ldots+\lambda_{r} \varphi\left(v_{r}\right) .
$$

Then we conjecture that φ (vert K) lies in an n-dimensional subspace of \mathbf{R}^{m}. This conjecture would imply Theorem 3.

To present the second problem write $f_{k}(P)$ for the number of k-dimensional faces of the polytope P. Suppose P is symmetric, simple and d-dimensional with
$2 n$ facets. The lower bound theorem would say that $f(P)$ is not less than a function of d, n and k. An obvious guess for that function is

$$
\begin{aligned}
& f_{0}(P) \geqq 2^{d}+2(n-d)(d-1) \\
& f_{k}(P) \geqq 2^{d-k}\binom{d}{k}+2(n-d)\binom{d}{k+1} \quad \text { for } \quad 1 \leqq k \leqq d-1
\end{aligned}
$$

This is supported by a kind communication of P. McMullen [4]. If the guess is correct, the minimal polytopes would be obtained from the cube by successive centrally symmetric truncations of vertices.

3. Proofs

Proof of Theorem 1. Let us choose an $\varepsilon>0$ such that if L is a face of K and $A \cap L=\varnothing$, then $A \cap\left(L+\varepsilon B^{n}\right)=\varnothing$. Such an ε exists because each face of K is compact.

Put now $K_{\varepsilon}=K+\varepsilon B^{n}$ and let S^{d-1} be the unit sphere of the subspace A. The map $\pi: A \cap \partial K \rightarrow S^{d-1}$ defined by $\pi(y)=\frac{y}{\|y\|}$ is one-to-one and antipodal. We define a map $\varphi: S^{d-1} \rightarrow S^{n-1}$ by $\varphi(z)=t\left(\pi^{-1}(z), K_{\varepsilon}\right)$. Since K_{ε} is smooth at every point of its boundary, φ is well defined, continuous and antipodal. Theorem 3 then implies

$$
\lambda_{d-1}\left(S^{d-1}\right) \leqq \lambda_{d-1}\left(\varphi\left(S^{d-1}\right)\right)=\lambda_{d-1}\left(t\left(A \cap \partial K_{\varepsilon}, K_{\varepsilon}\right)\right)
$$

Claim. $t\left(A \cap \partial K_{\varepsilon}, K_{\varepsilon}\right) \subseteq \cup t($ int $L ; K)$, where the union is taken over all faces L of K with $L \cap A \neq \varnothing$.

Suppose $z \in t\left(y, K_{\varepsilon}\right)$ for some $y \in A \cap \partial K_{\varepsilon}$. Then $y=x+\varepsilon z$ where $x \in \partial K$ and $z \in t(x, K)$, as one can check easily. Write L for the support of x (in K), then $x \in \operatorname{int} L$ and $z \in t$ (int L, K). All we have to show is that $L \cap A \neq \varnothing$. Suppose that $L \cap A=\varnothing$, then by the choice of $\varepsilon, A \cap\left(L+\varepsilon B^{n}\right)=\varnothing$, too. But $y \in A$ and $y=x+\varepsilon z \in L+\varepsilon B^{n}$, a contradiction.

From this we have

$$
\lambda_{d-1}\left(S^{d-1}\right) \leqq \lambda_{d-1}\left(t\left(A \cap \partial K_{z}, K_{\varepsilon}\right)\right) \leqq \sum_{L \cap A \neq \varnothing} \lambda_{d-1}(t(\operatorname{int} L, K))
$$

Clearly $\lambda_{d-1}(t($ int $L, K))=0$ if $\operatorname{dim} L>n-d$. Suppose $A \cap K$ a regular section, then $L \cap A=\varnothing$ for every face L with $\operatorname{dim} L<n-d$. Thus

$$
1 \leqq \sum_{\substack{L \cap A \neq \varnothing \\ L \in \mathscr{L}(n-d)}} \frac{\lambda_{d-1}(t(\operatorname{int} L, K))}{\lambda_{d-1}\left(S^{d-1}\right)}=\sum_{x \in \text { vert } A \cap K} \alpha_{d}(x, L)
$$

because t (int L, K) coincides with $t(x, K)$ for every $x \in \operatorname{int} L$ and $L \cap A=\varnothing$ for some $L \in \mathscr{L}^{(n-d)}$ if and only if $A \cap L$ is a vertex of $A \cap K$.

Finally, if $A \cap K$ is not a regular section, then some member of the left hand side of (1) equals $+\infty$.

Corollary 1 is an immediate consequence.
Proof of Corollary 2. It is easy to see that $\alpha_{d}\left(x, C^{n}\right)=2^{-d}$ if the support of x is $(n-d)$-dimensional. Using Corollary 1 this fact implies the result.

Proof of Corollary 3. It is easy to check and actually well known [3] that every d-dimensional, centrally symmetric and simple polytope is a regular section of C^{n} for some n. So Corollary 2 says that every d-dimensional, centrally symmetric and simple polytope has at least 2^{d} vertices. Dualizing this statement we get Corollary 3.

Here we mention that Corollary 2 does not hold for non-regular sections. This follows from the fact that every d-dimensional, symmetric polytope with $2 n$ facets is a section of C^{n}. For instance, the d-dimensional octahedron is a (nonregular) section of $C^{2 d-1}$ and it has only $2 d$ vertices.

Proof of Corollary 4. We may clearly suppose that the vectors $a_{1}, \ldots, a_{n} \in B^{d}$ are in general position, say their entries are algebraically independent over the rationals. Put

$$
A=\left\{x \in \mathbf{R}: \sum_{i=1}^{n} x_{i} a_{i}=0\right\} \in \mathscr{A}^{(n-d)}
$$

$P=A \cap C^{n}$ is a regular section because the points a_{1}, \ldots, a_{n} are in general position. By Corollary 2, |vert $P \mid \geqq 2^{n-d}$. To each vertex x^{0} of P there corresponds a sign sequence $\varepsilon_{1}, \ldots, \varepsilon_{n}$ such that $\varepsilon_{i}=x_{i}^{0}$ if $\left|x_{i}^{0}\right|=1$ and $\left\|\sum_{i}^{n} \varepsilon_{i} a_{i}\right\| \leqq \sqrt{d}$. This is a simple geometric fact the proof of which is left to the reader. On the other hand any sign sequence can correspond to at most $\binom{n}{d}$ vertices of P. (One can slightly improve this bound, but it would not influence the order of magnitude. It is easy to construct an example where a sign sequence corresponds to $\binom{n-1}{d}$ vertices of P.) This shows that at least $2^{n-d} /\binom{n}{d}$ vectors out of the 2^{n} vectors $\sum_{i=1}^{n} \varepsilon_{i} a_{i}\left(\varepsilon_{i}= \pm 1\right)$ lie in the ball $\sqrt{d} B^{d}$.

Proof of Theorem 2. Suppose that $A \in \mathscr{A}^{d}$ and that the section $A \cap K$ is regular. For $L \in \mathscr{L}^{(n-d)}$ put

$$
x_{A}(L)= \begin{cases}1 & \text { if } A \cap L \neq \varnothing \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\sum_{L \in \mathscr{P}^{(n-d)}} x_{A}(L)=\mid$ vert $A \cap K \mid$. We show $x_{A}(L)$ satisfies the conditions of the discrete linear program (2). All we have to check is the condition

$$
\begin{equation*}
\sum_{\substack{L \subseteq \\ L \in \mathscr{L}\left(\mathcal{S N}_{(n-d)}^{n-d)}\right.}} x_{A}(L) \geqq 2 \tag{3}
\end{equation*}
$$

for each special map $\varphi: S^{n-d} \rightarrow s \operatorname{kel}_{n-d} K$. Now let φ be a special map, then, for $L \cong \varphi\left(S^{n-d}\right) x_{A}(L)=1$ iff $L \cap A \neq \varnothing$. So (3) holds iff $A \cap \varphi\left(S^{n-d}\right)$ consists of at least two pints. Consider the orthogonal complement, A^{\perp}, of A and let $\pi: \mathbf{R}^{n} \rightarrow A^{\perp}$ be the orthogonal projection. Since φ is antipodal, $A \cap \varphi\left(S^{n-d}\right)$ contains two points iff $0 \in \pi \circ \varphi\left(S^{n-d}\right)$. But $\pi \circ \varphi: S^{n-d} \rightarrow A^{\perp}\left(\cong \mathbf{R}^{n-d}\right)$, so by Borsuk's theorem there exists a $z \in S^{n-d}$ with $\pi \circ \varphi(z)=0$.

Corollary 2 follows from Theorem 2 as well. In order to see this take the special map $\varphi: S^{n-d} \rightarrow \mathrm{skel}_{n-d} C^{n}$ which is induced by some projection and consider the set of special maps $\{g \circ \varphi: g \in G\}$ where G is the group generated by the reflections of C^{n}. Clearly $L \subseteq g \circ \varphi\left(S^{n-d}\right)$ for exactly 2^{n-d+1} elements $g \in G$ (for each fixed $L \in \mathscr{L}^{(n-d)}$) and $|\bar{G}|=2^{n}$. So summing up the inequalities

$$
\sum_{L \cong g \circ \varphi(S n-d)} x_{A}(L) \geqq 2
$$

for every $g \in G$ we get $\sum_{L} x_{A}(L) \geqq 2^{d}$. This implies $M \geqq 2^{d}$. The same method gives Corollary 2^{\prime} as well. Indeed, if the set $\left\{L \in \mathscr{L}^{(n-d)}: L \cap A \neq \varnothing\right\}$ contains two faces, L_{1} and L_{2} that are not parallel, then one can find a special map φ (induced by same projection) so that both $L_{1}, L_{2} \subseteq \varphi\left(S^{n-d}\right)$. Consequently

$$
\sum_{L \subseteq \varphi\left(S^{n-d}\right)} x_{A}(L) \geqq 4>2
$$

This implies $M>2^{d}$.
To see that Corollary 5 holds we use the method of proof of Theorem 2. The $(n-d+1)$-dimensional subspace $x_{i_{1}}=\ldots=x_{i_{d-1}}=0\left(1 \leqq i_{1}<i_{d-1} \leqq n\right)$ intersects the octahedron

$$
O^{n}=\left\{x \in \mathbf{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right| \leqq 1\right\}
$$

in an $(n-d+1)$-dimensional octahedron $O_{i_{1}, \ldots, i_{d-1}}^{n-1+1}$ whose boundary is clearly the image of a special map $\varphi: S^{n-d} \rightarrow \mathrm{skel}_{n-d} O^{n-1}$. Since the section $A \cap O^{n}$ is regular and $O_{i_{1}, \ldots, i_{d-1}}^{n-d+1}$ lies in a subspace,

$$
\sum_{L \in \varphi\left(\mathbb{S}^{n-d}\right)} x_{A}(L)=2
$$

Summing up these equalities for each such φ we get

$$
\mid \text { vert } A \cap O^{n} \left\lvert\,=\sum_{L \in Z\left(Z^{(n-d)}\right.} x_{A}(L)=2\binom{n}{d-1}\right.
$$

because every $L \in Z^{(n-d)}$ lies on the boundary of exactly one octahedron $O_{i_{1}, \ldots, \ldots, i_{d-1}}^{n-d}$.
We mention that Corollary 1 does not imply Corollary 5 (for $n \geqq 4$ and $\stackrel{1}{d}=2$ for instance). And in general, Theorem 2 seems to be stronger than Theorem 1.

Corollary 6 can be proven using a suitable set of special maps.
Proof of Theorem 3. We can suppose that $n \geqq k$. We are going to use the following formula which is a consequence of the Fubini theorem. If $X \subseteq S^{n}$ is λ_{k} measurable, then

$$
\begin{equation*}
\lambda_{k}(X)=\int_{\mathscr{A}}|X \cap A| d \mu \tag{4}
\end{equation*}
$$

where μ is the invariant measure on the set \mathscr{A} of all $(n+1-k)$-dimensional subspaces of \mathbf{R}^{n+1}, normalized suitably. Applying this formula to $X=\varphi\left(S^{k}\right)$,

$$
\lambda_{k}\left(\varphi\left(S^{k}\right)\right)=\int\left|\varphi\left(S^{k}\right) \cap A\right| d \mu \geqq \int 2 d \mu
$$

because $\left|\varphi\left(S^{k}\right) \cap A\right| \geqq 2$ for every $A \in \mathscr{A}$ as we have seen in the proof of Theorem 2. Let $\varphi_{0}: S^{k} \rightarrow S^{n}$ be an isometric imbedding of S^{k} into S^{n}. Then $\left|\varphi_{0}\left(S^{k}\right) \cap A\right|=2$ for μ-almost every $A \in \mathscr{A}$. Applying (4) again with $X=\varphi_{0}\left(S^{k}\right)$
and this proves the theorem.

$$
\lambda_{k}\left(\varphi_{0}\left(S^{k}\right)\right)=\int 2 d \mu
$$

Acknowledgement. We are indebted to A. Schrijver and Z. Szabó for the stimulating discussions on the topics of this paper.

References

[1] J. Beck, On a geometric problem of Erdős, Sárközy and Szemerédi (to appear).
[2] P. Erdő́s, Some unsolved problems in graph theory and combinatorial analysis, Combinatorial Mathematics and its Applications (Proc. Conf. Oxford, 1969) Academic Press (London and New York, 1971), 97-109.
[3] B. Grünbaum, Convex Polytopes (New York, 1967).
[4] P. McMullen (private communication, 1981).
(Received July 9, 1981)

MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
REÁLTANODA U. 13-15.
1053 BUDAPEST, HUNGARY
EÖTVÖS LORAND UNIVERSITY
INSTITUTE OF MATHEMATICS
MUZEUM KRT. 6-8
BUDAPEST, HUNGARY, H-1088

