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BORSUK'S THEOREM AND THE NUMBER OF 
FACETS OF CENTRALLY SYMMETRIC POLYTOPES 

I. BARONY (Budapest) and L. LOVASZ (Szeged), corresponding member of the Academy 

1. Introduction 

Let  C"={x~R": Ix~]<-i i=1 ,  . . . ,n} be the n-dimensional cube and A be a 
d-dimensional subspace of R" having no point in common with the ( n - d - 1 ) -  
dimensional faces of C". We want to find a lower bound on the number of vertices 
of the polytope A A C". More generally, given an n-dimensional centrally symmetric 
polytope K (whose center is at the origin) and a d-dimensional subspace A c R " ,  
find lower bound on the number of vertices of  A•K.  We are going to prove two 
theorems concerning this question. These theorems have several interesting corol- 
laries, for instance the following "lower bound"-type one. Every d-dimensional, 
centrally symmetric simplicial polytope has at least 2 a facets. (In fact this theorem 
is equivalent to our main result when K=C".) 

This question was motivated by the following problem of Erd6s [2]. Given 
al, ..., a, ERa vectors of  at most unit length, at least how many of the 2" vectors 

e~ai (ei = + 1 or - 1) lie in the ball ]/-dB a, where B a is the euclidean unit ball of 
i=1 d 

R a. Erd6s conjectured that this number is at least c(d)2nn --y for some positive 
constant c(d) depending only on d. This conjecture has been proved very recently 
by J. Beck [1]. In this paper we do not contribute to this problem because our results 

/ 1  \ 

wou, a im ,y on,y t at th~   mber in q.e  on a, ,eas  +/l J 

In the proofs we shall need Borsuk's theorem on antipodal maps. A continuous 
map ~0: S " + R "  is said to be antipodal if ~0 ( -x )= -~0 (x )  for every xCS n. 

BORSUK'S THEOREM. I f  re<n, then there is no antipodal map ~o: S ' + S  m. 

This theorem is equivalent to the following. 

I f  ~o: S"+R" is an antipodal map, then there exists an xqS" with o ( x ) = 0 .  

We shall prove the following extension of Borsuk's theorem. 

I f  ~o: S " + S  m is antipodal, then the n-dimensional measure of  ~o(S") is n o t  
less than the (n-dimensional) measure of S +. 

2. Notation and results 

Let K be a convex polytope in R". The support of xEK is defined as the mini- 
mal face of K containing x. A face is understood to be closed. If  x lies in OK, the 
boundary of  K, then t (x )=t (x ,  K) denotes the set of outer normals of unit length 
to K at x. It is clear that t ( x ) c S  "-1 is nonempty. The set t(x) consists of one point 
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if the boundary of K is smooth at x. The d-dimensional outer angle of K 
at x (d=  1, 2, . . . ,  n) is defined as 

~(x,  K) - ,~_~(t(x)) 
2d_l(Sd-1) ' 

where 2d-~ is the (d-1)-dimensional Lebesgue measure in R" and S d-~ is supposed 
to be isometrically imbedded into R". Obviously, 

{~  if the support of x is more than (n-d)-dimensionaI,  
C~a(X, K ) =  _ , if  the support of  x is less than (n-d)-dimensional .  

Let d (a) denote the set of d-dimensional subspaces of  R". We shall consider 
sections of  type A O K  where K c R "  is a centrally symmetric n-dimensional poly- 
tope (with center at the origin) and A E d  (d). A section A AK is called regular 
if A has no point in common with the ( n - d -  1)-dimensional faces of  K. 

THEOREM 1. Let K be a centrally symmetric, n-dimensional polytope and AE d ~a)" 
Then 
O) Z ~.(x, K) >= 1 

x E vert (A (1 K) 

where vert (A OK) is the set of  vertices of A OK. 

COROLLARY 1. I f  A OK is a regular section, then 

1 
Ivert (A N K)] => - -  

~AK) '  

where ~.d(K)=max {c~a(x,K): the support of  x is (n-d)-dimensiona[}. 

COROLLARY 2. Any regular, d-dimensional section of  C" has at least 2 d vertices. 

COROLLARY 3. Any d-dimensional, centrally symmetric, simpHcial polytope has 
at least 2 d facets. 

tors out of  the 2" vectors ~ eia~ (e i - -+  1 or - 1 )  lie in the ball 1/-dB d. 
i = 1  

Let ~O'-d)=2~("-e~(K) be the set of all (n-d)-dimensional  faces of K. To 
present our next theorem we define a map cp: s"-e-~-skel._dK to be special if 

(i) rp is antipodal 
(ii) for each LE.LP ("-d) either L c 9 ( S  "-d) or intL( ' lq~(S~-d)=|  

Here int L denotes the relative interior of the face L. 
We mention that some projections ~: R'-~A (where A E d  ("-d+l)) induce 

a special map q~: S"-d~s kel,_ d K in a natural way. Suppose that zc is a projec- 
tion such that the image of  every LE& ~ is (n -d+l ) -d imens iona l .  Then zc, 
restricted to K is one-to-one on every face L E ~  ('-d+a). On the other hand, re(K) 
is a convex polytope whose boundary is the "same" as S "-d, and Tc has an inverse 
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on this boundary. Denoting this inverse by qo~ we have the induced special map 
q~: s"-d ~s  kel,_~ K. 

Our next theorem gives a lower bound on the number of vertices of a regular 
section of K through the following discrete linear program. 

(2) 

l minimize ~ x(L) 
L E ..La ( n -  a) 

/subject to x(L) = 0 or 1 
{ x(L) = x(--L) 

LC -d )  
L C ~ ( S  n - d )  

(VL), 
(VL), 
(V~o special). 

Denote the minimum of this problem by M. In other words, M is the minimum size 
of a centrally symmetric set of (n-d)-faces of K meeting all special images of S "-d. 

THEOREM 2. Every regular section of  a centrally symmetric n-dimensional poly- 
tope K has at least M vertices. 

Corollaries 2, 3 and 4 follow from this theorem as well. Moreover we can 
sharpen Corollary 2 (and, similarly Corollary 3): 

COROLLARY 2". Any regular d-dimensional section of  C" has at least 2 d vertices. 
Equality holds i f  and only i f  the section is a d-dimensional parallelepiped. 

Further we have 

COROLLARY 5. Every d-dimensional regular section of  the d-dimensional octa- 

hedron has exactly 2 ( d n l  l vertices. 

COROLLARY 6. Every 2-dimensional regular section of  the dodecahedron (icosa- 
hedron) has at least 6 (resp. 10) vertices. 

The proof of Theorem 1 will be based on the following extension of Borsuk's 
theorem. 

THEORE~I 3. I f  q~: S k i S  n is an antipodal map, then 2k(q~(Sk))>=2k(sk). Here 
2k is the k-dimensional Lebesgue measure (both in R k+l and R "+1) normalized so 
that 2k(S k) equals the k-dimensional mesaure of  any copy of  S k isometrically imbedded 
into S k. 

Let us mention two open problems: The first one arises from an attempt to 
find an alternative proof of Theorem 3. Let K c R "  be a symmetric convex polytope 
and ~o: vert K---R"- {0} such that for every vertex v, if Vl, ..., v, are the neighbours 
of v then there exist coefficients 21, ..., 2r>0 such that 

~(v) = ~1~(vl)+...  + Le(v , ) .  

Then we conjecture that ~o(vert K) lies in an n-dimensional subspace of R m. This 
conjecture would imply Theorem 3. 

To present the second problem write fk(P) for the number of k-dimensional 
faces of the polytope P. Suppose P is symmetric, simple and d-dimensional with 
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2n facets. The lower bound theorem would say that f ( P )  is not less than a function 
of d, n and k. An obvious guess for that function is 

fo(P) >= 2d+2(n-d)(d-1), 

A(P) > 2d-k (d)-{-2( d)(kdl )  = n -  for l<=k<-d-1. 

This is supported by a kind communication of P. McMullen [4]. If the guess is 
correct, the minimal polytopes would be obtained from the cube by successive centrally 
symmetric truncations of vertices. 

3. Proofs 

PROOF OF THEOREM 1. Let us choose an e>0 such that i f L  is a face of K and 
ANL=~Z, then AN(L+eB")=O. Such an e exists because each face of K is 
compact. 

Put now K,=K+eB n and let S d-1 be the unit sphere of the subspace A. The 

Y is one-to-one and antipodal. We map n: ANOK~S d-1 defined by n(Y)=,-~lr 

define a map q~:Sa-l-~S ~-1 by ~o(z)=t(n-l(z), K,). Since K, is smooth at every 
point of its boundary, ~o is well defined, continuous and antipodal. Theorem 3 then 
implies 

~d- l (S  d-l) <-- ,~d-l(~o(S"-l)) = ,~d_l(t(A NaK~, K~)). 
Claim. t(ANOK~, K~)C= Ut(intL;K), where the union is taken over all faces 

L of K with LNAr  
Suppose zCt(y,K~) for some yEANOK,. Then y=x+ez where xE~K and 

zCt(x, K), as one can check easily. Write L for the support o fx  (in K), then xEint L 
and zC t (int L, K). All we have to show is that L N A ~ 0 .  Suppose that L N A = 0 ,  
then by the choice of 5, AN(L+eB")= 0 ,  too. But yEA and y=x+ezCL+eB ~, 
a contradiction. 

From this we have 

2d_~(S n-l) <-- 2d_l(t(ANOK~, K~)) ~ L n ~  o 2d_l(t(int L, K)). 

Clearly 2d_ ~ (t(intL, K))=O if dimL>n-d. Suppose AAK a regular section, 
then LNA=O for every face L with dimL<n-d. Thus 

2d_l(t (int L, K)) 
1-< Z L n  ~ ~d_~(S ~-1) = ~ a n ~  ~.Ax, L), 

LE.ff(n-d) 

because t(intL, K) coincides with t(x,K) for every xCintL and L N A - - O  for 
s o m e  L E ~  (n-d) if and only if AAL is a vertex of ANK. 

Finally, if A NK is not a regular section, then some member of the left hand 
side of (1) equals + co. 

Corollary 1 is an immediate consequence. 

PROOF OF COROLLARY 2. It is easy to see that %(x, C")=2 -~ if the support 
of x is (n-d)-climensional. Using Corollary 1 this fact implies the result. 

Ac ta  Mathemat~ca A c a d e m i a e  Sc~ent iarum Hungar icae  40, 2982 



NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES 327 

PROOF OF COROLLARY 3. It is easy to check and actually well known [3] that 
every d-dimensional, centrally symmetric and simple polytope is a regular section 
of C" for some n. So Corollary 2 says that every d-dimensional, centrally symmetric 
and simple polytope has at least 2 d vertices. Dualizing this statement we get 
Corollary 3. 

Here we mention that CoroUary 2 does not hold for non-regular sections. 
This follows from the fact that every d-dimensional, symmetric polytope with 2n 
facets is a section of C ". For instance, the d-dimensional octahedron is a (non- 
regular) section of C 2d-~ and it has only 2d vertices. 

PROOF OF COROLLARY 4. We may clearly suppose that the vectors al . . . .  , a, CB a 
are in general position, say their entries are algebraically independent over the 
rationals. Put 

i=1  

P = A  NC" is a regular section because the points ax . . . .  , a. are in general position. 
By Corollary 2, lvertPl=>2"-d. To each vertex x ~ of P there corresponds a sign 

sequence ~1, ..., e, such that ei-- xi " if lx~l = 1 and e~ai ~ 1/d. This is a simple 

geometric fact the proof of which is left to the reader. On the other hand any sign 

sequence can correspond to at most ( d )  vertices of P. (One can slightly improve 

this bound, but it would not influence the order of magnitude. It is easy to construct 

a n e x a m p l e w h e r e a s i g n s e q u e n c e c o r r e s p o n d s t o ( n d l l v e r t i c e s o f P . ) T h i s s h o w s  

that at least 2" -d / (d )vec to rs  out of the  2" vectors S ~,a, (e,= _+l) lie in the ball 
i=1 

r 

PROOF OF THEOREM 2. Suppose that A E ~  ca and that the section A N K  is 
regular. For L 6 s  zt"-n) put 

{; if A N L ~ ,  
xA(L) = 

otherwise. 

Clearly, Le,.~._dXA(L)=[vertANK[.__ We show xa(L) satisfies the conditions 

of the discrete linear program (2). All we have to check is the condition 

(3) c ~ .  xA(L) ~= 2 
L=cp(S -a) 

for each special map ~0: S"-d-*s kel,-d K. Now let ~0 be a special map, then, for 
LC=~o(S "-a) xa (L)= l  iff L N A ~  0 .  So (3) holds iff ANtp(S  "-'a) consists of at 
least two pints. Consider the orthogonal complement, A • of A and let n: R"~A • 
be the orthogonal projection. Since tp is antipodal, AN~o(S "-a) contains two 
points iff 06no~o(S~-a). But ~zotp: S"-a-~A z (~_R"-a), so by Borsuk's theorem 
there exists a zES "-a with nolo(z)=0. 
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Corollary 2 follows from Theorem 2 as well�9 In order to see this take the spe- 
cial map ~0: S"-e-~s kel,_a C ~ which is induced by some projection and consider 
the set of special maps {goq~: gEG} where G is the group generated by the reflec- 
tions of C ". Clearly L~gotp(S "-a) for exactly 2 "-a+~ elements gEG (for each 
fixed LE~ cP(n-d)) and [G]=2". So summing up the inequalities 

XA (L) = > 2 
C n L=O o q,(S - a )  

for every gEG we get ~XA(L)=>2 a. This implies M ~ 2  a. The same method 

gives Corollary 2' as well. Indeed, if the set {LEA~ Lf-IA# O} contains two 
faces, L~ and L~ that are not parallel, then one can find a special map (p (induced by 
same projection) so that both L1, L2c=9(S"-n). Consequently 

c Z xA(L) - ->4>2.  
L=Ko(S.-a) 

This implies M > U .  
To see that Corollary 5 holds we use the method of proof of Theorem 2. The 

�9 = z l  < t d -  1 = n) intersects the (n -d+l ) -d imens iona l  subspace xil . . . .  Xia_~=O (1 < "  " -< 
octahedron 

O" = xERn:  Ix, l <= 1 

in an (n-d-t-1)-dimensional octahedron o "-d+~ whose boundary is clearly 
the image of a special map q~: S"-d-~S keln_ a O". Since the section AN O" is 
regular and O,.-d+~. lies in a subspace, 

~ I i ~  . . . ,  Id--I 

Z xA(L) = 2. 
LE tP(S n-d) 

Summing up these equalities for each such q) we get 

lvertANO"l = z~ x a ( L ) = 2  d - 1  ' 
LEZ(n-d 

because every LEZ ('-a~ lies on the boundary of exactly one octahedron O,-d+l V i l ,  �9149 f d -  1 " 
We mention that Corollary 1 does not imply Corollary 5 (for n_->4 and d = 2  

for instance). And in general, Theorem 2 seems to be stronger than Theorem 1. 
Corollary 6 can be proven using a suitable set of special maps. 

PROOF OF THEOREM 3. We can suppose that n>=k. We are going to use the 
following formula which is a consequence of the Fubini theorem. If  Xc=S" is 
2 k measurable, then 
(4) 2k(X) = f [XNAI d# 

where # is the invariant measure on the set ~1 of all (n+ l -k ) -d imens iona l  sub- 
spaces of R "+1, normalized suitably. Applying this formula to X=~o(Sk), 

= f ko(s*)nAI _~ f2dm 
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because [~o(Sk)fqA]->2 for every A ~ d  as we have seen in the proof of Theorem 2. 
Let cpo: Sk-+S" be an isometric imbedding of S k into S n. Then ko0(Sk)~Al--2 
for p-almost every ACd.  Applying (4) again with X=cPo(S k) 

2k(q~o(sk)) = f 2dp, 
and this proves the theorem. 

Acknowledgement. We are indebted to A. Schrijver and Z. Szab6 for the sti- 
mulating discussions on the topics of this paper. 
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