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Abstract. In this note we discuss Benjamini-Schramm (or local) convergence
for sequences of finite graphs of bounded degree. We prove a continuity result
on the expected spectral measure on sofic random rooted graphs. In particular,
we prove that the spectral measure converges for every interval of the real line,
i.e., the integrated density of states converges pointwise.

As an application we show how this implies the original Lück Approxima-
tion theorem for the growth of Betti numbers on covering towers of complexes.
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1. Introduction

2. Benjamini-Schramm convergence

2.1. The space of edge labeled rooted graphs. For an integer D > 0 let
GD denote the set of (isomorphism classes of) connected, undirected graphs where
every vertex has at most D neighbours, together with a labeling function E(G)→ Z
such that every label has absolute value at most D.

Let RGD denote the set of graphs G in GD together with a distinguished vertex,
called the root of G. For G1, G2 ∈ RGD let the rooted distance of G1 and G2 be
1/k where k is the maximal integer such that the k-balls around the roots of G1
and G2 are isomorphic, as rooted edge-labeled graphs. The rooted distance turns
RGD to a compact, totally disconnected metric space.

2.2. Random rooted graphs, neigbourhood statistics and local con-
vergence. By a random rooted graph of degree D we mean a Borel probability
distribution on RGD. Since RGD is a complete metric space, the space of Borel
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probability measures is compact in the weak topology. We say that a sequence of
random rooted graphs Gn defined on RGD converges to G, if it converges in the
weak topology, that is, if for every continous function f : RGD → R we have

lim
n→∞

∫
RGD

f(x)dλn(x) =

∫
RGD

f(x)dλ(x)

where λn is the distribution of Gn and λ is the distribution of G.
The set of k-neighbourhoods of the root (k > 0) give us a closed-open base of

RGD, and in the presence of a clopen base, weak convergence of measures translates
to convergence of the measures of the base sets. This gives us the following. For a
random rooted graph G, a finite rooted graph α and k > 0 let

P (G,α) = P (B(o, k) ∼= α)

be the probability that the k-ball around the root of G is isomorphic to α. Then
Gn converges to G if and only if for all finite rooted graphs α and k > 0, we have

lim
n→∞

P (Gn, α) = P (G,α).

That is, weak convergence means convergence in neigbourhood sampling statistics.
Any finite graph G ∈ GD gives rise to a random rooted graph by assigning the

root of G uniformly randomly. We denote the distribution of this random rooted
graph by λG.

Definition 1. We say that a sequence of finite graphs Gn ∈ GD is Benjamini-
Schramm convergent, if λGn

weakly converges, or equivalently, if P (Gn, α) con-
verges for every sample α. The local limit of Gn is defined as the weak limit of
λGn .

This convergence notion has been introduced by Benjamini, Schramm [3], Al-
dous and Lyons [2].

2.3. Examples for local convergence. The easiest example is cycles of
length tending to infinity: these converge to the infinite rooted line. Also, the
n × n grid converges to the infinite rooted square grid. It takes a bit more work
to construct a sequence of graphs that converges to the infinite d-regular tree. As
we shall see later, any chain of normal subgroups with trivial interection in a free
group provides such sequences. Another way is to let Gn to be a random d-regular
graph on n vertices.

2.4. Covering towers. One of the most general examples for local conver-
gence is covering towers. A covering tower is a sequence Gn ∈ RGD of finite
connected graphs, such that there is a covering map (a surjective map which is a
local isomorphism) from Gn+1 to Gn (n > 1). The root is irrelevant here.

For every k > 0, let

Xk = {G ∈ RGD | d(o, x) ≤ k for all x ∈ V (G)}
that is, the set of possible k-balls in RGD. Then Xk is finite and we can introduce
a ‘covering hierarchy’on Xk as follows: we say that G1 ∈ Xk covers G2 ∈ Xk is
there is a covering map from G1 to G2 that maps the root of G1 to the root of G2.
This defines a partial ordering < on Xk. Now, for any covering map G → H, the
masses

{P (G,α) | α ∈ Xk} and {P (H,α) | α ∈ Xk}
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travel along this ordering, i.e., for any α ∈ Xk, we have∑
β>α

P (G, β) ≤
∑
β>α

P (H,β)

Since Xk is finite, this implies that for a covering tower, the masses converge, in
particular, every covering tower is Benjamini-Schramm convergent.

2.5. Unimodularity. Of course, λG of a finite graph G, or a weak limit of
such λG-s can not be just any distribution on RGD. The only known condition so
far, that these measures automatically satisfy is called unimodularity. A vague, but
short description: a graph is unimodular, if choosing a uniform random directed
edge and then reverting it gives us a uniform random directed edge.

To make this precise, let λ be a probability distribution on RGD. We introduce
a new space

−−−→RGD, the space of flagged graphs as follows. A flagged graph is a rooted
graph with a directed edge starting from the root, called the flag. There is a natural
map from

−−−→RGD to RGD by forgetting the directed edge. We can lift the measure λ
to a measure

−→
λ on

−−−→RGD as follows: we take a λ-random G and flag it in all possible
ways; the corresponding measure is

−→
λ . Note that

−→
λ is not a probability measure

anymore, except when G is d-regular, because higher degrees get more attention —
this can be helped by biasing, if one wants to. There is a distinguished operator ∗

on
−−−→RGD that reverses the direction of the flag and moves the root to the other end

of the flag. We say that the measure λ is unimodular, if
−→
λ is invariant under ∗.

What are the graphs G such that the Dirac measure on G is unimodular? It is
easy to see that such a graph has to be vertex transitive. Somewhat surprisingly
though, not every vertex transitive graph is unimodular. A nice counterexample
is the so-called grandmother graph, which can be described as follows. Take a 3-
regular tree and direct its edges towards a chosen boundary point. Connect every
vertex to its unique second neighbour with respect to this direction (its grand-
mother) and then forget all the directions. This new graph will be 8-regular and
vertex transitive, but not unimodular [10]. It is a nice exercise to check this against
the precise definition of unimodularity.

Unimodularity of vertex transitive graphs also has other equivalent characteri-
zations. One such is that for any two vertices x, y ∈ V (G), the orbit of x of under
the stabilizer of y in Aut(G) has the same size as the orbit of y of under the sta-
bilizer of x in Aut(G). Another is that Aut(G) is a unimodular locally compact
group, that is, its left Haar measure is also right invariant. For details see [10].

One can easily show that for any finite graph G, λG is unimodular. Also, every
Cayley graph is unimodular. Another rich source of unimodular random graphs
is percolation theory. For instance, let G be the connected component of the root
under an independent edge percolation of the lattice Zd. Then G is unimodular.
This works for other Cayley graphs as well.

2.6. Soficity. A random rooted graph G is sofic, if it can be obtained as the
limit of finite graphs, that is, if the distribution of G is in the weak closure of the
set

{λG | G is finite} .
It is easy to see that unimodularity is preserved by taking a weak limit. Thus,

every sofic random rooted graph is unimodular. A famous open problem is whether
the converse also holds. This is already open for Cayley graphs.
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A group is sofic if (one of) its Cayley graphs are sofic respecting additional
labels coming from a finite generating set. The notion has been introduced by
Gromov and been further clarified by Weiss [14]. It is easy to see that amenable
and residually finite groups are sofic. Besides their intristic interest, sofic groups
are investigated for two reasons. On one hand, some deep conjectures in group
theory, like Gottschalk’s Conjecture, Kaplansky’s Direct Finiteness Conjecture, the
Determinant Conjecture and the Connes Embedding Conjecture hold for all sofic
groups. On the other hand, no one knows a group that is not sofic. See [12] and
[6] for details.

3. Spectral measure

3.1. The adjacency operator. Let G ∈ RGD and denote by `2(G) the set
of square summable real functions on the vertex set V (G). Then one can associate
the adjacency operator A : `2(G)→ `2(G) as follows. For f ∈ `2(G) and x ∈ V (G)
let

(Af)(x) =
∑

(x,y)∈E(G)

l((x, y))f(y),

where l : E(G)→ Z denotes the labelling function associated with G. Then A is a
self-adjoint, bounded operator with ‖A‖ ≤ D2. Note that A is independent of the
root of G.

3.2. The eigenvalue distribution of a finite graph and its moments.
When G is finite of size n, then A is an n by n symmetric matrix and by the
spectral theorem, `2(G) has an orthonormal base that consists of A-eigenvectors.
Let λ1 ≥ . . . ≥ λn be the eigenvalues and let b1, . . . , bn be the orthonormal eigenbase
with Abi = λibi. Let the eigenvalue distribution

µG =
1

n

n∑
i=1

δλi

where δx denotes the Dirac measure concentrated on x. One can easily compute
the k-th moment of µG as∫

R
xkdµG(x) =

1

n

n∑
i=1

λki =
1

n
tr(Ak) =

1

n

∑
o∈V (G)

mG,o,k

where mG,o,k denotes the number of walks in G of length k starting and ending at
o, counting with multiplicities, that is,

mG,o,k =
∑

(e1,...,ek)
is a walk o→o

k∏
i=1

l(ei) = Ako,o.

where Ako,o is the (o, o)-entry of the k-th power of the matrix A. Thus mG,o,k only
depends on the k-neighbourhood of o in G.

3.3. The spectral measure of a graph at a vertex. When G is infinite,
the above notions do not make sense, in particular, there may not be any eigenvalues
or eigenfunctions of A. However, it makes sense to talk about the spectral measure
µG,o with respect to the root o of G. One can take a pragmatic point of view, define
µG,o by setting its k-th moment to be mG,o,k and showing that the corresponding
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moment problem can be solved in a unique way. Alternatively, the spectral theorem
for bounded self-adjoint operators gives a projection valued measure{

PX : `2(G)→ `2(G) | X ⊆ R Borel
}

such that for any polynomial p, we have

p(A) =

∫
R
p(x)dPx

where Px = P(−∞,x]. The projection PX : `2(G)→ `2(G) can be thought of as the
orthogonal projection to the ‘span of eigenvectors with eigenvalues in X’. For any
fixed vector f ∈ `2(G) one can define a measure µG,f by setting

µG,f (X) = 〈PXf, f〉 (X ⊆ R Borel)
that is, we assign the length square of the projection of f .

Definition 2. Let G ∈ RGD. The spectral measure of G at o ∈ V (G) is

µG,o = µG,χo

where χo is the characteristic function of o.

One can easily show that µG,o is a probability measure and applying p(x) = xk

we see that the k-th moment of µG,o is equal to mG,o,k.
The value µG,o({0}) is of special interest and we do not need the spectral

theorem to describe it. Indeed, let v denote the orthogonal projection of χo to the
closed subspace kerA. Then we have

(MAX) µG,o({0}) = 〈v, v〉 = max
{
f(o)2 | f ∈ kerA, 〈f, f〉 = 1

}
.

In general, µG,o may depend on the choice of the root o. However, when
G is vertex transitive (for instance, when G is a Cayley graph), this measure is
independent of o and is called the spectral measure of G, denoted by µG.

Spectral measure of Cayley graphs has received considerable attention in the
literature. In particular, the spectral measures of certain lamplighter groups (with
respect to various generating sets) have been explicitely computed (xxx). An in-
teresting problem here is due to Atiyah (xxx) who asked whether the presence of
an atom in the spectral measure implies that the group has torsion.

3.4. The expected spectral measure. In the case when G is finite, the
definition of spectral measure specializes to

µG,o =

n∑
i=1

〈χo, bi〉2 δλi =

n∑
i=1

bi(o)
2δλi .

Using the orthonormality of bi we get

1

n

∑
o∈V (G)

µG,o =
1

n

∑
o∈V (G)

n∑
i=1

bi(o)
2δλi =

=
1

n

n∑
i=1

 ∑
o∈V (G)

bi(o)
2

 δλi = µG

which can be also formulated as

µG = E(µG,o)
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where o is a uniform random vertex of G. Now this definition makes sense for an
arbitrary random rooted graph.

Definition 3. Let G be a random rooted graph. We define the expected spectral
measure of G as

µG = E(µG,o)

where o is the root of the random graph G.

We have seen above that when G is finite, µG equals the eigenvalue distribution
of G, so there is no ambiguity in the definition of µG.

4. Lück’s Approximation Theorem

4.1. The expected spectral measure is local. Let R be an invariant of
finite graphs. Abstractly, this means a map from the set of finite graphs to a
topological space —most often the real line. We call R local, if R(Gn) converges
whenever Gn is a locally convergent sequence of finite graphs.

A trivial example for a local invariant is the average degree. A much less
trivial example is the matching ratio, that is, the size of a maximal matching in
G normalized by the size of G. This has been first proved in [11], see also [5]
where the limit of the matching ratios is identified with a matching invariant of the
limiting random rooted graph.

A quick example for a non-local invariant is the independence ratio, that is,
the maximal size of an independent subset, normalized by the size of the graph.
The counterexample is the standard one in this field: both the random d-regular
graph on n points and the random d-regular bipartite graph on n points converge
to the d-regular tree, but the independence ratio of the random d-regular graph is
bounded away from 1/2.

Another interesting invariant, that is connected to statistical physics via the
so-called Potts model, is the coloring entropy

tG(q) =
log (# of legal colorings of G with q colors)

|G|
where a legal coloring is a vertex coloring where no two adjacent vertices have
the same color. Borgs, Chayes, Kahn and Lovász [4] showed that tG(q) is a local
invariant for all q greater than twice the maximal degree. Recently Abert and
Hubai [1] showed that the real moments of the uniform distribution on the roots
of the chromatic polynomial are also local, which in particular implies the above
result on coloring entropy.

Here we show that the eigenvalue distribution (or, more generally, the expected
spectral measure for sofic random rooted graphs) is a local invariant, both in the
weak topology on probability measures and the topology obtained by evaluating
the measure of a point.

Theorem 4 (Lück Approximation for Graphs). Let Gn be a sequence of sofic
random rooted graphs converging to G. Then µGn weakly converges to µG and

lim
n→∞

µGn
({x}) = µG({x})

for every x ∈ R.
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Weak convergence and convergence at x = 0 was proved by Lück in the case
when Gn is a covering tower of finite Cayley graphs, where the corresponding chain
of normal subgroups has trivial intersection 4. Farber [7] later extended this for
subgroup chains where the Schreier graphs converge to the Cayley graph of the
fundamental group. The second author [13] further extended this for all x ∈ R and
an arbitrary sofic approximation of the fundamental group. We mainly follow the
arguments in [13].

Theorem 4 leads to the following interesting corollary.

Corollary 5. Let G be a sofic random rooted graph. Then every atom of µG is an
algebraic integer.

This in particular is true for the spectral measure of any sofic Cayley graph,
which was first proved in [13]. This corollary may prove to be useful in finding a
unimodular random rooted graph (or even a Cayley graph) that is not sofic.

Now we start to prove Theorem 4 with a series of lemmas. The first one is an
easy exercise; we skip the proof.

Lemma 6. Let X be a compact space and let µn be a sequence of probability mea-
sures on X that weakly converges to µ. Then for any closed set Y ⊆ X, we have

lim sup
n→∞

µn(Y ) ≤ µ(Y ).

For x ∈ R and ε > 0 let

Ix,ε = (x− ε, x+ ε)\{x}
The next lemmas give uniform bounds on the spectral measure of Ix,ε for sofic

random rooted graphs.

Lemma 7. Let α be an algebraic integer. Then

µG({α}) ≤ 1

deg(α)

For any finite graph G ∈ GD.

Proof. By the irreducibility of the minimal polynomial of α, µG({α}) =
µG({α′}) for any Galois conjugate of α. �

Lemma 8. For every n > 0 there are only finitely many algebraic integers α of
degree at most n such that all Galois conjugates of α lie in [−D2, D2].

Proof. We get an upper bound on the degree and the absolute values of the
coeffi cients of the characteristic polynomial in terms of n and D. �

The following lemma is the core of Theorem 4. A more explicit version using
Diophantine approximation has been proved in [13] but to conclude Theorem 4 this
version suffi ces.

Lemma 9. Let D > 0 be an integer. Then for every x ∈ [−D2, D2] there exists a
sequence εk of positive real numbers converging to 0, such that

µG(Ix,εk) ≤
(

log(2D2)

log(1/2εk)
+

1

k

)1/2
for all sofic random rooted graphs G and k > 0.
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Proof. Let Xk be the set of algebraic integers α of degree k such that all
Galois conjugates of α are in [−D2, D2]. By Lemma 8, Xk is finite. Let εk < 1/k
be a positive number such that Ix,εk ∩ Xk = ∅. Let G be a sofic random rooted
graph. We claim that the inequality of the lemma holds.

Let us first assume that G is finite. For abbreviation, denote ε = εk, I = Ix,εk ,
µ(I) = µG(Ix,εk) and µ(y) = µG({y}) for y ∈ R. Let A be the adjacency matrix of
G and let λ1 ≥ . . . ≥ λn be the eigenvalues of A. Then |λi| ≤ D2. Let

m =
1

n2
|{(i, j) | 1 ≤ i, j ≤ n, λi = λj 6= x}| =

∑
λ∈I

µ2(λ).

Then by the definition of ε and Lemma 7, we have µ(λ) < 1/k for all λ ∈ I, which
yields

(A) m <
1

k

∑
λ∈I

µ(λ) ≤ 1

k

and the number of pairs

|{(i, j) | λi, λj ∈ (x− ε, x+ ε), λi 6= λj}| = (n(µ(I) + µ(x)))
2 − n2(m+ µ2(x))

= n2(µ2(I) + 2µ(x)µ(I)−m).

The product ∏
1≤i,j≤n
λi 6=λj

(λi − λj)

is invariant under Galois-conjugation and hence it is a non-zero integer. So we have

1 ≤

∣∣∣∣∣∣∣∣
∏

1≤i<j≤n
λi 6=λj

(λi − λj)

∣∣∣∣∣∣∣∣ ≤ (2ε)n
2(µ2(I)+2µ(x)µ(I)−m)(2D2)n

2

Using (A) this yields

µ2(I) + 2µ(x)µ(I) ≤ log(2D2)

log(1/2ε)
+m <

log(2D2)

log(1/2ε)
+

1

k

which gives

µ(I) ≤
(
µ2(x) +

log(2D2)

log(1/2ε)
+

1

k

)1/2
− µ(x) ≤

(
log(2D2)

log(1/2ε)
+

1

k

)1/2
as claimed.

We proved the Lemma for finite graphs. Now the same follows for any sofic
random rooted graph G, using Lemma 6 on the complement [−D2, D2]�Ix,εk . �

We are ready to prove Theorem 4.

Proof of Theorem 4. For any unimodular random graph H, the k-th mo-
ment of µH equals∫

R
xkdµH(x) = E

(∫
R
xkdµH,o(x)

)
= E (mH,o,k)

where o is the root of H. But mH,o,k only depends on the k-neighbourhood of o
in H, so convergence in sampling probability implies that for all k ≥ 0, the k-th
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moment of µGn
converges to the k-th moment of µG. Hence, µGn

weakly converges
to µG.

We need to prove pointwise convergence. In short, weak convergence of µGn

implies pointwise convergence, except when there is a positive mass traveling into
0, which is impossible by Lemma 9. More precisely, by Lemma 6 we have

lim sup
n→∞

µGn
({x}) ≤ µG({x})

and
lim inf
n→∞

µGn
((x− ε, x+ ε)) ≥ µG((x− ε, x+ ε))

for all ε > 0. By Lemma 9, there exists εk > 0 with εk → 0 (k →∞) such that for
all n we have

µGn
(Ix,εk) ≤

(
log(2D2)

log(1/2εk)
+

1

k

)1/2
.

This gives us

lim sup
n→∞

µGn
({x}) ≤ µG({x}) ≤ µG((x− εk, x+ εk))

≤ lim inf
n→∞

µGn
((x− εk, x+ εk))

≤ lim inf
n→∞

µGn({x}) +

(
log(2D2)

log(1/2εk)
+

1

k

)1/2
for all k > 0. Letting k tend to infinity, this implies

lim
n→∞

µGn
({x}) = µG({x})

as claimed. �
Remark. It is natural to ask whether the Lück approximation result already holds
in the space of (deterministic) rooted graphs. Namely, whether for a sequence
Gn ∈ RGD converging to G ∈ RGD, we have µGn,on converging to µG,o, both in
weak topology and pointwise. Here on denotes the root of Gn and o the root of G.
This in particular would imply Theorem 4.

Looking at moments, it is easy to see that weak convergence holds again. How-
ever, convergence at the point 0 fails in general, as the following example shows.
Take a long cycle of odd length rooted at o. Label edges of even distance from o by
1 and −2 otherwise, except at the edge farthest away from o. Use equality (MAX)
above. We leave the reader to the details.

4.2. The point z = 0. The point z = 0 is of special interest for most of the
applications. In this case, we get a stronger result, because we can use another
measuring function, simpler than the product of λi − λj .

Lemma 10. Let G be a sofic unimodular random graph. Then for every ε > 0 we
have

µ(I0,ε) ≤
log(D)

log(1/ε)
.

Proof. It is enough to prove the Lemma for µ equal to distribution of roots of
an integer monic polynomial with all its roots in the disc of radius D. Let λ1, . . . , λn
be the roots of f . The product ∏

λi 6=0
λi
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is the first nonzero coeffi cient of f and hence is a non-zero integer. This gives

1 ≤
∏
λi 6=0
|λi| ≤ εnµ(I0,ε)Dn

which yields the lemma. �

This yields an explicite estimate on the measure of {0} in terms of the moments
of µG, assuming that the measure is supported on the real line.

Lemma 11. Let D > 1 and let µG be the spectral measure of a unimodular random
graph G. Then we have∣∣∣∣∣∣∣µG({0})−

∫
|x|≤R

(
1− x2

D2

)n
dµG(x)

∣∣∣∣∣∣∣ ≤
log(D) + 2

log(n)
.

Proof. Let

f(x) =

(
1− x2

D2

)n
.

Then f (0) = 1, 0 ≤ f(x) < f(ε) for all ε < |x| ≤ D, and |f(x)| ≤ 1 for all |x| ≤ ε.
This implies ∣∣∣∣∣∣∣µG({0})−

∫
|x|≤R

f(x)dµG(x)

∣∣∣∣∣∣∣ ≤ µG(I0,ε) + f(ε)

which, by Lemma 10, implies∣∣∣∣∣∣∣µG({0})−
∫

|x|≤R

f(x)dµG(x)

∣∣∣∣∣∣∣ ≤
log(D)

log(1/ε)
+

(
1− ε2

D2

)n

Setting ε = n−1 yields

log(D)

log(1/ε)
+

(
1− ε2

D2

)2n
≤ log(D)

log(n)
+ exp(−n2/D2)

However,

exp(−n2/D2) ≤ 2

log(n)
.

and the lemma is proved. �

In particular, this gives that if the first 2n even moments of two spectral mea-
sures of radius D are the same (or very close), then the measures of {0} differ by
at most O(1/ log n). For an interesting application, see xxx. Another consequence
is Lück’s approximation theorem, whose original proof in [8] has been stimulating
for the results in [13] and the present paper.

A simplicial complex X is periodic, if the action of Aut(X) on the vertex set
of X has finitely many orbits. Note that
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Theorem 12. Let X be a finite connected simplicial complex of dimension d with
fundamental group Γ := π1(X). Let Γ ≥ Γ1 ≥ Γ2 ≥ . . . be a chain of normal
subgroups of finite index in Γ such that ∩nΓn = 1 and let Xn = X̃/Γn where X̃ is
the universal cover of X. Then

lim
n→∞

bk(Xn)

|Γ : Γn|
= β

(2)
k (X)

where β(2)k (X) is the k-th L2-Betti number of X.

Proof. Let us denote the number of k-simplices of X by nk. For each n ∈ N,
consider the simplicial chain complex of Xn

0→ Cd(Xn)
δd→ Cd−1(Xn)

δd−1→ · · · → C0(Xn)→ 0.

Each group Ck(Xn) comes equipped with a preferred basis formed by the k-simplices.
For fixed k ∈ N, we can associate to each integer n a random rooted graph
G(k)n, whose vertices are the k-simplices of Xn. We put a Z-labelled edge bet-
ween vertices according to the matrix coffi cients of the k-th Laplace operator
∆k = δ∗kδk + δk−1δ

∗
k−1 : Ck(Xn) → Ck(Xn). It is clear that G(k)n converges to

a random rooted graph G(k)∞. Moreover, by the Hodge decomposition theorem

nk · µG(k)n({0}) =
bk(Xn)

|Γ : Γn|
,

whereas nk · µG(k)∞({0}) = β
(2)
k (X). Now, Theorem 4 for x = 0 implies the

claim. �

5. Graph sequences with unbounded degree

Phenomena such as Lück’s approximation theorem extend to sequence of finite
graphs with no degree bound if the expected degree remains bounded. We denote
by RG the Borel space of rooted, connected graphs, together with an edge labelling
E(G) → Z. For each D, we have a cannonical restriction map resD : RG → RGD,
which is defined to delete all vertices of degree more than D. We say that a
sequence of Borel probability distributions on RG is said to converge weakly if
their restrictions to RGD converge weakly for every D.

Let G be a finite graph. If the expected degree of G is bounded by D′, then
the probability that a vertex has degree more than k ·D′ is less than or equal 1/k.
In particular, removing all edges with degree more than k ·D′ will only result in a
perturbation of the adjacency matrix by rank at most |V (G)|/k.
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