Invariant Random Subgroups and their Applications

Miklós Abért

Rényi Institute, Budapest

March 28, 2014
Let Γ be a discrete group. Let Sub_Γ denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0,1\}^\Gamma$ (Chabauty).
What is an IRS

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

- Sub_{Γ} is compact. Γ acts on Sub_{Γ} continuously by conjugation.
What is an IRS

Let Γ be a discrete group. Let Sub_Γ denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0, 1\}^\Gamma$ (Chabauty).

- Sub_Γ is compact. Γ acts on Sub_Γ continuously by conjugation.

- An *Invariant Random Subgroup* (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
What is an IRS

Let Γ be a discrete group. Let Sub_Γ denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0, 1\}^\Gamma$ (Chabauty).

- Sub_Γ is compact. Γ acts on Sub_Γ continuously by conjugation.

- An *Invariant Random Subgroup* (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.

- Name is coined in [A-Glasner-Virag], but IRS’s have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).
What is an IRS

Let Γ be a discrete group. Let $\operatorname{Sub}_\Gamma$ denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0,1\}^\Gamma$ (Chabauty).

- $\operatorname{Sub}_\Gamma$ is compact. Γ acts on $\operatorname{Sub}_\Gamma$ continuously by conjugation.
- An *Invariant Random Subgroup* (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
- Name is coined in [A-Glasner-Virag], but IRS’s have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).
- Let Γ act on (X, μ) by p.m.p. maps. Then the random subgroup
 \[\operatorname{Stab}_{\Gamma}(x) \leq \Gamma \quad (x \in X \text{ is } \mu\text{-random}) \]
 is an IRS of Γ.

Lemma (A-Glasner-Virag)
Every IRS of Γ arises as the stabilizer for a p.m.p. action of Γ.

Miklós Abért (Rényi Institute)
Invariant Random Subgroups
March 28, 2014 2 / 18
Let Γ be a discrete group. Let Sub_Γ denote the set of subgroups of Γ, endowed with the product topology inherited from $\{0, 1\}^\Gamma$ (Chabauty).

- Sub_Γ is compact. Γ acts on Sub_Γ continuously by conjugation.
- An *Invariant Random Subgroup* (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
- Name is coined in [A-Glasner-Virag], but IRS’s have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).
- Let Γ act on (X, μ) by p.m.p. maps. Then the random subgroup $\text{Stab}_\Gamma(x) \leq \Gamma$ ($x \in X$ is μ-random) is an IRS of Γ.

Lemma (A-Glasner-Virag)

*Every IRS of Γ arises as the stabilizer for a p.m.p. action of Γ.***
Invariant random subgroups:

- Tend to behave like normal subgroups, rather than arbitrary subgroups

\[\text{IRS}(\Gamma), \text{the set of IRS's of } \Gamma, \text{endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.} \]
Invariant random subgroups:

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS’s

\(\text{IRS}(\Gamma) \), the set of IRS’s of \(\Gamma \), endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.
Invariant random subgroups:

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS’s

\(\text{IRS}(\Gamma) \), the set of IRS’s of \(\Gamma \), endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.
Invariant random subgroups:

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS’s

\(\text{IRS}(\Gamma) \), the set of IRS’s of \(\Gamma \), endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

Weak convergence in \(\text{IRS}(\Gamma) \):

- Translates to Benjamini-Schramm convergence of the quotient spaces
Invariant random subgroups:

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS’s

\(\text{IRS}(\Gamma)\), the set of IRS’s of \(\Gamma\), endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

Weak convergence in \(\text{IRS}(\Gamma)\):

- Translates to Benjamini-Schramm convergence of the quotient spaces
- Tends to carry over spectral information (spectral measure, \(L^2\) Betti numbers, Plancherel measure, etc)
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.

- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\bigcap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

- Problems: Normal. Chain $(SL_2(\mathbb{Z}) \mod p)$. Not a natural convergence notion (can not merge).

- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS' s.

- A sequence H_n is approximating if $\mu_{H_n} \to \mu_1$ where $\mu_1 = 1$ a.s.

- This convergence notion is equivalent to local sampling convergence: from a typical place in M_n, and looking at a bounded distance, we won't be able to distinguish M_n and \tilde{M}.

- Typically, whatever is continuous for normal chains, is expected to be continuous for this convergence notion.
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

[9x252]How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

Miklós Abért (Rényi Institute)
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1 \ (*)$. Let $M_n = \tilde{M} / \Gamma_n$.
- Problems: Normal. Chain $(\text{SL}_2(\mathbb{Z}) \mod p)$. Not a natural convergence notion (can not merge).

Suggestion: For H of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS’s. A sequence H_n is approximating if $\mu_{H_n} \to \mu_1$ where μ_1 equals 1 a.s. This convergence notion is equivalent to local sampling convergence: from a typical place in M_n, and looking at a bounded distance, we won’t be able to distinguish M_n and \tilde{M}.

Typically, whatever is continuous for normal chains, is expected to be continuous for this convergence notion.
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.

- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

- Problems: Normal. Chain $(\text{SL}_2(\mathbb{Z}) \bmod p)$. Not a natural convergence notion (can not merge).

- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS’s.
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.

- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

- Problems: Normal. Chain $(\text{SL}_2(\mathbb{Z}) \ mod \ p)$. Not a natural convergence notion (can not merge).

- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS's.

- A sequence H_n is approximating if $\mu_{H_n} \rightarrow \mu_1$ where μ_1 equals 1 a.s.
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.

- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

- Problems: Normal. Chain $(\text{SL}_2(\mathbb{Z}) \mod p)$. Not a natural convergence notion (can not merge).

- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS's.

- A sequence H_n is approximating if $\mu_{H_n} \rightarrow \mu_1$ where μ_1 equals 1 a.s.

- This convergence notion is equivalent to local sampling convergence: from a typical place in M_n, and looking at a bounded distance, we wont be able to distinguish M_n and \tilde{M}.
How to approximate the universal cover

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

- Want to approximate the universal cover \tilde{M} with compact covers M_n of M.

- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with $\cap \Gamma_n = 1$ (*). Let $M_n = \tilde{M}/\Gamma_n$.

- Problems: Normal. Chain $(\text{SL}_2(\mathbb{Z}) \mod p)$. Not a natural convergence notion (can not merge).

- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ. Use weak convergence of IRS’s.

- A sequence H_n is approximating if $\mu_{H_n} \to \mu_1$ where μ_1 equals 1 a.s.

- This convergence notion is equivalent to local sampling convergence: from a typical place in M_n, and looking at a bounded distance, we wont be able to distinguish M_n and \tilde{M}.

- Typically, whatever is continuous for normal chains, is expected to be continuous for this convergence notion.
The Lück Approximation Theorem for IRS’s

\(b_k \): \(k \)-th Betti number over \(\mathbb{Q} \); \(\beta_k^2 \): \(k \)-th \(L^2 \) Betti number.

Theorem (Lück Approximation)

Let \(M \) be a finite complex and let \(H_n \leq \pi_1(M) \) be finite index subgroups such that \(\mu_{H_n} \to \mu_1 \). Then for all \(k \) we have

\[
\lim_{n \to \infty} \frac{b_k(M_n)}{|\pi_1(M) : H_n|} = \beta_k^2(\tilde{M}).
\]

The Lück Approximation Theorem for IRS’s

\(b_k \): \(k \)-th Betti number over \(\mathbb{Q} \); \(\beta^2_k \): \(k \)-th \(L^2 \) Betti number.

Theorem (Lück Approximation)

Let \(M \) be a finite complex and let \(H_n \leq \pi_1(M) \) be finite index subgroups such that \(\mu_{H_n} \to \mu_1 \). Then for all \(k \) we have

\[
\lim_{n \to \infty} \frac{b_k(M_n)}{|\pi_1(M) : H_n|} = \beta^2_k(\tilde{M}).
\]

Gaboriau: \(L^2 \) Betti numbers of a p.m.p. action only depend on its IRS.

OPEN FOR:

- Infinite index IRS’s.
The Lück Approximation Theorem for IRS’s

\(b_k \): \(k \)-th Betti number over \(\mathbb{Q} \); \(\beta^2_k \): \(k \)-th \(L^2 \) Betti number.

Theorem (Lück Approximation)

Let \(M \) be a finite complex and let \(H_n \leq \pi_1(M) \) be finite index subgroups such that \(\mu_{H_n} \to \mu_1 \). Then for all \(k \) we have

\[
\lim_{n \to \infty} \frac{b_k(M_n)}{|\pi_1(M) : H_n|} = \beta^2_k(\tilde{M}).
\]

OPEN FOR:

- Infinite index IRS’s.
- Mod \(p \) Betti numbers.
The Lück Approximation Theorem for IRS’s

b_k: k-th Betti number over \mathbb{Q}; β_k^2: k-th L^2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let $H_n \leq \pi_1(M)$ be finite index subgroups such that $\mu_{H_n} \to \mu_1$. Then for all k we have

$$\lim_{n \to \infty} \frac{b_k(M_n)}{|\pi_1(M):H_n|} = \beta_k^2(\tilde{M}).$$

OPEN FOR:

- Infinite index IRS’s.
- Mod p Betti numbers.
- Minimal number of generators (converges on chains, but does the limit depend on the chain?). Fixed Price Problem of Gaboriau.
A countable group \(\Gamma \) is *sofic* if it admits a sequence of maps \(\phi_n : \Gamma \to \text{Sym}(n_k) \) such that for every finite subset \(S \subseteq \Gamma \), \(\phi_n \) restricted to \(S \) behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).
A countable group Γ is **sofic** if it admits a sequence of maps $\phi_n : \Gamma \to \text{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.
Sofic groups and IRS

A countable group Γ is sofic if it admits a sequence of maps $\phi_n : \Gamma \to \text{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.

Lemma

Let $\Gamma = F / N$ where F is a free group. Then Γ is sofic if and only if there exist subgroups $H_n \leq F$ of finite index such that

$$\mu_{H_n} \to \delta_N$$

where δ_N is the Dirac measure on N.

Generalized sofic question (Aldous-Lyons): is every IRS in a free group the weak limit of finite index IRS' s? Also open.
A countable group Γ is sofic if it admits a sequence of maps $\phi_n : \Gamma \to \text{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.

Lemma

Let $\Gamma = F/N$ where F is a free group. Then Γ is sofic if and only if there exist subgroups $H_n \leq F$ of finite index such that

$$\mu_{H_n} \to \delta_N$$

where δ_N is the Dirac measure on N.

Generalized sofic question (Aldous-Lyons): is every IRS in a free group the weak limit of finite index IRS’s? Also open.
A theorem on IRS’s.

For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.
For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let $\Gamma = \langle S \rangle$ and let $N \triangleleft \Gamma$ be a normal subgroup of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Cay}(\Gamma/N, S))$ if and only if N is amenable.
A theorem on IRS’s.

For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let $\Gamma = \langle S \rangle$ and let $N \triangleleft \Gamma$ be a normal subgroup of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Cay}(\Gamma/N, S))$ if and only if N is amenable.

Not true for subgroups. True for IRS’s:
A theorem on IRS’s.

For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let $\Gamma = \langle S \rangle$ and let $N \vartriangleleft \Gamma$ be a normal subgroup of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Cay}(\Gamma/N, S))$ if and only if N is amenable.

Not true for subgroups. True for IRS’s:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Sch}(\Gamma/H, S))$ a.s. if and only if H is amenable a.s.
For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let $\Gamma = \langle S \rangle$ and let $N \triangleleft \Gamma$ be a normal subgroup of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Cay}(\Gamma / N, S))$ if and only if N is amenable.

Not true for subgroups. True for IRS’s:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Sch}(\Gamma / H, S))$ a.s. if and only if H is amenable a.s.

Exercise: free groups do not admit nontrivial amenable IRS’s. So, if Γ is free and the IRS $H \neq 1$, we have $\rho(\text{Sch}(\Gamma / H, S)) > \rho(\text{Cay}(\Gamma, S))$.
A theorem on IRS’s.

For a d-regular graph let $\rho(G)$ denote the spectral radius of the random walk operator on G. When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let $\Gamma = \langle S \rangle$ and let $N \triangleleft \Gamma$ be a normal subgroup of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Cay}(\Gamma/N, S))$ if and only if N is amenable.

Not true for subgroups. True for IRS’s:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\text{Cay}(\Gamma, S)) = \rho(\text{Sch}(\Gamma/H, S))$ a.s. if and only if H is amenable a.s.

Exercise: free groups do not admit nontrivial amenable IRS’s. So, if Γ is free and the IRS $H \neq 1$, we have $\rho(\text{Sch}(\Gamma/H, S)) > \rho(\text{Cay}(\Gamma, S))$.
.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.
.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n \to \infty} \frac{\#\text{L-cycles in } G_n}{|G_n|} = 0 \quad (L > 0).$$
.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n \to \infty} \frac{\# \text{L-cycles in } G_n}{|G_n|} = 0 \quad (L > 0).$$

$d_k(G)$: number of primitive, cyclically reduced cycles of length k in G.

Theorem (Serre)

Let (G_n) be finite d-regular graphs, such that $\gamma_k = \lim_{n \to \infty} d_k(G_n)/|G_n|$ exists ($k \geq 1$). Then λ_{G_n} weakly converges. If $\sum_{k=1}^{\infty} \gamma_k (d-1)^{-k/2}$ converges then $\lim \lambda_{G_n}$ is absolutely continuous on $[-\rho(T_d), \rho(T_d)]$.
.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n \to \infty} \frac{\#L\text{-cycles in } G_n}{|G_n|} = 0 \quad (L > 0).$$

$d_k(G)$: number of primitive, cyclically reduced cycles of length k in G.

Theorem (Serre)

Let (G_n) be finite d-regular graphs, such that $\gamma_k = \lim_{n \to \infty} d_k(G_n)/|G_n|$ exists ($k \geq 1$). Then λ_{G_n} weakly converges. If $\sum_{k=1}^{\infty} \gamma_k (d - 1)^{-k/2}$ converges then $\lim \lambda_{G_n}$ is absolutely continuous on $[-\rho(T_d), \rho(T_d)]$.

If Serre’s condition holds, then $\gamma_k = 0$ for all k and $\lim_{n} \lambda_{G_n} = \lambda_{T_d}$.

The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_Γ denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.
The Nevo-Stück-Zimmer theorem in IRS form

Let \(G \) be a Lie group. For a lattice \(\Gamma \) let \(\mu_\Gamma \) denote the Haar-random conjugate of \(\Gamma \). Let \(\mu_1 = 1 \) and \(\mu_G = G \) a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let \(G \) be a higher rank simple real Lie group and let \(H \) be an ergodic IRS in \(G \). Then \(H = \mu_G, \mu_1 \) or \(\mu_\Gamma \) for some lattice \(\Gamma \) of \(G \).
Let G be a Lie group. For a lattice Γ let μ_Γ denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_Γ for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.
The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.

Why?
Let G be a Lie group. For a lattice Γ let μ_Γ denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_Γ for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.

Why? The normalizer of N in G is a lattice.
The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_Γ denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_Γ for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N.
The Nevo-Stück-Zimmer theorem in IRS form

Let \(G \) be a Lie group. For a lattice \(\Gamma \) let \(\mu_\Gamma \) denote the Haar-random conjugate of \(\Gamma \). Let \(\mu_1 = 1 \) and \(\mu_G = G \) a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let \(G \) be a higher rank simple real Lie group and let \(H \) be an ergodic IRS in \(G \). Then \(H = \mu_G, \mu_1 \) or \(\mu_\Gamma \) for some lattice \(\Gamma \) of \(G \).

Corollary (Margulis Normal Subgroup Theorem)

Let \(G \) be a higher rank simple real Lie group, let \(\Gamma \) be a lattice in \(G \) and let \(N \neq 1 \) be a normal subgroup of \(\Gamma \). Then \(N \) has finite index in \(\Gamma \).

Why? The normalizer of \(N \) in \(G \) is a lattice. Take a random \(G \)-conjugate of \(N \). Its an IRS.
The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila.
The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

*Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G, \mu_1$ or μ_{Γ} for some lattice Γ of G.***

Corollary (Margulis Normal Subgroup Theorem)

*Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.***

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila. Same way: Γ does not admit nontrivial IRS’s.
The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let μ_Γ denote the Haar-random conjugate of Γ. Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_Γ for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ. Then N has finite index in Γ.

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila. Same way: Γ does not admit nontrivial IRS’s.

Does not work for rank 1 in general ($\text{SL}_2(\mathbb{R})$).

Works for semisimple Lie groups. New proofs and extensions are in the works.
Other classifications and boundaries

Vershik: Classification of IRS’s for $\text{FSym}(\mathbb{IN})$

Bowen + Grigorchuk + Kravchenko: Zoos and shape of the simplex of IRS’s for large groups, analysis of IRS’s that are invariant under automorphisms (lamplighter group, $\text{Aut}(F_n)$).

[7Samurai] Let K be any discrete subgroup in G and let H be a nontrivial IRS in K. Then the limit set of H equals the limit set of K a.s. In particular, any IRS in G has full limit set.

[Cannizzo-Kaimanovich] Let H be a stationary random subgroup of a free group F. Then the action of H on the boundary of F is conservative a.s.

The 7 Samurai

Tsachik Gelander
Jan Biringer
Miklos Abert
Nik Nikolov
Nicolas Bergeron
Jean Raimbault
Iddo Samet
For a Lie group G let $X = G/K$ be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \backslash X$ where $\Gamma \leq G$ is discrete. Let
\[(Y)_< r = \{ x \in Y \mid \text{injrad}(x) < r \}\]be the r-thin part of Y.

Very much not true in rank 1 in general (lattices with cyclic quotients). When Γ is a fixed arithmetic lattice and $\Gamma_n \Gamma$ is a sequence of congruence subgroups, we have explicit bounds on the size of the thin part and the typical injrad.
Big higher rank locally symmetric spaces are also fat

For a Lie group G let $X = G/K$ be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \backslash X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_< = \{ x \in Y \mid \text{injrad}(x) < r \}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \backslash X$ with $\text{vol}(X_n) \to \infty$. Then for all $r > 0$ we have

$$\lim_{n \to \infty} \frac{\text{vol}((X_n)_<)}{\text{vol}(X_n)} = 0.$$
Big higher rank locally symmetric spaces are also fat

For a Lie group G let $X = G/K$ be its symmetric space. If Y is connected, complete, locally-compact, then $Y = \Gamma \backslash X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_{<r} = \{ x \in Y \mid \text{injrad}(x) < r \}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \backslash X$ with $\text{vol}(X_n) \to \infty$. Then for all $r > 0$ we have

$$\lim_{n \to \infty} \frac{\text{vol}((X_n)_{<r})}{\text{vol}(X_n)} = 0.$$

Very much not true in rank 1 in general (lattices with cyclic quotients).
Big higher rank locally symmetric spaces are also fat

For a Lie group G let $X = G/K$ be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \backslash X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_<^r = \{x \in Y \mid \text{injrad}(x) < r\}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \backslash X$ with $\text{vol}(X_n) \to \infty$. Then for all $r > 0$ we have

$$\lim_{n \to \infty} \frac{\text{vol}((X_n)_<^r)}{\text{vol}(X_n)} = 0.$$

Very much not true in rank 1 in general (lattices with cyclic quotients).

When Γ is a fixed arithmetic lattice and $\Gamma_n \leq \Gamma$ is a sequence of congruence subgroups, we have explicit bounds on the size of the thin part and the typical injrad.
The IRS behind

Theorem (7Samurai)

Let G be a higher rank simple Lie group and let $\Gamma_n \leq G$ be lattices with $\text{vol}(X_n) \to \infty$. Then we have $\lim_{n \to \infty} \mu_{\Gamma_n} = \mu_1$.

$m(\pi, \Gamma)$: multiplicity of $\pi \in \hat{G}$ in $L^2(\Gamma \backslash G)$. $d(\pi)$: multiplicity in $L^2(G)$.

Theorem (7Samurai Limit Multiplicity)

Let (Γ_n) be a uniformly discrete sequence of lattices in G such that $\lim_{n \to \infty} \mu_{\Gamma_n} = \mu_1$. Then for all $\pi \in \hat{G}$, we have

$$\frac{m(\pi, \Gamma_n)}{\text{vol}(\Gamma_n \backslash G)} \to d(\pi).$$

Also implies weak convergence of Plancherel measures. For chains, these are due to DeGeorge-Wallach and Delorme. Lots of deep papers. For the non-uniform case, recent work of Finis, Lapid and Müller.
Character rigidity

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).
A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ. Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ.
A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ. Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ.

Theorem (Bekka)

All nontrivial characters of $\text{SL}_n(\mathbb{Z})$ ($n \geq 3$) come from finite index subgroups or the center.
Character rigidity

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ. Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ.

Theorem (Bekka)

All nontrivial characters of $\text{SL}_n(\mathbb{Z})$ ($n \geq 3$) come from finite index subgroups or the center.

Theorem (Peterson-Thom)

No nontrivial characters (and hence IRS’s) for $\text{SL}_n(K)$ where K is an infinite field or the localization of an order in a number field.

Much more on semisimple lattices: Creutz, Creutz-Peterson.
Open problems: rank 1 simple Lie groups

In rank 1, not every sequence of lattices approximate G.

- Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Theorem (Raimbault) True for the Bianchi groups $\Gamma_D = \text{SL}_2(\mathbb{Z}[\sqrt{D}])$ (and more).

A lattice ΓG is Ramanujan, if $\lambda_1(\Gamma G) = \lambda_0(G)$. Selberg $1/4$.

Theorem (A-Virag) Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Random d-regular graphs converge to the d-regular tree.

Question [Weinberger] Assume G has finitely many non-conjugate lattices below any given volume. Do random lattices converge to μ_1?
In rank 1, not every sequence of lattices approximate G.

- **Question [7Sam + Sarnak]** Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \text{SL}_2(\mathbb{Z}[\sqrt{-D}])$ ($D \to \infty$) *(and more).*

Random d-regular graphs converge to the d-regular tree.

Question [Weinberger] Assume G has finitely many non-conjugate lattices below any given volume. Do random lattices converge to μ_1?

Miklós Abért (Rényi Institute)
In rank 1, not every sequence of lattices approximate G.

- Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \text{SL}_2(\mathbb{Z}[\sqrt{-D}])$ ($D \to \infty$) (and more).

- A lattice $\Gamma \leq G$ is Ramanujan, if $\lambda_1(\Gamma \backslash G) \geq \lambda_0(G)$. Selberg $1/4$.
In rank 1, not every sequence of lattices approximate G.

- **Question [7Sam + Sarnak]** Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \text{SL}_2(\mathbb{Z}[\sqrt{-D}])$ ($D \to \infty$) (and more).

- A lattice $\Gamma \leq G$ is *Ramanujan*, if $\lambda_1(\Gamma \backslash G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.
Open problems: rank 1 simple Lie groups

In rank 1, not every sequence of lattices approximate G.

- Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \rightarrow \mu_1$.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \text{SL}_2(Z[\sqrt{-D}])$ ($D \rightarrow \infty$) (and more).

- A lattice $\Gamma \leq G$ is Ramanujan, if $\lambda_1(\Gamma \backslash G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \rightarrow \mu_1$.

- Random d-regular graphs converge to the d-regular tree.
Open problems: rank 1 simple Lie groups

In rank 1, not every sequence of lattices approximate G.

- **Question [7Sam + Sarnak]** Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \text{SL}_2(\mathbb{Z}[\sqrt{-D}])$ ($D \to \infty$) *(and more)*.

- A lattice $\Gamma \leq G$ is *Ramanujan*, if $\lambda_1(\Gamma \backslash G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \to \mu_1$.

- Random d-regular graphs converge to the d-regular tree.
- **Question [Weinberger]** Assume G has finitely many non-conjugate lattices below any given volume. Do random lattices converge to μ_1?
Open problems

- Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index $\leq n$. Does $\mu_{H_n} \to \mu_1$ a.s.?
Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index $\leq n$. Does $\mu_{H_n} \to \mu_1$ a.s.?

[Question A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $\text{vol}(\Gamma_n) \to \infty$. Is it true that $\lim_{n \to \infty} d(\Gamma_n) \frac{\text{vol}(\Gamma_n)}{\text{vol}(\Gamma_n)} = 0$?

Theorem (A-Gelander-Nikolov) True when $\Gamma_n \Gamma$ where Γ is a right angled lattice in G.

What is a character for a Lie (or locally compact) group? Ideally should be induced from lattices and should be connected to IRS' s.
Open problems

- Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index $\leq n$. Does $\mu_{H_n} \rightarrow \mu_1$ a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

- Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $\text{vol}(\Gamma_n) \rightarrow \infty$. Is it true that

$$\lim_{n \rightarrow \infty} \frac{d(\Gamma_n)}{\text{vol}(\Gamma_n)} = 0?$$
Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index $\leq n$. Does $\mu_{H_n} \to \mu_1$ a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $\text{vol}(\Gamma_n) \to \infty$. Is it true that

$$\lim_{n \to \infty} \frac{d(\Gamma_n)}{\text{vol}(\Gamma_n)} = 0?$$

Theorem (A-Gelander-Nikolov)

True when $\Gamma_n \leq \Gamma$ where Γ is a right angled lattice in G (NAME!).
Open problems

- **Discrete version [A]** Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index $\leq n$. Does $\mu_{H_n} \to \mu_1$ a.s.?

 [Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

- **Question [A-Gelander-Nikolov]** Let G be a higher rank simple Lie group and let Γ_n be lattices with $\text{vol}(\Gamma_n) \to \infty$. Is it true that

 \[
 \lim_{n \to \infty} \frac{d(\Gamma_n)}{\text{vol}(\Gamma_n)} = 0?
 \]

Theorem (A-Gelander-Nikolov)

True when $\Gamma_n \leq \Gamma$ where Γ is a right angled lattice in G (NAME!).

- What is a character for a Lie (or locally compact) group? Ideally should be induced from lattices and should be connected to IRS’s.
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids. In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Let S^Γ be finite and $k > 0$. Fix a map $A: k^\Gamma \to k^\Gamma$. For every subgroup $H\Gamma$, A induces a map $A_H: k^\Gamma/\Gamma \to k^\Gamma/\Gamma$ (look at S-neighbors).

[A-Szegedy] The normalized entropy $h(A, \Gamma, H) = H(A_H(k\text{-i.i.d.}))/\mu(\Gamma)$ is continuous in IRS convergence. Would imply Lück Approx. mod p.
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the rank of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the rank of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.
Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the rank of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

- Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the rank of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

- Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

- Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Let $S \subseteq \Gamma$ finite and $k > 0$. Fix a map $A : k^S \rightarrow k$. For every subgroup $H \leq \Gamma$, A induces a map $A_H : k^{\Gamma/H} \rightarrow k^{\Gamma/H}$ (look at S-neighbors).
Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the rank of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

- Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Let $S \subset \Gamma$ finite and $k > 0$. Fix a map $A : k^S \to k$. For every subgroup $H \leq \Gamma$, A induces a map $A_H : k^{\Gamma/H} \to k^{\Gamma/H}$ (look at S-neighbors).

- [A-Szegedy] The normalized entropy

 \[h(A, \Gamma, H) = H(A_H(k\text{-i.i.d.}))/|\Gamma : H| \]

 is continuous in IRS convergence. Would imply Lück Approx. mod p.
THANK YOU!!!