Separating invariants for multisymmetric polynomials

Artem Lopatin
University of Campinas

This talk is dedicated to joint results with Gregor Kemper and Fabian Reimers on separating invariants for the ring of multisymmetric polynomials in m sets of n variables over an arbitrary field F. We prove that in order to obtain separating sets it is enough to consider polynomials that depend only on $\left\lfloor \frac{n}{2} \right\rfloor + 1$ sets of these variables. This improves a general result by Máté Domokos about separating invariants. In addition, for $n \leq 4$ we explicitly give minimal separating sets (with respect to inclusion) for all m in case $\text{char}(F) = 0$ or $\text{char}(F) > n$. Moreover, in the case of the finite field $F = F_2$ we give an explicit minimal separating set (with respect to inclusion) for multisymmetric polynomials.

Working over a finite field F_q with q elements we determine the minimal number of separating invariants for the invariant ring of a matrix group $G \leq \text{GL}_n(F_q)$ over the finite field F_q. We show that this minimal number can be obtained with invariants of degree at most $|G| n(q-1)$. In the non-modular case this construction can be improved to give invariants of degree at most $n(q-1)$.