Isolation of graphs

Peter Borg

Department of Mathematics, Faculty of Science, University of Malta, Malta
peter.borg@um.edu.mt

If \mathcal{F} is a set of graphs and F is a copy of a graph in \mathcal{F}, then we call F an \mathcal{F}-graph. If G is a graph and $D \subseteq V(G)$ such that $G - N[D]$ (the graph obtained from G by deleting the closed neighbourhood $N[D]$ of D) contains no \mathcal{F}-graph, then D is called an \mathcal{F}-isolating set of G. The size of a smallest \mathcal{F}-isolating set of G is denoted by $\iota(G, \mathcal{F})$ and called the \mathcal{F}-isolation number of G.

The study of isolating sets was introduced by Caro and Hansberg [3]. It is a natural generalization of the classical domination problem. Indeed, D is a $\{K_1\}$-isolating set of G if and only if D is a dominating set of G (that is, $N[D] = V(G)$), so the $\{K_1\}$-isolation number is the domination number.

Let G be a connected n-vertex graph. In [1], the speaker showed that if G is not a triangle and C is the set of all cycles, then $\iota(G, C) \leq \frac{n}{4}$ (that is, $V(G)$ has a subset D such that $|D| \leq \frac{n}{4}$ and $G - N[D]$ contains no cycle). Together with Fenech and Kaemawichanurat [2], he also showed that $\iota(G, \{K_k\}) \leq \frac{n}{k+1}$ if G is neither a k-clique nor a 5-cycle. The case $k=1$ is a classical domination bound of Ore [6], and the case $k=2$ is a result of Caro and Hansberg [3]. The bounds are sharp and settle two problems in [3].

Let G be a maximal outerplanar n-vertex graph. Fisk’s short proof [5] of Chvátal’s Art Gallery Theorem (included in the book Proofs from THE BOOK) established that the domination number of G is at most $\frac{n}{3}$. Kaemawichanurat and the speaker recently generalized this result by showing that $\iota(G, \{S_{k+1}\}) \leq \frac{n}{k+4}$, where S_{k+1} is the star with $k+1$ leaves. Note that D is a $\{S_{k+1}\}$-isolating set of G if and only if the maximum degree of $G - N[D]$ is at most k.

References