Introduction to the world of CSPs

Bertalan Bodor

Rényi Institute, Budapest

Set Theory Seminar, Rényi Institute, 6th November 2025

Definition

Definition

 \mathfrak{B} : structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

Introduction to the world of CSPs

Definition

Definition

 ${\mathfrak B}\colon$ structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

• INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)

Definition

Definition

 ${\mathfrak B}\colon {\sf structure}\ {\sf with}\ {\sf a}\ {\sf finite}\ {\sf relational}\ {\sf signature}.$

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

Definition

Definition

B: structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

Examples:

• 3-colourability; $\mathfrak{B} = K_3$

Definition

Definition

B: structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

- 3-colourability; $\mathfrak{B} = K_3$
- 3-SAT (8 ternary relations!)

Definition

Definition

3: structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

- 3-colourability; $\mathfrak{B} = K_3$
- 3-SAT (8 ternary relations!)
- linear equations over finite fields . . .

Definition

Definition

3: structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

- 3-colourability; $\mathfrak{B} = K_3$
- 3-SAT (8 ternary relations!)
- linear equations over finite fields . . .
- acyclic graphs

Definition

Definition

3: structure with a finite relational signature.

 $CSP(\mathfrak{B})$ is the following decision problem.

- INPUT: a finite structure $\mathfrak A$ (with the same signature as $\mathfrak B$)
- QUESTION: Is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

- 3-colourability; $\mathfrak{B} = K_3$
- 3-SAT (8 ternary relations!)
- linear equations over finite fields . . .
- acyclic graphs; $\mathfrak{B} = (\mathbb{Q}; <)$

Alternative definition

Alternative definition

- INPUT: A primitive positive (pp) sentence φ over \mathfrak{B} ($\varphi \equiv \exists \exists \dots \exists (\bigwedge(\mathsf{atomic})))$
- QUESTION: Is φ true in \mathfrak{B} ?

Alternative definition

Alternative definition

- INPUT: A primitive positive (pp) sentence φ over \mathfrak{B} ($\varphi \equiv \exists \exists \ldots \exists (\bigwedge(\mathsf{atomic})))$
- QUESTION: Is φ true in \mathfrak{B} ?

Expansion by pp-definable relations does not change the complexity of the CSP.

Definition

f is a polymorphism of $\mathfrak B$ if f if a homomorphism $\mathfrak B^k \to \mathfrak B$ for some $k \in \omega$.

Definition

f is a polymorphism of $\mathfrak B$ if f if a homomorphism $\mathfrak B^k \to \mathfrak B$ for some $k \in \omega$.

$$f: \left(\begin{array}{c|cc} a_{11} & a_{12} & \dots & a_{1k} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{array} \right) \mapsto \left(\begin{array}{c|cc} b_1 \\ \vdots \\ b_n \end{array} \right)$$

$$R \quad R \quad \dots \quad R \quad \Rightarrow \quad R$$

Notation: $Pol(\mathfrak{B})$.

 $Pol(\mathfrak{B})$ forms a *clone*.

Definition

 $\mathcal{C} \subseteq \bigcup_{k=1}^{\infty} X^{X^k}$ is a clone if

- **1** C contains all projections $(\pi_i: (x_1, \ldots, x_k) \mapsto x_i)$
- \mathcal{P} : the clone of projections (on a 2-element set).

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov '69)

If $\mathfrak B$ is finite then a relation R is pp-definable in $\mathfrak B$ iff $Pol(\mathfrak B)$ preserves R.

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov '69)

If $\mathfrak B$ is finite then a relation R is pp-definable in $\mathfrak B$ iff $Pol(\mathfrak B)$ preserves R.

Corollary (Jeavons '98)

If $\mathfrak B$ is finite then the complexity of $\mathsf{CSP}(\mathfrak B)$ is uniquely determined by $\mathsf{Pol}(\mathfrak B)$.

pp-interpretations

Definition

A pp-interprets B if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k): (I(a_1),\ldots,I(a_k)) \in R\}$$

is pp-definable in $\mathfrak A$.

pp-interpretations

Definition

A pp-interprets B if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k): (I(a_1),\ldots,I(a_k)) \in R\}$$

is pp-definable in $\mathfrak A$.

Notation

 $I_{pp}(\mathfrak{A})$: structures pp-interpretable in \mathfrak{A} .

pp-interpretations

Definition

A pp-interprets B if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k): (I(a_1),\ldots,I(a_k)) \in R\}$$

is pp-definable in $\mathfrak A$.

Notation

 $I_{pp}(\mathfrak{A})$: structures pp-interpretable in \mathfrak{A} .

Fact

If $\mathfrak A$ pp-interprets $\mathfrak B$ then CSP($\mathfrak B$) LOGSPACE reduces to CSP($\mathfrak A$).

Definition

 ${\mathfrak A}$ and ${\mathfrak B}$ are homomorphically equivalent iff there are homomorphisms

 $\mathfrak{A} o \mathfrak{B}$ and $\mathfrak{B} o \mathfrak{A}.$

Notation: $\mathfrak{B} \in H(\mathfrak{A})$.

Definition

 $\mathfrak A$ and $\mathfrak B$ are homomorphically equivalent iff there are homomorphisms $\mathfrak A \to \mathfrak B$ and $\mathfrak B \to \mathfrak A$.

Notation: $\mathfrak{B} \in H(\mathfrak{A})$.

 \mathfrak{G} : if \mathfrak{A} and \mathfrak{B} are homomorphically equivalent, then $\mathsf{CSP}(\mathfrak{A}) = \mathsf{CSP}(\mathfrak{B})$.

Definition

 $\mathfrak A$ and $\mathfrak B$ are homomorphically equivalent iff there are homomorphisms $\mathfrak A \to \mathfrak B$ and $\mathfrak B \to \mathfrak A$.

Notation: $\mathfrak{B} \in H(\mathfrak{A})$.

 $oldsymbol{\mathfrak{G}}$: if $\mathfrak A$ and $\mathfrak B$ are homomorphically equivalent, then $\mathsf{CSP}(\mathfrak A) = \mathsf{CSP}(\mathfrak B)$.

Definition

 \mathfrak{A} pp-constructs \mathfrak{B} if $\mathfrak{B} \in HI(\mathfrak{A})$.

Definition

 $\mathfrak A$ and $\mathfrak B$ are homomorphically equivalent iff there are homomorphisms $\mathfrak A \to \mathfrak B$ and $\mathfrak B \to \mathfrak A$

Notation: $\mathfrak{B} \in H(\mathfrak{A})$.

 $oldsymbol{ ilde{\odot}}$: if ${\mathfrak A}$ and ${\mathfrak B}$ are homomorphically equivalent, then ${\sf CSP}({\mathfrak A}) = {\sf CSP}({\mathfrak B})$.

Definition

 \mathfrak{A} pp-constructs \mathfrak{B} if $\mathfrak{B} \in HI(\mathfrak{A})$.

Fact

If $\mathfrak A$ pp-constructs $\mathfrak B$ then $\mathsf{CSP}(\mathfrak B)$ LOGSPACE reduces to $\mathsf{CSP}(\mathfrak A)$.

Clone and minion homomorphisms

Definition

 \mathcal{C},\mathcal{D} : clones.

 $\xi:\mathcal{C}\to\mathcal{D}$ is a clone homomorphism if

- $oldsymbol{0}$ ξ preserves arities,
- **3** $\xi(f \circ (g_1, \ldots, g_k)) = \xi(f) \circ (\xi(g_1), \ldots, \xi(g_k)).$

Clone and minion homomorphisms

Definition

- \mathcal{C}, \mathcal{D} : clones.
- $\xi:\mathcal{C}\to\mathcal{D}$ is a clone homomorphism if
 - $oldsymbol{0}$ ξ preserves arities,

Definition

- \mathcal{C}, \mathcal{D} : clones.
- $\xi:\mathcal{C}\to\mathcal{D}$ is a minion homomorphism if
 - \bullet ξ preserves arities,

Clone and minion homomorphisms

Theorem

A, B: finite.

- \exists : $Pol(\mathfrak{A}) \rightarrow Pol(\mathfrak{B})$ clone homomorphism iff $\mathfrak{B} \in I(\mathfrak{A})$. (Birkhoff, 1935)
- **2** \exists : $Pol(\mathfrak{A}) \rightarrow Pol(\mathfrak{B})$ minion homomorphism iff $\mathfrak{B} \in HI(\mathfrak{A})$. (Barto, Opršal, Pinsker '18)

Clone and minion homomorphisms

Theorem

A. B: finite.

- **1** ∃ : $Pol(\mathfrak{A}) \rightarrow Pol(\mathfrak{B})$ clone homomorphism iff $\mathfrak{B} \in I(\mathfrak{A})$. (Birkhoff, 1935)
- $\supseteq \exists : \mathsf{Pol}(\mathfrak{A}) \to \mathsf{Pol}(\mathfrak{B})$ minion homomorphism iff $\mathfrak{B} \in \mathsf{HI}(\mathfrak{A})$. (Barto, Opršal, Pinsker '18)

Corollary

If $\mathfrak A$ and $\mathfrak B$ are finite and $\exists \operatorname{Pol}(\mathfrak A) \to \operatorname{Pol}(\mathfrak B)$ minion homomorphism then $CSP(\mathfrak{B})$ LOGSPACE reduces to $CSP(\mathfrak{A})$

Clone and minion homomorphisms

Theorem

 $\mathfrak{A},\mathfrak{B}$: finite.

- \exists : $Pol(\mathfrak{A}) \rightarrow Pol(\mathfrak{B})$ clone homomorphism iff $\mathfrak{B} \in I(\mathfrak{A})$. (Birkhoff, 1935)
- ② \exists : $Pol(\mathfrak{A}) \rightarrow Pol(\mathfrak{B})$ minion homomorphism iff $\mathfrak{B} \in HI(\mathfrak{A})$. (Barto, Opršal, Pinsker '18)

Corollary

If $\mathfrak A$ and $\mathfrak B$ are finite and $\exists \operatorname{Pol}(\mathfrak A) \to \operatorname{Pol}(\mathfrak B)$ minion homomorphism then $\operatorname{CSP}(\mathfrak B)$ LOGSPACE reduces to $\operatorname{CSP}(\mathfrak A)$

Corollary

If $\mathfrak A$ is finite and $\exists \, \mathsf{Pol}(\mathfrak A) \to \mathscr P$ minion homomorphism then $\mathsf{CSP}(\mathfrak A)$ is $\mathsf{NP}\text{-}\mathit{complete}.$

Cores

Definition

A finite \mathfrak{B} is a core iff $Aut(\mathfrak{B}) = End(\mathfrak{B})$.

Cores

Definition

A finite \mathfrak{B} is a core iff $Aut(\mathfrak{B}) = End(\mathfrak{B})$.

Every finite structure is homomorphically equivalent to a core.

Introduction to the world of CSPs

Cores

Definition

A finite \mathfrak{B} is a core iff $Aut(\mathfrak{B}) = End(\mathfrak{B})$.

Every finite structure is homomorphically equivalent to a core.

Fact (Barto, Opršal, Pinsker '18)

If \mathfrak{B} is a core and $c \in B$ then $(\mathfrak{B}; c) \in HI(\mathfrak{B})$.

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

 $\mathfrak A$ is a finite core. Then TFAE.

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

- **1** $\exists \mathsf{Pol}(\mathfrak{A}) \to \mathscr{P}$ minion homomorphism.
- ② \nexists Pol(\mathfrak{A} ; $c:c\in\mathfrak{A}$) → \mathscr{P} clone homomorphism.

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

- \bullet $\sharp \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ minion homomorphism.
- \bullet Pol($\mathfrak A$) contains a Siggers operation:

$$s(x, y, x, z, y, z) = s(y, x, z, x, z, y).$$

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

- **1** $\sharp \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ minion homomorphism.
- **3** Pol(\mathfrak{A}) contains a Siggers operation: s(x, y, x, z, y, z) = s(y, x, z, x, z, y).
- Pol(\mathfrak{A}) contains a cyclic operation: $f(x_1, \ldots, x_k) = f(x_2, \ldots, x_k, x_1)$.

CSP dichotomy

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

 $\mathfrak A$ is a finite core. Then TFAE.

- **3** Pol(\mathfrak{A}) contains a Siggers operation: s(x, y, x, z, y, z) = s(y, x, z, x, z, y).
- Pol(\mathfrak{A}) contains a cyclic operation: $f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$.

We know: If \bigcirc does not hold then $CSP(\mathfrak{A})$ is **NP**-complete.

CSP dichotomy

Finite case

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

 $\mathfrak A$ is a finite core. Then TFAE.

- **2** $\nexists \operatorname{Pol}(\mathfrak{A}; c : c \in \mathfrak{A}) \rightarrow \mathscr{P}$ clone homomorphism.
- **3** Pol(\mathfrak{A}) contains a Siggers operation: s(x, y, x, z, y, z) = s(y, x, z, x, z, y).
- Pol(\mathfrak{A}) contains a cyclic operation: $f(x_1, \ldots, x_k) = f(x_2, \ldots, x_k, x_1)$.

We know: If $\mathbf{0}$ does not hold then $\mathsf{CSP}(\mathfrak{A})$ is $\mathsf{NP}\text{-}\mathsf{complete}.$

Theorem (Bulatov; Zhuk, \approx '20)

If \bullet - \bullet hold then $CSP(\mathfrak{A})$ is in \mathbf{P} .

Theorem (Barto, Opršal, Pinsker, Kozik '12, '18)

 \mathfrak{A} is a finite core. Then TFAE.

- **1** $\exists \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ minion homomorphism.
- **3** Pol(\mathfrak{A}) contains a Siggers operation: s(x, y, x, z, y, z) = s(y, x, z, x, z, y).
- Pol(\mathfrak{A}) contains a cyclic operation: $f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$.

We know: If \bullet does not hold then $CSP(\mathfrak{A})$ is **NP**-complete.

Theorem (Bulatov; Zhuk, \approx '20)

If \bullet - \bullet hold then $CSP(\mathfrak{A})$ is in \mathbf{P} .

Therefore if \mathfrak{A} is finite then $\mathsf{CSP}(\mathfrak{A})$ is in **P** or it is **NP**-complete.

 ω -categoricity

Disclaimer: every structure is assumed to be countable!

Definition (the useful one)

 $\mathfrak A$ is ω -categorical if $\operatorname{Aut}(\mathfrak A)$ has finitely many n-orbits for all $n \in \omega$.

 ω -categoricity

Disclaimer: every structure is assumed to be countable!

Definition (the useful one)

 $\mathfrak A$ is ω -categorical if $\operatorname{Aut}(\mathfrak A)$ has finitely many n-orbits for all $n \in \omega$.

"Finite structures in infinite clothing."

 ω -categoricity

Disclaimer: every structure is assumed to be countable!

Definition (the useful one)

 $\mathfrak A$ is ω -categorical if $\operatorname{Aut}(\mathfrak A)$ has finitely many n-orbits for all $n \in \omega$.

"Finite structures in infinite clothing."

Theorem (Bodirsky, Nešetřil '03)

If $\mathfrak A$ is ω -categorical, then a relation R is pp-definable iff R is preserved by all polymorphisms of $\mathfrak A$.

 ω -categoricity

Disclaimer: every structure is assumed to be countable!

Definition (the useful one)

 $\mathfrak A$ is ω -categorical if $\operatorname{Aut}(\mathfrak A)$ has finitely many n-orbits for all $n \in \omega$.

"Finite structures in infinite clothing."

Theorem (Bodirsky, Nešetřil '03)

If $\mathfrak A$ is ω -categorical, then a relation R is pp-definable iff R is preserved by all polymorphisms of $\mathfrak A$.

Corollary

If $\mathfrak A$ is ω -categorical, then the complexity of $\mathsf{CSP}(\mathfrak A)$ is uniquely determined by $\mathsf{Pol}(\mathfrak A)$.

Source of hardness

 \mathscr{P} : the clone of projections on a 2-element set.

 \mathfrak{A} : ω -categorical, \mathfrak{B} finite.

Facts:

- $\exists \operatorname{Pol}(\mathfrak{A}) \to \operatorname{Pol}(\mathfrak{B})$ uniformly continuous minion homomorphism, then $\operatorname{CSP}(\mathfrak{A})$ is at least as hard as $\operatorname{CSP}(\mathfrak{B})$.
- If $Pol(\mathfrak{B}) = \mathscr{P}$, then $CSP(\mathfrak{B})$ is **NP**-complete.
- $\exists \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism, then $\operatorname{CSP}(\mathfrak{A})$ is **NP**-hard.

Model-complete cores

Definition

 \mathfrak{A} is a model-complete core iff $\overline{\operatorname{Aut}(\mathfrak{A})} = \operatorname{End}(\mathfrak{A})$.

Model-complete cores

Definition

 \mathfrak{A} is a model-complete core iff $\overline{\operatorname{Aut}(\mathfrak{A})} = \operatorname{End}(\mathfrak{A})$.

Remark: in general we have $\overline{\operatorname{Aut}(\mathfrak{A})} \subseteq \operatorname{Emb}(\mathfrak{A}) \subseteq \operatorname{End}(\mathfrak{A})$.

Model-complete cores

Definition

 \mathfrak{A} is a model-complete core iff $\overline{\operatorname{Aut}(\mathfrak{A})} = \operatorname{End}(\mathfrak{A})$.

Remark: in general we have $Aut(\mathfrak{A}) \subseteq Emb(\mathfrak{A}) \subseteq End(\mathfrak{A})$.

Theorem (Bodirsky '05)

Every ω -categorical structure is homomorphically equivalent to a model-complete core.

This is a unique up to isomorphism, and again ω -categorical.

Algebraic formulation

 \mathfrak{A} is an ω -categorical model-complete core. Then TFAE.

- **1** $\exists \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ minion homomorphism.
- **3** Pol(\mathfrak{A}) contains a Siggers operation: f(x, y, x, z, y, z) = f(y, x, z, x, z, y).

- $\mathfrak A$ is an ω -categorical model-complete core. Then TFAE.
 - **1** $\nexists Pol(\mathfrak{A}) \rightarrow \mathscr{P}$ uniformly continuous minion homomorphism.
 - ② \nexists Pol(\mathfrak{A} ; c: c ∈ \mathfrak{A}) \rightarrow \mathscr{P} (uniformly continuous) clone homomorphism.
 - **3** Pol(\mathfrak{A}) contains a Siggers operation: f(x, y, x, z, y, z) = f(y, x, z, x, z, y).

- $\mathfrak A$ is an ω -categorical model-complete core. Then TFAE.
 - **1** $\nexists \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism.
 - $\forall c_1, \ldots, c_\ell \in A \not\exists \operatorname{Pol}(\mathfrak{A}; c_1, \ldots, c_\ell) \to \mathscr{P}$ (uniformly continuous) clone homomorphism.
 - **9** Pol(\mathfrak{A}) contains a Siggers operation: f(x, y, x, z, y, z) = f(y, x, z, x, z, y).

- $\mathfrak A$ is an ω -categorical model-complete core. Then TFAE.
 - **1** $\# \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism.
 - ② $\forall c_1, \ldots, c_\ell \in A \nexists \operatorname{Pol}(\mathfrak{A}; c_1, \ldots, c_\ell) \rightarrow \mathscr{P}$ (uniformly continuous) clone homomorphism.
 - **③** Pol(𝔄) contains a pseudo-Siggers operation: $(\alpha \circ f)(x, y, x, z, y, z) = (\beta \circ f)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\text{Aut}(𝔄)}.$

- \mathfrak{A} is an ω -categorical model-complete core. Then $\mathbf{0}\Rightarrow\mathbf{0}\Leftrightarrow\mathbf{0}$.
 - **1** $\exists Pol(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism.
 - $\lor c_1, \ldots, c_\ell \in A \not\exists \operatorname{Pol}(\mathfrak{A}; c_1, \ldots, c_\ell) \to \mathscr{P} \text{ (uniformly continuous) clone}$ homomorphism.
 - **3** Pol(\mathfrak{A}) contains a pseudo-Siggers operation: $(\alpha \circ f)(x, y, x, z, y, z) = (\beta \circ f)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\operatorname{Aut}(\mathfrak{A})}.$

Algebraic formulation

Theorem (Barto, Pinsker '20)

- $\mathfrak A$ is an ω -categorical model-complete core. Then $\mathbf 0\Rightarrow \mathbf 2\Leftrightarrow \mathbf 0$.
 - **1** $\nexists \operatorname{Pol}(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism.
 - ② $\forall c_1, \ldots, c_\ell \in A \nexists \operatorname{Pol}(\mathfrak{A}; c_1, \ldots, c_\ell) \rightarrow \mathscr{P}$ (uniformly continuous) clone homomorphism.
 - ③ Pol(𝔄) contains a pseudo-Siggers operation: $(\alpha \circ f)(x, y, x, z, y, z) = (\beta \circ f)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\text{Aut}(\mathfrak{A})}.$

Algebraic formulation

Theorem (Barto, Pinsker '20)

- \mathfrak{A} is an ω -categorical model-complete core. Then $\mathbf{0} \Rightarrow \mathbf{2} \Leftrightarrow \mathbf{0}$.
 - **1** $\exists Pol(\mathfrak{A}) \to \mathscr{P}$ uniformly continuous minion homomorphism.
 - $\lor \forall c_1, \ldots, c_\ell \in A \not\exists \operatorname{Pol}(\mathfrak{A}; c_1, \ldots, c_\ell) \to \mathscr{P}$ (uniformly continuous) clone homomorphism.
 - **3** Pol(\mathfrak{A}) contains a pseudo-Siggers operation: $(\alpha \circ f)(x, y, x, z, y, z) = (\beta \circ f)(y, x, z, x, z, y) : \alpha, \beta \in \overline{\operatorname{Aut}(\mathfrak{A})}.$

Remark

structures.

(Barto, Kompatscher, Olšák, Pham, Pinsker '17).

The conjecture

Conjecture (Bodirsky, Pinsker '11)

If $\mathfrak A$ is a first-order reduct of a finitely bounded homogeneous structure (FOROFBHS) then CSP($\mathfrak A$) is in **P** or it is **NP**-complete,

The conjecture

Conjecture (Bodirsky, Pinsker '11)

If $\mathfrak A$ is a first-order reduct of a finitely bounded homogeneous structure (FOROFBHS) then CSP($\mathfrak A$) is in **P** or it is **NP**-complete, and the dividing line corresponds to the algebraic dichotomy.

The conjecture

Conjecture (Bodirsky, Pinsker '11)

If $\mathfrak A$ is a first-order reduct of a finitely bounded homogeneous structure (FOROFBHS) then CSP($\mathfrak A$) is in **P** or it is **NP**-complete, and the dividing line corresponds to the algebraic dichotomy.

Homogeneous: every finite partial isomorphism extends to an automorphism of $\ensuremath{\mathfrak{A}}$

The conjecture

Conjecture (Bodirsky, Pinsker '11)

If $\mathfrak A$ is a first-order reduct of a finitely bounded homogeneous structure (FOROFBHS) then CSP($\mathfrak A$) is in **P** or it is **NP**-complete, and the dividing line corresponds to the algebraic dichotomy.

Homogeneous: every finite partial isomorphism extends to an automorphism of ${\mathfrak A}\,$

Examples: $(\mathbb{Q}; <)$, random graph, generic poset, Fraïssé limits

The conjecture

Conjecture (Bodirsky, Pinsker '11)

If $\mathfrak A$ is a first-order reduct of a finitely bounded homogeneous structure (FOROFBHS) then CSP($\mathfrak A$) is in **P** or it is **NP**-complete, and the dividing line corresponds to the algebraic dichotomy.

Homogeneous: every finite partial isomorphism extends to an automorphism of ${\mathfrak A}\,$

Finitely bounded: $Age(\mathfrak{A})$ can be described by finitely many forbidden substructures

Examples: $(\mathbb{Q}; <)$, random graph, generic poset, Fraïssé limits

Known CSP dichotomies

Solved for

- reducts of $(\mathbb{N}; =)$ (Bodirsky, Kára '08)
- reducts of $(\mathbb{Q}; <)$ (Bodirsky, Kára '09)
- reducts of the homogeneous binary branching C-structure (Bodirsky, Jonsson, Pham '16)
- reducts of the random poset (Kompatscher, Pham '18)
- reducts of unary ω -categorical structures (Bodirsky, Mottet '18)
- MMSNPs (Bodirsky, Madelaine, Mottet '18)
- reducts of homogeneous graphs (Bodirsky, Martin, Pinsker, Pongrácz '19)
- reducts of the random tournament (Mottet, Pinsker '21)
- first-order expansions of the homogeneous RCC5 structure (Bodirsky, B. '21)
- hereditarily cellular structures (B. '22)
- first-order expansions of powers of (Q; <) (Bodirsky, Jonsson, Martin, Mottet, Semanišinová '22)
- reducts of random uniform hypergraphs (Mottet, Nagy, Pinsker '23)
- reducts of Johnson graphs (Bodirsky, B. '25)

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

Stability, NIP, NSOP, etc.

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- Stability, NIP, NSOP, etc.
- ② Orbit growth conditions $(Aut(\mathfrak{B}) \curvearrowright B^{(n)}, Aut(\mathfrak{B}) \curvearrowright {B \choose n})$

Tame ω -categoricity

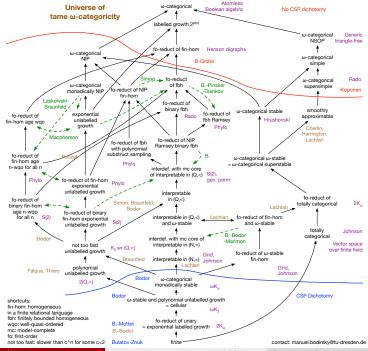
More restrictive classes of ω -categorical structures to consider:

- Stability, NIP, NSOP, etc.
- ② Orbit growth conditions $(Aut(\mathfrak{B}) \curvearrowright B^{(n)}, Aut(\mathfrak{B}) \curvearrowright {B \choose n})$
- First-order interpretability in certain structures

Tame ω -categoricity

More restrictive classes of ω -categorical structures to consider:

- Stability, NIP, NSOP, etc.
- ② Orbit growth conditions $(Aut(\mathfrak{B}) \curvearrowright B^{(n)}, Aut(\mathfrak{B}) \curvearrowright {B \choose n})$
- First-order interpretability in certain structures
- From second-order logic: MMSNP, GMSNP



Definition

A structure ${\mathfrak A}$ is hereditarily cellular if ${\mathfrak A}$ can be constructed from finite structure by taking

- finite disjoint unions
- infinite unlabelled copies
- first-order reducts

Definition

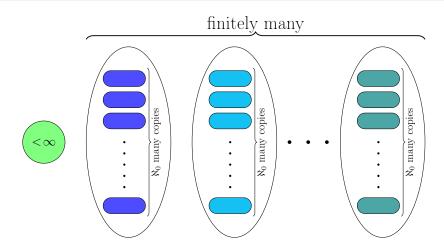
A structure ${\mathfrak A}$ is hereditarily cellular if ${\mathfrak A}$ can be constructed from finite structure by taking

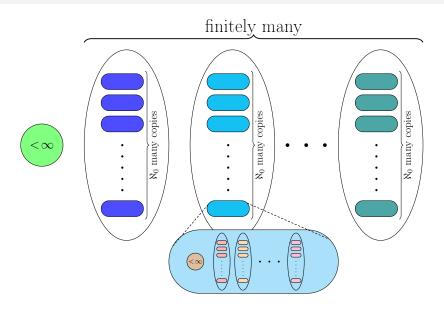
- finite disjoint unions
- infinite unlabelled copies
- first-order reducts
- Disjoint union: the domains of the original structures are named by unary predicates

Definition

A structure ${\mathfrak A}$ is hereditarily cellular if ${\mathfrak A}$ can be constructed from finite structure by taking

- finite disjoint unions
- infinite unlabelled copies
- first-order reducts
- Disjoint union: the domains of the original structures are named by unary predicates
- Infinite unlabelled copies: we add an equivalence relation *E* whose equivalence classes are the copies





Theorem (Lachlan '91+B. '23)

A structure $\mathfrak A$ is hereditarily cellular if $\mathfrak A$ is ω -categorical and every expansions of $\mathfrak A$ by unary relations is stable.

Theorem (Lachlan '91+B. '23)

A structure $\mathfrak A$ is hereditarily cellular if $\mathfrak A$ is ω -categorical and every expansions of $\mathfrak A$ by unary relations is stable.

Theorem (B. '21)

The infinite-domain CSP dichotomy conjecture holds for hereditarily cellular classes.

Hereditarily cellular structures

Theorem (Lachlan '91+B. '23)

A structure $\mathfrak A$ is hereditarily cellular if $\mathfrak A$ is ω -categorical and every expansions of $\mathfrak A$ by unary relations is stable.

Theorem (B. '21)

The infinite-domain CSP dichotomy conjecture holds for hereditarily cellular classes.

Remark: Hereditary cellularity can also be described in terms of orbit growths.

Interpretation of structures

Definition (reminder)

 $\mathfrak A$ (first-order) interprets $\mathfrak B$ if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k): (I(a_1),\ldots,I(a_k)) \in R\}$$

is first-order definable in \mathfrak{A} .

Interpretation of structures

Definition (reminder)

 $\mathfrak A$ (first-order) interprets $\mathfrak B$ if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k): (I(a_1),\ldots,I(a_k)) \in R\}$$

is first-order definable in \mathfrak{A} .

Notation

 $I_{fo}(\mathfrak{A})$: structures interpretable in \mathfrak{A} . $(\mathfrak{A} \in \{(\mathbb{N}; =), (\mathbb{Q}; <)\})$.

Interpretation of structures

Definition (reminder)

 $\mathfrak A$ (first-order) interprets $\mathfrak B$ if

 $\exists I \colon A^d o B$ surjective partial map such that for all relations R of ${\mathfrak B}$

$$\{(a_1^1,\ldots,a_d^1,\ldots,a_1^k,\ldots,a_d^k):(I(a_1),\ldots,I(a_k))\in R\}$$

is first-order definable in \mathfrak{A} .

Notation

 $I_{fo}(\mathfrak{A})$: structures interpretable in \mathfrak{A} . $(\mathfrak{A} \in \{(\mathbb{N}; =), (\mathbb{Q}; <)\})$.

Fact

Herederitily cellular structure are in $I_{fo}((\mathbb{N};=))$.

Definition

$$\mathcal{J}_k \coloneqq \left(\binom{\mathbb{N}}{k}; S_0, S_1, \dots, S_{k-1}\right) \text{ where } S_i = \{(a, b) : |a \cap b| = i\}.$$

Definition

$$\mathcal{J}_k \coloneqq \left(\binom{\mathbb{N}}{k}; S_0, S_1, \dots, S_{k-1}\right) \text{ where } S_i = \{(a, b) : |a \cap b| = i\}.$$

Facts

• $\mathcal{J}_k \in I_{fo}(\mathbb{N}; =)$.

Definition

$$\mathcal{J}_k \coloneqq \left(\binom{\mathbb{N}}{k}; S_0, S_1, \dots, S_{k-1}\right) \text{ where } S_i = \{(a, b) : |a \cap b| = i\}.$$

- $\mathcal{J}_k \in I_{fo}(\mathbb{N}; =)$.
- Aut(\mathcal{J}_k) \simeq Sym(\mathbb{N}).

Definition

$$\mathcal{J}_k \coloneqq \left(\binom{\mathbb{N}}{k}; S_0, S_1, \dots, S_{k-1}\right) \text{ where } S_i = \{(a, b) : |a \cap b| = i\}.$$

- $\mathcal{J}_k \in I_{fo}(\mathbb{N}; =)$.
- Aut $(\mathcal{J}_k) \simeq \operatorname{\mathsf{Sym}}(\mathbb{N})$.
- Any of the relations S_i defines all the others.

Definition

$$\mathcal{J}_k \coloneqq \left(\binom{\mathbb{N}}{k}; S_0, S_1, \dots, S_{k-1}\right) \text{ where } S_i = \{(a, b) : |a \cap b| = i\}.$$

- $\mathcal{J}_k \in I_{fo}(\mathbb{N}; =)$.
- Aut $(\mathcal{J}_k) \simeq \operatorname{\mathsf{Sym}}(\mathbb{N})$.
- Any of the relations S_i defines all the others.
- ullet These are all the primitive actions of $\mathsf{Sym}(\mathbb{N})$ on countable sets.

The dichotomy

Theorem (Bodirsky, Kára '08)

CSP dichotomy is known for reducts of the pure set.

(k = 1 case, "equality CSPs").

The dichotomy

Theorem (Bodirsky, Kára '08)

CSP dichotomy is known for reducts of the pure set.

(k = 1 case, "equality CSPs").

Lemma

 $CSP(\mathcal{J}_k)$ is **NP**-complete for $k \geq 2$.

The dichotomy

Theorem (Bodirsky, Kára '08)

CSP dichotomy is known for reducts of the pure set.

(k = 1 case, "equality CSPs").

Lemma

 $CSP(\mathcal{J}_k)$ is **NP**-complete for $k \geq 2$.

Theorem (Bodirsky, B. '25)

Let $\mathfrak B$ be a reduct of $\mathcal J_k$, and let $\mathfrak C$ be its model-complete core. Then $\mathfrak C$ is bidefinable with $\mathcal J_\ell$ for some $\ell \le k$.

The dichotomy

Theorem (Bodirsky, Kára '08)

CSP dichotomy is known for reducts of the pure set.

(k = 1 case, "equality CSPs").

Lemma

 $CSP(\mathcal{J}_k)$ is **NP**-complete for $k \geq 2$.

Theorem (Bodirsky, B. '25)

Let $\mathfrak B$ be a reduct of $\mathcal J_k$, and let $\mathfrak C$ be its model-complete core. Then $\mathfrak C$ is bidefinable with \mathcal{J}_{ℓ} for some $\ell < k$.

Corollary

If \mathfrak{B} is a reduct of \mathcal{J}_k then $\mathsf{CSP}(\mathfrak{B})$ is in **P** or **NP**-complete.

The dichotomy

Theorem (Bodirsky, Kára '08)

CSP dichotomy is known for reducts of the pure set.

(k = 1 case, "equality CSPs").

Lemma

 $CSP(\mathcal{J}_k)$ is **NP**-complete for $k \geq 2$.

Theorem (Bodirsky, B. '25)

Let $\mathfrak B$ be a reduct of $\mathcal J_k$, and let $\mathfrak C$ be its model-complete core. Then $\mathfrak C$ is bidefinable with $\mathcal J_\ell$ for some $\ell \leq k$.

Corollary

If \mathfrak{B} is a reduct of \mathcal{J}_k then $\mathsf{CSP}(\mathfrak{B})$ is in \mathbf{P} or NP -complete.

I think $1 < \ell < k$ is not possible in the theorem above.

Problem with interpretations

Facts

• \odot I_{fo}((\mathbb{N} ; =)) is not closed under taking model-complete core. (Bodirsky, B. '25+)

Problem with interpretations

- \odot I_{fo}((\mathbb{N} ; =)) is not closed under taking model-complete core. (Bodirsky, B. '25+)
- © Model-completes core of structures in $I_{fo}((\mathbb{N};=))$ are interpretable in $(\mathbb{Q};<)$. (Lachlan '87+Bodirsky, B. '25+)

Problem with interpretations

- \odot I_{fo}((\mathbb{N} ; =)) is not closed under taking model-complete core. (Bodirsky, B. '25+)
- \odot Model-completes core of structures in $I_{fo}((\mathbb{N};=))$ are interpretable in $(\mathbb{Q};<)$. (Lachlan '87+Bodirsky, B. '25+)
- \odot I_{fo}((\mathbb{Q} ; <)) is not closed under taking model-complete core. (Bodirsky, B. '25+)

Theorem (Lachlan's class, Lachlan '87+easy)

TFAE.

- $\mathfrak{A} \in \mathsf{I}_{fo}((\mathbb{Q};<))$ and \mathfrak{A} is stable.
- $\mathfrak A$ is ω -categorical ω -stable and it does not interpret a vector space over a finite field.
- $\mathfrak A$ is ω -stable and it is a reduct of a finitely bounded homogeneous structure.
- $\mathfrak A$ is ω -stable and it is a reduct of a finitely bounded homogeneous Ramsey structure.

Theorem (Lachlan's class, Lachlan '87+easy)

TFAE.

- $\mathfrak{A} \in I_{fo}((\mathbb{Q};<))$ and \mathfrak{A} is stable.
- $\mathfrak A$ is ω -categorical ω -stable and it does not interpret a vector space over a finite field.
- $\mathfrak A$ is ω -stable and it is a reduct of a finitely bounded homogeneous structure.
- $\mathfrak A$ is ω -stable and it is a reduct of a finitely bounded homogeneous Ramsey structure.

Corollary (using a Ramsey transfer result by Mottet, Pinsker '21)

Lachlan's class is closed under taking model-complete cores.

Primitive structures

Theorem (Cherlin, Lachlan, Harrington '85+Bodirsky, B., Marimon '25+)

TFAE.

 $oldsymbol{0}$ $oldsymbol{\mathfrak{B}}$ is in Lachlan's class and primitive.

Primitive structures

Theorem (Cherlin, Lachlan, Harrington '85+Bodirsky, B., Marimon '25+)

TFAE.

- 1 B is in Lachlan's class and primitive.
- **3** Aut(\mathfrak{B}) \simeq Aut(\mathcal{J}_k) ≀ G with the primitive action where $G \leq S_n$ transitive.

Primitive structures

Theorem (Cherlin, Lachlan, Harrington '85+Bodirsky, B., Marimon '25+)

TFAE.

- $oldsymbol{9}$ is in Lachlan's class and primitive.
- **2** $\mathfrak{B} \in I_{fo}((\mathbb{N};=))$ and \mathfrak{B} is primitive.
- **3** Aut(\mathfrak{B}) \simeq Aut(\mathcal{J}_k) ≀ G with the primitive action where $G \leq S_n$ transitive.

Primitive structures

Theorem (Cherlin, Lachlan, Harrington '85+Bodirsky, B., Marimon '25+)

TFAE.

- 1 B is in Lachlan's class and primitive.
- $\mathfrak{B} \in \mathsf{I}_{fo}((\mathbb{N};=))$ and \mathfrak{B} is primitive.
- **3** Aut(\mathfrak{B}) \simeq Aut(\mathcal{J}_k) ≀ G with the primitive action where $G \leq S_n$ transitive.

Theorem (Bodirsky, B., Marimon '25+)

Every model-complete core as in item $\mathbf{0}$ has a hard CSP unless n = k = 1.

