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Algebraic Logic

� aim: study logics using methods from (universal) algebra
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� other examples:
interpolation: amalgamation
completeness: representation

� abstract algebraic logic:
study Logic using methods from (universal) algebra
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Variants of Stone duality

� Heyting algebra vs Esakia spaces

� compact regular frames vs compact Hausdorff spaces

� distributive lattices vs Priestley spaces

� modal algebras vs topological Kripke structures

� cylindric algebras vs . . .

� . . .

Contravariance In all these examples both categories are concrete!



Variants of Stone duality

� Heyting algebra vs Esakia spaces

� compact regular frames vs compact Hausdorff spaces

� distributive lattices vs Priestley spaces

� modal algebras vs topological Kripke structures

� cylindric algebras vs . . .

� . . .

Contravariance

In all these examples both categories are concrete!



Variants of Stone duality

� Heyting algebra vs Esakia spaces

� compact regular frames vs compact Hausdorff spaces

� distributive lattices vs Priestley spaces

� modal algebras vs topological Kripke structures

� cylindric algebras vs . . .

� . . .

Contravariance In all these examples both categories are concrete!



Overview

� Introduction

� Modal Dualities

� Subdirectly irreducible algebras and rooted structures

� Vietoris via modal logic

� Final remarks



Overview

� Introduction

� Modal Dualities

� Subdirectly irreducible algebras and rooted structures

� Vietoris via modal logic

� Final remarks



Modal duality

Main characters

� modal algebras (MA)

� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

Aim:

� introduce TKS

� develop duality between MA and TKS



Modal duality

Main characters

� modal algebras (MA)

� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

Aim:

� introduce TKS

� develop duality between MA and TKS



Modal duality

Main characters

� modal algebras (MA)

� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

Aim:

� introduce TKS

� develop duality between MA and TKS



Modal duality

Main characters

� modal algebras (MA)

� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

Aim:

� introduce TKS

� develop duality between MA and TKS



Modal duality

Main characters

� modal algebras (MA)

� Kripke structures (KS)

� Stone spaces (Stone)

� topological Kripke structures (TKS)

Aim:

� introduce TKS

� develop duality between MA and TKS



Modal Algebras

� A = (A,∨,−,⊥,3) is a modal algebra if
I (A,∨,−,⊥) is a Boolean algebra

I 3 : A→ A preserves finite joins:
3⊥ = ⊥ and 3(a ∨ b) = 3a ∨3b

� h : A′ → A is an MA-morphism if it preserves all operations:
I h(a′ ∨′ b′) = h(a′) ∨ h(b′), . . . , h(3′a′) = 3h(a′).

� MA is the category of modal algebras with MA-morphisms

� A modal logic L can be algebraized by a variety VL of modal algebras

� Modal algebras are (the simplest) Boolean Algebras with Operators
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Kripke structures

� A Kripke structure (frame) is a pair S = (S ,R) with R ⊆ S × S

I these provide the possible-world semantics of modal logic

� f : (S ′,R ′)→ (S ,R) is a bounded morphism if
I R ′s ′t′ implies Rf (s ′)f (t′)

I Rf (s ′)t implies the existence of t′ with R ′s ′t′ and f (t′) = t.

� KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions

� Rω :=
⋃

n>0 R
n,

I where R0 := IdS and Rn+1 := R ◦ Rn

� R(s) := {t ∈ S | Rst}
� r ∈ S is a root of S if S = Rω(r)

� S is rooted if its collection WS of roots is non-empty
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Stone spaces

� A (topological) space is a pair (S , τ) where τ is a topology on S

� A Stone space is a space (S , τ) where τ is
I compact,

I Hausdorff

I zero-dimensional (i.e. it has a basis of clopen sets)

� Stone is the category of Stone spaces and continuous functions



Stone duality

From Stone spaces to Boolean algebras: (·)∗

Objects Given (S , τ) take (S , τ)∗ := (Clp(τ),∪,∼S ,∅)

Arrows Given f : (S ′, τ ′)→ (S , τ) define f ∗ : Clp(τ)→ Clp(τ ′)

f ∗(X ) := {s ′ ∈ S ′ | fs ′ ∈ X}

From Boolean algebras to Stone spaces: (·)∗
Objects Given A = (A,∨,−,⊥) take A∗ := (Uf (A), σA), where

I Uf (A) is the set of ultrafilters of A and

I σA is generated by the basis {â | a ∈ A}
I with â := {u ∈ UF (A) | a ∈ u}

Arrows Given h : A′ → A define h∗ : Uf (A)→ Uf (A′) by

h∗(u) := {a′ ∈ A′ | ha′ ∈ u}
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Stone duality 2

Theorem
The functors (·)∗

and (·)∗ witness the dual equivalence of BA and Stone.



Complex algebras

From Kripke structures to modal algebras: (·)+

Objects Given (S ,R) take (S ,R)+ := (PS ,∪,∼S ,∅, 〈R〉), where

I 〈R〉(X ) := {s ∈ S | R[s] ∩ X 6= ∅}
Arrows Given f : (S ′,R ′)→ (S ,R) define f + as inverse image

� The operation 〈R〉 encodes the semantics of the modal diamond

� (S ,R)+ is the complex algebra of (S ,R)

� Complex algebras are perfect modal algebras (PMAs):

I complete, atomic and completely additive

� (·)+ is part of a discrete duality between PMA and KS
(with the opposite functor (·)+ taking the atom structure of a PMA)
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Ultrafilter structures

From modal algebras to Kripke structures:

Objects With A = (A,∨,−,⊥,3) take A• := (Uf (A),Q3), where

I Q3uv iff ∀a ∈ v .3a ∈ u

Arrows Given f : A′ → A define f• as inverse image

� These operations provide a functor: MA→ KS

� A• is the ultrafilter structure or canonical structure of A

� A embeds in its canonical extension (A•)+

� Open Problem characterize the ultrafilter structures modulo isomorphism
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Topological modal duality

From modal algebras to topological Kripke structures: (·)∗
Objects Given A = (A,∨,−,⊥,3) take A∗ := (Uf (A),Q3, σA)

Arrows Given h : A′ → A define h∗ as inverse image

From topological Kripke structures to modal algebras: (·)∗

Objects Given S = (S ,R, τ) take S∗ := (Clp(τ),∪,∼S ,∅, 〈R〉)
Arrows Given f : S′ → S define f ∗ as inverse image

Theorem
The functors (·)∗

and (·)∗ witness the dual equivalence of MA and TKS:

MA TKS
j

(·)∗

Y

(·)∗
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Subdirect Irreducibility

� Given an algebra A, let ConA be its lattice of congruences

� A is simple if ConA ∼= 2

� A is subdirectly irreducible if ConA has a least non-identity element

� Birkhoff: every variety is generated by its s.i. members

Question What is the dual of a s.i. modal algebra?

Folklore Subdirect irreducibility is related to rootedness
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First steps

Proposition (folklore)
S is rooted iff S+ is s.i.

Proposition (Sambin)
(1) If Int(WA∗) 6= ∅ then A is s.i.
(2) If A is s.i. then Int(WA∗) 6= ∅ , provided A is (ω-)transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg) Given a modal algebra A, t.f.a.e.

� A is s.i.

� A∗ has a largest nontrivial, closed hereditary subset
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Roots and Topo-roots

Fix a modal algebra A.

� r is a root of A∗ iff Qω
3(r) = Uf (A)

� Qω
3uv iff ∃n ∈ ω∀a ∈ v .3na ∈ u

� Define Q?
3 by putting

Q?
3uv iff ∀a ∈ v∃n ∈ ω.3na ∈ u

� Call r ∈ Uf (A) a topo-root if Q?
3(r) = Uf (A)

� Let TA∗ denote the collection of topo-roots of A∗
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Observations

Proposition For any modal algebra A:
(1) Q? is transitive
(2) Qω ⊆ Q?

(3) Q?(u) is hereditary for any ultrafilter u
(4) Q?(u) is closed for any ultrafilter u
(5) Q?(u) = Qω(u) for any ultrafilter u
(6) 〈Q?〉 maps opens to opens
(7) If Q is transitive then Q = Qω = Q?



Characterizations

Theorem For any modal algebra A:
(1) A is simple iff TA∗ = Uf (A)

(2) A is s.i. iff Int(TA∗) 6= ∅

Note Earlier results follow from this.

Suggestion Develop the modal theory of Q?
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The Vietoris construction

� Let X = 〈X , τ〉 be a topological space.

� K (X) denotes the collection of compact sets

� With U ⊆ τ , define

∇U := {F ∈ K (X) | F P∈ U},

where FP∈U if F is ‘properly covered’ by U :
I ∀s ∈ F∃U ∈ U . s ∈ U and

I ∀U ∈ U∃s ∈ F .s ∈ U

� These sets ∇U together provide a basis for a topology on K (X),
the Vietoris topology υτ

� V(X) := 〈K (X), υτ 〉 is the Vietoris space of X.
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The Vietoris construction 2

Different presentation:

� For a ∈ τ , define

3a := {F ∈ K (X) | F ∩ a 6= ∅}

2a := {F ∈ K (X) | F ⊆ a}

� Generate υτ from {〈3〉a, [3] | a ∈ τ} as a subbasis.

Fact The Vietoris construction preserves various properties, including:
• compactness
• compact Hausdorfness
• zero-dimensionality
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The Vietoris functor

From now on we restrict to the category KHaus of

I objects: compact Hausdorff spaces

I arrows: continuous maps

Fact Given f : X→ Y,

let Vf : K (X)→ P(Y ) be given by

Vf (F ) := f [F ]
(

= {fx | x ∈ F}
)

Then Vf maps compact sets to compact sets.

Fact
V is a functor on the categories KHaus and Stone.
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Two observations

Observation Stone duality and the Vietoris functor:

BA Stone
j

S

Y
P

	
V

R
?

Observation (Esakia)
In a TKS (S ,R, τ), R : S → P(S) is an arrow R : (S , τ)→ V(S , τ)

Theorem
Topological Kripke frames are Vietoris coalgebras over Stone
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I Sufficiently general to model notions like:
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Coalgebras and their morphisms

Let T : C → C be an endofunctor on the category C

� An T-coalgebra is a pair (c , γ : c → Tc).

� A coalgebra morphism between two coalgebras (c ′, γ′) and (c , γ) is
an arrow f : c ′ → C with

Tc ′

c ′

Tc

c

? ?
-

-

γ′ γ

f

Tf

Examples:

� Kripke structures are P-coalgebras over Set

� deterministics finite automata are coalgebras over Set
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Duality:

BA Stone
j

S

Y
P

	
V

R
?



Vietoris coalgebras

Theorem TKS ∼= CoalgV(Stone)

Manifestations:

� The final V-coalgebra ∼ the canonical general frame (C ,R, τ),

� the map s 7→ R(s) is a homeomorphism R : (C , τ)→ V(C , τ)

Duality:

BA Stone
j

S

Y
P

	
V

R
?



Vietoris coalgebras

Theorem TKS ∼= CoalgV(Stone)

Manifestations:

� The final V-coalgebra ∼ the canonical general frame (C ,R, τ),

� the map s 7→ R(s) is a homeomorphism R : (C , τ)→ V(C , τ)

Duality:

BA Stone
j

S

Y
P

	
V

R
?



Vietoris coalgebras

Theorem TKS ∼= CoalgV(Stone)

Manifestations:

� The final V-coalgebra ∼ the canonical general frame (C ,R, τ),

� the map s 7→ R(s) is a homeomorphism R : (C , τ)→ V(C , τ)

Duality:

BA Stone
j

S

Y
P

	
V

R

?



Vietoris coalgebras

Theorem TKS ∼= CoalgV(Stone)

Manifestations:

� The final V-coalgebra ∼ the canonical general frame (C ,R, τ),

� the map s 7→ R(s) is a homeomorphism R : (C , τ)→ V(C , τ)

Duality:

BA Stone
j

S

Y
P

	
V

R
?



Modal Logic Dualizes the Vietoris Functor
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� Johnstone: describe M via generators and relations

� Given a BA B, MB is the Boolean algebra
I generated by the set {3b : b ∈ B}
I modulo the relations 3(a ∨ b) = 3a ∨3b and 3> = >

Theorem (Kupke, Kurz & Venema) MA ∼= ALgBA(M).

The topological modal duality is an algebra|coalgebra duality
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Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.
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Vietoris pointfree (Johnstone Functor)

Given a frame L, define L2 := {2a | a ∈ L} and L3 := {3a | a ∈ L}.

VL := Fr〈L2 ] L3 | 2(
∧
A) =

∧
a∈A 2a (A ∈ PωL)

3(
∨
A) =

∨
a∈A 3a (A ∈ PωL)

2a ∧3b ≤ 3(a ∧ b)
2(a ∨ b) ≤ 2a ∨3b

2(
⊔
A) =

⊔
a∈A 2a (A ∈ PL directed)

3(
⊔
A) =

⊔
a∈A 3a (A ∈ PL directed)

〉



Vietoris and the Cover Modality ∇

I Vietoris used the ∇-constructor on Pωτ

I Now think of ∇ as a primitive modality
I This modality has many manifestations in modal logic

I normal forms (Fine)

I coalgebraic modal logic (Moss)

I automata theory (Walukiewicz)

I May develop ∇-logic . . .

I . . . and formulate M & J accordingly, in terms of ∇
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New directions

Fix a standard set functor T that preserves weak pullbacks.

Define the T-powerlocale of a frame L as

VTL := Fr〈TωL | (∇1), (∇2), (∇3)〉,

where the relations are as follows:

(∇1) ∇α ≤ ∇β (α T≤ β)

(∇2)
∧

γ∈Γ
∇γ ≤

∨
{∇(T

∧
)Ψ | Ψ ∈ SRD(Γ)} (Γ ∈ PωTωL)

(∇3) ∇(T
∨

)Φ ≤
∨
{∇β | β T∈ Φ} (Φ ∈ TωPL)
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Some results

Theorem (V., Vickers & Vosmaer)

� JT provides a functor on the category Fr of frames.

� JT generalizes Johnstone’s J: J = JP.

� JT preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture
If T preserves finite sets, then JT preserves compactness.

Question

KRFr KHaus
j

S

Y
P

R
JT

	
VT

The Vietoris functor is the power set instantiation of the functor VT

Describe the functor VT for an arbitrary set functor T!
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� Dualities can be used ‘on the other side’ to

I solve problems

I isolate interesting concepts

I trigger interesting questions
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