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Algebraic Logic

B aim: study logics using methods from (universal) algebra

B examples:
propositional logic: Boolean algebras
intuitionistic logic: Heyting algebras
first-order logic: cylindric algebras

B other examples:
interpolation: amalgamation
completeness: representation

B abstract algebraic logic:
study Logic using methods from (universal) algebra
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Duality

B in mathematics: categorical dualities

B C and D are dual(ly equivalent) if C and D° are equivalent
i.e. there are contravariant functors linking C and D
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Variants of Stone duality

B Heyting algebra vs Esakia spaces

B compact regular frames vs compact Hausdorff spaces
B distributive lattices vs Priestley spaces

B modal algebras vs topological Kripke structures

B cylindric algebras vs . ..

.

Contravariance In all these examples both categories are concrete!
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Modal duality

Main characters

B modal algebras (MA)

B Kripke structures (KS)

B Stone spaces (Stone)

B topological Kripke structures (TKS)

Aim:
B introduce TKS
B develop duality between MA and TKS
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B A= (AV,—, 1,0)is a modal algebra if
» (A,V,—, 1) is a Boolean algebra

» &t A — A preserves finite joins:
OCl=1and OG(avh)=<Cavob

W h: A" — Ais an MA-morphism if it preserves all operations:
> h(a’ V' b')=h(a') Vv h(b'), ..., h(O'a") = Oh(a).
B MA is the category of modal algebras with MA-morphisms

B A modal logic L can be algebraized by a variety V| of modal algebras
B Modal algebras are (the simplest) Boolean Algebras with Operators
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Kripke structures

B A Kripke structure (frame) is a pair S=(S,R) with RC S x S
> these provide the possible-world semantics of modal logic
B f: (S R)— (S, R)is a bounded morphism if
> R's't’ implies Rf(s')f(t')
> Rf(s")t implies the existence of t' with R's’t’ and f(t') = t.
B KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions
B R :=J,.0R"
» where R® := Ids and R™! := Ro R"
B R(s):={t eS| Rst}
B reSisarootof Sif S=R¥(r)

B S is rooted if its collection Ws of roots is non-empty



Stone spaces

B A (topological) space is a pair (S, 7) where 7 is a topology on S
B A Stone space is a space (S, 7) where 7 is

» compact,

» Hausdorff

» zero-dimensional (i.e. it has a basis of clopen sets)

B Stone is the category of Stone spaces and continuous functions
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From Stone spaces to Boolean algebras: (-)*
Objects Given (S, 7) take (S,7)* := (Clp(7),U, ~s, &)
Arrows Given f : (S§',7") — (S, 1) define f* : Clp(7) — Clp(7')

f*(X)={s eS| eX}

From Boolean algebras to Stone spaces: ().
Objects Given A = (A,V, —, 1) take A, := (Uf(A),oa), where
» Uf(A) is the set of ultrafilters of A and
> 0, is generated by the basis {3 | a € A}
» with 3:={u e UF(A) | ac u}
Arrows Given h: A" — A define h, : Uf(A) — Uf(A’) by

ho(u) :={a € A'| ha' € u}



Stone duality 2

Theorem
The functors ()" and (-). witness the dual equivalence of BA and Stone.
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Complex algebras

From Kripke structures to modal algebras: ()"
Objects Given (S, R) take (S,R)™ := (PS,U,~s,d, (R)), where
» (R)(X):={seS|R[s|]NnX # o}
Arrows Given f : (§',R’) — (S, R) define f* as inverse image

B The operation (R) encodes the semantics of the modal diamond
B (S, R)" is the complex algebra of (S, R)
B Complex algebras are perfect modal algebras (PMAs):

> complete, atomic and completely additive

B ()" is part of a discrete duality between PMA and KS
(with the opposite functor (-)+ taking the atom structure of a PMA)
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Ultrafilter structures

From modal algebras to Kripke structures:
Objects With A = (A,V, —, L, {) take A, := (Uf(A), Qo ), where
> Qouv iffVaev.Cacu
Arrows Given f : A’ — A define f, as inverse image

B These operations provide a functor: MA — KS
B A, is the ultrafilter structure or canonical structure of A
B A embeds in its canonical extension (As)"

B Open Problem characterize the ultrafilter structures modulo isomorphism
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Topological Kripke structures

B A topological Kripke structure is a triple (S, R, 7) such that
> (S, R) is a Kripke structure
» (S,7) is a Stone space
» (R)X is clopen if X C S is clopen
> R(s) is closed
» TKS is the category with
> objects: topological Kripke structures

> arrows: continuous bounded morphism



Topological modal duality

From modal algebras to topological Kripke structures: ().
Objects Given A = (A, V, —, L,0) take A, := (Uf(A), Qo,04)
Arrows Given h: A’ — A define h, as inverse image

From topological Kripke structures to modal algebras: (-)*
Objects Given S = (S, R, 7) take S* := (Clp(7),U, ~s, 9, (R))

Arrows Given f : S’ — S define f* as inverse image

Theorem ‘
The functors ()" and (). witness the dual equivalence of MA and TKS:
()«
— A
MA TKS
N—
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Remarks

History:
B Jénsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

B algebraic logic || modal logic

Research Topics:
B (canonicity) Which varieties are closed under (A — (A,)T)

(correspondence) FO properties of S ~ equational prop’s of S*
> eg. SEVvRw iff ST | x < Ox

(canonicity & correspondence) Sahlgvist theorem
(completeness) Which varieties are generated by their PMAs?

|
|
B (completions) canonical extensions, MacNeille completions, . ..
B study free modal algebras

|
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Subdirect Irreducibility

B Given an algebra A, let ConA be its lattice of congruences
B A is simple if ConA =2
B A is subdirectly irreducible if ConA has a least non-identity element

B Birkhoff: every variety is generated by its s.i. members

Question What is the dual of a s.i. modal algebra?

Folklore Subdirect irreducibility is related to rootedness
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First steps

Proposition (folklore)
S is rooted iff ST is s.i.

Proposition (Sambin)
(1) If Int(W,y,) # @ then A is s.i.
(2) If Ais s.i. then Int(W,,) # @ , provided A is (w-)transitive.

Example (Kracht)
There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg) Given a modal algebra A, t.f.a.e.
B Aiss.i.

B A, has a largest nontrivial, closed hereditary subset
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Roots and Topo-roots

Fix a modal algebra A.
B ris a root of A, iff Qy(r) = Uf(A)
B QiuviffdncwVaecv.O"acu

B Define QF by putting
Qiuv iff Vaevdnew.O"acu

B Call r € Uf(A) a topo-root if Q5(r) = Uf(A)
B Let T, _ denote the collection of topo-roots of A,



Observations

Proposition For any modal algebra A:

QY C Q"

Q*(u) is hereditary for any ultrafilter u
Q*(v) is cIosed for any ultrafilter u
Q
(Q

*(u) = Q¥(u) for any ultrafilter u

u
*) maps opens to opens
If Q is transitive then @ = Q¥ = Q*
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Characterizations

Theorem For any modal algebra A:
(1) A is simple iff Ty, = Uf(A)
(2) Aiss.i. iff Int(Ty,) # 92

Note Earlier results follow from this.

Suggestion Develop the modal theory of Q*
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The Vietoris construction

B Let X = (X, 7) be a topological space.

K(X) denotes the collection of compact sets
B With U C 7, define

VU :={F € K(X) | FPe U},

where FPcU if F is ‘properly covered’ by U:
» Vse FAU eU.s € U and
» VUelUIse FselU
B These sets VU together provide a basis for a topology on K(X),
the Vietoris topology v,
B V(X) := (K(X), v,) is the Vietoris space of X.
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The Vietoris construction 2

Different presentation:

B For a € 7, define

oF {FeEKX)|Fna+#g}

Oa {FeKX)|FCa}

B Generate v, from {(3)a,[3] | a € 7} as a subbasis.

Fact The Vietoris construction preserves various properties, including:
® compactness

e compact Hausdorfness

e zero-dimensionality



The Vietoris functor

From now on we restrict to the category KHaus of
» objects: compact Hausdorff spaces

> arrows: continuous maps

Fact Given f : X — Y,



The Vietoris functor

From now on we restrict to the category KHaus of
» objects: compact Hausdorff spaces

> arrows: continuous maps

Fact Given f : X = Y, let Vf : K(X) — P(Y) be given by

VF(F) := f[F] (={&IxeF})



The Vietoris functor

From now on we restrict to the category KHaus of
» objects: compact Hausdorff spaces

> arrows: continuous maps

Fact Given f : X = Y, let Vf : K(X) — P(Y) be given by
VF(F) = F[F] (={&IxeF})

Then Vf maps compact sets to compact sets.



The Vietoris functor

From now on we restrict to the category KHaus of
» objects: compact Hausdorff spaces

> arrows: continuous maps
Fact Given f : X = Y, let Vf : K(X) — P(Y) be given by
VF(F) = F[F] (={&IxeF})

Then Vf maps compact sets to compact sets.

Fact
V is a functor on the categories KHaus and Stone.
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Two observations

Observation Stone duality and the Vietoris functor:

S

/—\
? C BA Stone \%
N
P

Observation (Esakia)
Ina TKS (S,R,7), R: S — P(S) is an arrow R : (5,7) = V(S,7)

Theorem
Topological Kripke frames are Vietoris coalgebras over Stone
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Universal Coalgebra

» Universal Coalgebra (Rutten, 2000) is
a general mathematical theory for evolving systems
> It provides a natural framework for notions like

> behavior
> bisimulation/behavioral equivalence
> invariants

» Sufficiently general to model notions like:
input, output, non-determinism, interaction, probability, ...
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Coalgebras and their morphisms

Let T: C — C be an endofunctor on the category C
B An T-coalgebra is a pair (¢,v: ¢ — Tc).

B A coalgebra morphism between two coalgebras (¢’,~') and (¢, 7) is
an arrow f : ¢/ = C with

¢ — ¢

/

v Y
Tf

Tc Tc
Examples:
B Kripke structures are P-coalgebras over Set
B deterministics finite automata are coalgebras over Set
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Theorem TKS = Coalg,,(Stone)

Manifestations:
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Modal Logic Dualizes the Vietoris Functor

S

/_\
M O BA Stone V
N—
P

B Johnstone: describe M via generators and relations
B Given a BA B, MB is the Boolean algebra
> generated by the set {Ob: b € B}
» modulo the relations G(aVv b) =<CaVvoband 0T =T

Theorem (Kupke, Kurz & Venema) MA = ALgga(M).

The topological modal duality is an algebra|coalgebra duality
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Variation: Pointfree Topology

Frames/Locales provide pointfree versions of topologies.
S

/\
J C KRFr KHaus O \Y
N—

Geometric modal logic dualizes/axiomatizes the Vietoris functor
(Johnstone)



Vietoris pointfree (Johnstone Functor)

Given a frame L, define Lg :={0a|a€ L} and L, :={Ca|ae L}.
VL :=Fr(ls¥Lls | O(AA)=A,caD0a (A€P,l)
O(VA)=V,caCa (AcPyl)

OaAn<Ob<O(anb)
O(aV b) <DOaVv<ob

O(LJA) =|l,ca0a (A€ PL directed)
O(LUA) = ,eaCa (A€ PL directed)

)
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Vietoris and the Cover Modality V

v

Vietoris used the V-constructor on P, 7

v

Now think of V as a primitive modality

v

This modality has many manifestations in modal logic
> normal forms (Fine)
> coalgebraic modal logic (Moss)

> automata theory (Walukiewicz)

v

May develop V-logic ...

> ...and formulate M & J accordingly, in terms of V
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New directions

Fix a standard set functor T that preserves weak pullbacks.
Define the T-powerlocale of a frame LL as
V1L := Fr(T,L| (V1),(V2),(V3)),
where the relations are as follows:
(V1) Va<Vj (aT<B)
(V2) /\Werw < VAV(TAW |V e SRD(N)} (T € P,TuL)
(V3) V(TV)o < \/{VB|BTe ¢} (® e T,PL)
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Some results

Theorem (V., Vickers & Vosmaer)

B J1 provides a functor on the category Fr of frames.
B Jt generalizes Johnstone's J: J = Jp.

B J preserves regularity, zero-dimensionality, and Stone-ness.
Conjecture
If T preserves finite sets, then Jt preserves compactness.

Question
S

— T~
JT CKRFr KHaus VT
\_/
P

The Vietoris functor is the power set instantiation of the functor V1
Describe the functor V1 for an arbitrary set functor T!
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Final Remarks

B Dualities are particularly useful if both categories are concrete

B Dualities can be used ‘on the other side’ to
» solve problems
» isolate interesting concepts

» trigger interesting questions
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