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Of course, we can only be
both right if we capture
some ideas differently.







SPR according to Einstein in 1905:

From Einstein’s paper „Zur Elektrodynamik Bewegter Körper.”
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(Hence it can be formulated several different ways.)

So the right question to ask is:

How are these formalizations related?
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W(k, b, x , y , z , t) ! „observer k coordinatizes body
b at spacetime location 〈x , y , z , t〉.”
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〈x , y , z , t〉

Worldline of body b according to observer k

wlinek(b) = {〈x , y , z , t〉 ∈ Q4 : W(k , b, x , y , z , t)}



W(k, b, x , y , z , t) ! „observer k coordinatizes body
b at spacetime location 〈x , y , z , t〉.”
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Language: {B, IOb,Q,+, ·,≤,WPh,Etc.}

B 〈Q,+, ·,≤〉

PhIOb

W

B ! Bodies (things that move) IOb ! Inertial Observers

Q ! Quantities +, · and ≤! field operations and ordering

W ! Worldview (a 6-ary relation of sort BBQQQQ )

Ph ! Photons (light signals)



AxOField:
The structure of quantities 〈Q,+, ·,≤〉 is an ordered field,

Rational numbers: Q,
Q(
√
2), Q(

√
3), Q(π), . . .

Computable numbers,
Constructable numbers,
Real algebraic numbers: A ∩ R,
Real numbers: R,
Hyperrational numbers: Q∗,
Hyperreal numbers: R∗,
Etc.



A principle of relativity

S – set of experimental scenarios.

CoordSPR:
Every experimental scenario ϕ ∈ S is either realizable by every
inertial observer or by none of them.

For all ϕ ∈ S : IOb(k), IOb(k ′) =⇒
[
ϕ(k , x̄) ⇐⇒ ϕ(k ′, x̄)

]
.
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ϕ(k , v) ≡ (∃b ∈ B)
[
speedk(b) = v

]
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Experimental scenarios (S) = ???

S ⊆ „Formulas expressible in the language of the theory.”
We need a free variable for the observer on which we will
evaluate the formula.
We would like to use numbers as parameters.

CoordSPR+: when S contains all the formulas having only 1 free
variable of sort bodies.
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What does SPR imply?



AxLight:
There is at least one inertial observer according to whom,
any light signal moves with the same velocity in every direction.
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(∃k ∈ IOb)(∃c ∈ Q)(∀x̄ ȳ ∈ Q4)

 (∃p ∈ Ph)
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x̄ , ȳ ∈ wlinek(p)
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AxPh:
According to every inertial observer, any light signal moves with the
same velocity in every direction.
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time(x̄ , ȳ)2
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Proposition: (Assuming AxOField)

CoordSPR+,AxLight =⇒ AxPh

ϕ(k , x̄ , ȳ) ≡ (∃p ∈ Ph)
[
x̄ , ȳ ∈ wlinek(p)

]
∈ S.



Proposition: (Assuming AxOField)

CoordSPRS ,AxLight =⇒ AxPh, if

ϕ(k , x̄ , ȳ) ≡ (∃p ∈ Ph)
[
x̄ , ȳ ∈ wlinek(p)

]
∈ S.



How to formalize Isotropy?



The worldview transformation wkk′ between observers k and k ′

wkk′(x , y , z , t : x ′, y ′, z ′, t ′) def⇐⇒
∀b W(k , b, x , y , z , t) ⇐⇒ W(k ′, b, x ′, y ′, z ′, t ′).
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Homogeneity:
Translations do not effect the outcomes of experiments (and the
experiments can be translated).

For all ϕ ∈ S : wkk′ „is a translation,”
IOb(k), IOb(k ′) =⇒

[
ϕ(k , x̄) ⇐⇒ ϕ(k ′, x̄)

]
.

and

(∀k ∈ IOb)(∀T „translation” )(∃k ′ ∈ IOb)
[
wkk′ = T

]



Isotropy:
Rotations do not effect the outcomes of experiments (and the
experiments can be rotated).

For all ϕ ∈ S : wkk′ „is a rotation restricted to space,”
IOb(k), IOb(k ′) =⇒

[
ϕ(k , x̄) ⇐⇒ ϕ(k ′, x̄)

]
.

and

(∀k ∈ IOb)(∀R „spatial rotation”)(∃k ′ ∈ IOb)
[
wkk′ = R

]



Proposition: (assuming AxOField)

AxTriv,CoordSPR =⇒ Homogeneity
AxTriv,CoordSPR =⇒ Isotropy

AxTriv:
The rotated (around the time-axis) and translated versions of an
inertial coordinate systems are also inertial coordinate system.



Frames vs. coordinate systems

From Rindler’s book „Relativity: Special, General, and Cosmological.”



Coordinates vs frames



How can we introduce reference frames?



A reference frame is an equivalence class of observers:

k ∼ h def⇐⇒ wkh = T ◦ R
for some rotation R around the time-axis and (spacetime)
translation T .



FrameSPR:
Every ϕ ∈ S experimental scenario is either realizable in every
inertial frame of reference or in none of them.

For all ϕ ∈ S : IOb(k), IOb(k ′) =⇒(
(∃h ∈ IOb)

[
k ∼ h
ϕ(h, x̄)

]
⇐⇒ (∃h′ ∈ IOb)

[
k ′ ∼ h′

ϕ(h′, x̄)

])



Proposition: (Assuming AxOField)

FrameSPR+,AxLight,AxRest =⇒ AxPh

AxRest:
Restricted to time or space the worldview transformation between
any two inertial observers stationary with respect to each other is a
similarity (i.e., isometry up to scaling).

Proposition:

FrameSPR+,AxTriv,AxRest,Etc. 6=⇒ Homogeneity
FrameSPR+,AxTriv,AxRest,Etc. 6=⇒ Isotropy
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CoordSPR =⇒
6⇐=
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Thank you for your attention!
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