
On Kripke completeness 
of some predicate modal logics

Valentin Shehtman

Logic, relativity and beyond 
Budapest, August 2017



General observations

 Unlike the propositional case, in first-order modal (and 

intuitionistic) logic there is a gap between syntax and semantics. 
It turns out that simply axiomatizable modal logics may have 
complex semantic descriptions. The standard Kripke semantics 
does not work properly in the predicate case - "most of" modal 
predicate logics are Kripke-incomplete.

As the semantics of predicate logics is not clearly understandable,
natural questions about properties of logics may be quite difficult.
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  Formulas

Modal predicate formulas are built from the following 

ingredients:

• the countable set of individual variables Var={v1,v2,…}

• countable sets of  n-ary predicate letters (for every n≥0) 

•  → , ⊥ ,    ⃞  

•  ∃, ∀

The connectives ⅂ , ∧, ∨, ◇ are derived.

No constants or function symbols

NOTATION for the set of formulas MF



Variable and formula substitutions

[y1,..., yn /x1,..., xn] simultaneously replaces all free occurrences 

of x1,..., x n with y1,..., yn (renaming bound variables if necessary)

To obtain [C(x1,..., xn,y1,..., ym)/P(x1,..., xn)]A from A 

(1) rename all bound variables of A that coincide with the 

"new" parameters y1,..., ym of C,

(2) replace every occurrence of every atom P(z1,..., zn) with  

[z1,..., zn /x1,..., xn]C

Strictly speaking, all substitutions are defined up to 

congruence: formulas are congruent if they can be 

obtained by "legal" renaming of bound variables
 [Q(x,y,z)/P(x)] (∃yP(y) ∧P(z)) = ∃xQ(x,y,z)∧Q(z,y,z) or 

∃uQ(u,y,z)∧Q(z,y,z)



Modal logics

An modal predicate logic (mpl) is a set L of modal formulas 

such that L contains

• the classical propositional tautologies

• the axiom of K:     ⃞ (p→q) → (   ⃞ p →   ⃞ q)

• the standard predicate axioms 

L is closed under the rules 

• Modus Ponens: A, A →B / B

• Necessitation: A /    ⃞ A

• Generalization: A /  ∀xA

• Substitution:  A/SA  (for any formula substitution S)



Propositional logics can be regarded as fragments of predicate 

logics (with only 0-ary predicate letters, without quantifiers).
Some notation

L+Γ := the smallest logic containing (L and Γ) 

K := the minimal modal propositional logic

QL := the minimal predicate logic containing the propositional 

logic L
L ⊢ A := A ∈ L



Kripke frame semantics for predicate logics

• A propositional Kripke frame F=(W, R) (W≠∅, R ⊆ W2)  

• A predicate Kripke frame: Φ=(F,D), where 
D=(Du)u∈W is an expanding family of non-empty sets:  

if u R v, then Du ⊆ Dv

Du is the domain at the world u (consists of existing 
individuals).



A Kripke model over Φ is a collection of classical 

models: 

M=(Φ,θ), where θ=(θu)u∈W is a valuation 

θu(P) is an n-ary relation on Du for each n-ary predicate 

letter P



For every modal formula A(x1,..., xn) and d1,..., dn ∈ Du 

consider a Du-sentence  A(d1,..., dn).

Def Forcing (truth) relation M,u ⊨ B 

between the worlds u and Du-sentences  B is defined by 

induction:

• M,u ⊨ P(d1,..., dn) iff (d1,..., dn) ∈ θu(P)

• M,u ⊨ a=b iff  a equals b

• M,u ⊨   ⃞ B iff for any v, uRv implies  M,v  ⊨ B 

• M,u  ⊨ ∀x B iff for any d ∈ Du  M,u ⊨ [d/x]B

etc. (the other cases are clear)



Def  (truth in a Kripke model; validity in a frame) 

M ⊨ A(x1,..., xn) iff for any u ∈ W M,u ⊨ ∀x1...∀ 
xnA(x1,..., xn)

Φ ⊨A iff for any M over Φ,  M ⊨ A

Soundness theorem

ML(Φ):={A∈ MF | Φ ⊨A} is an mpl

Logics of this form are called Kripke-complete.    

Remark For propositional formulas we do not need domains. So 

we can define validity of propositional formulas in propositional 

frames. Kripke-complete propostional logics are defined as sets 

of frame-valid propositional formulas.



Def  The logic (of a certain type) of a class of frames � is 
the intersection of the logics of frames from �. 
A logic of a class of Kripke frames is called Kripke (𝒦)-
complete.

Examples of Kripke-completeness
Surprisingly, for logics of the form QL not so many 
examples are known:
• for standard logics L (classical results by Kripke, 
Gabbay, Cresswell et al.):

K, T, D, KB, K4, S4, S5



K4 : transitive frames
S4: transitive reflexive frames

• for other cases, with more sophisticated proofs
S4.2 = S4 +  ◇   ⃞ p →   ⃞ ◇p  confluent frames 

                                   (Ghilardi&Corsi, 1989)
K4.3 = K4 +    ⃞ (   ⃞ p∧p →q) ∨   ⃞ (   ⃞ q∧q →p)    
non-branching transitive

S4.3 = K4.3 +   ⃞ p → p

non-branching transitive reflexive (Corsi, 1989)



Barcan formula
Ba:= ◇∃xA → ∃x◇A

This formula is valid in a Kripke frame iff the domains remain constant:
if uRv then  Du = Dv

For he same basic cases,   QL+Ba are also Kripke-complete
(but Ba is derivable in QKB, QS5) 

However, QS4.2 + Ba is K-incomplete (Shehtman&Skvortsov 1990)
Def A propositional modal logic is called universal if the 

class of its frames is universal, i.e., the class of models of 

a universal classical first-order theory. 

A propositional logic of a single finite frame is called 

tabular.



Theorem  (Tanaka - Ono, 2001; book09) If a modal 

propositional logic Λ is universal or tabular and K 

-complete, then L = QΛ +Ba is also K -complete.

For other examples of Kripke-complete logics see book09, 

chapters 6,7.



Logics of specific frames
Notation For a class � of propositional Kripke frames

𝓚�:= {(F,D) | F ∈ �},

the class of predicate frames over �.

Little is known about logics of 𝓚� for specific �.

ML(𝓚(Q, ≤))=QS4.3  

Follows from the results by G. Corsi (cf. [book09, cor. 
6.7.13])
  ML(𝓚(R, ≤)) = ?

 ML(𝓚(Z, ≤)) = ? (probably, not RE)

ML(𝓚(Q, <))=QD4.3Ad   (G.Corsi, 1993)  



Propositional modal logics for relativisitic 
time

μ(a1,...,an)=an
2-(a1

2+...+an-1
2)

Causal accessibility: a can send a signal to b.

(a1,...,an) ≼ (b1,...,bn) iff μ(b-a) ≥ 0 & an ≤ bn

Chronological accessibility: a can send a signal to b 
slower than light

(a1,...,an) ≺ (b1,...,bn) iff μ(b-a) > 0 & an < bn

(Rn)_ ={(a1,...,an) | an<0}



For n=2

a

b



 
Theorem (Goldblatt 1980, Shehtman 1976-83)

ML((Rn)_  , ⪯ ) = S4  (the logic of reflexive 

transitive frames)
ML(Rn

  , ⪯ ) = S4.2 (= S4 + confluence)

Theorem (Shapirovsky & Shehtman 2003)

ML((Rn)_  , ≺)= D4Ad2 (the logic of serial transitive 

2-dense frames)
Seriality condition:    ∀x ∃y xRy       

Seriality axiom:  ◇T    



2-density condition:  
        ∀x,y,z (xRy & xRz ⇒  ∃t ( xRt & tRy & tRz))

2-density axiom: 
◇p ∧ ◇q  → ◇(◇p ∧ ◇q)   

х

 y z

t



ML(Rn
 , ≺)=D4.2Ad (= D4Ad + confluence axiom)

confluence condition:  

    ∀x,y (xRy & xRz ⇒  ∃t ( xRt & yRt))

confluence axiom:   
◇   ⃞ p →   ⃞ ◇p

x

y z

t



We do not know predicate logics of this kind.
The only exception is 

Proposition 1 ML(𝓚((Rn)_  , ⪯ )) = QS4

The proof is based on the construction from Goldblatt – 
Shehtman. 
Consider the (transitive reflexive)  binary tree IT2:

   

...….......................................................



1. There is a p-morphism (a validity-preserving map) 

((Rn)_  , ⪯ )  ↠ IT2.
2. This readily implies:

  ML(𝓚((Rn)_  , ⪯ )) ⊆ ML(𝓚IT2)

3. Also
ML(𝓚IT2) = QS4  

(essentially A.Dragalin, 1973; see book09)
4. ⪯   is a partial order, so 

ML(𝓚((Rn)_  , ⪯ )) contains QS4.  
5. Thus ML(𝓚((Rn)_  , ⪯ )) = QS4

Remark The proposition (and the proof) transfers 
to the spaces over Q. 



Our plan  
1. To approach the predicate logics of chronological 
necessity, we begin with the logic of 1-density.
2. The proof extends to the logic of 2-density and 
(probably) to 2-density+confluence.
3. Further steps are left for the future.

The 1-density axiom
Ad:=   ⃞   ⃞ p →   ⃞ p
The semantic condition: ∀x,y (xRy ⇒  ∃z ( xRz & zRy)) 

In propositional logic this axiom does not make a 
problem: the logics K+Ad, K4+Ad and many others are 
Kripke-complete.
This follows from the properties of canonical Kripke 
models.



The canonical model of a modal propositional logic L.
ML := (WL,RL,θ), where 

• WL is the set of all L-complete (maximal consistent) 
propositional theories

• uRLv iff    ⃞ —u ⊆ v
      ⃞ —u := { A |   ⃞ A ∈ u}

•  θ(p,u)=1 iff p∈ u 
(for any proposition letter p)

So every L-consistent formula is satisfiable.  
Def A modal proposional logic is canonical  if (WL,RL) ⊨ L.

So every canonical logic is complete.



Canonicity of K4Ad
In many cases canonicity follows from Sahlqvist theorem.
For the particular axioms of transitivity and density 
canonicity is checked by hand.
For density:
If u RL v, then   ⃞ —u  ∪ {◇ A | A∈v} is L-consistent (this 

follows by density). Extend this theory to a maximal one. 
This gives w such that uRLwRLv.



Predicate canonical models
VML=(VPL , RL ,DL , ξL ), where

• VPL is the set of all small L-places: 
L-complete theories with the Henkin property: 
for any A(x) there is a constant c such that 

(∃x A(x) → A(c))∈u 
and with infinitely many spare constants
• uRLv iff    ⃞ —u ⊆ v
• DL(u) is the set of constants occurring in u
•  ξL(P(a),u)=1 iff P(a)∈ u 

(for any predicate letter P and a list of constants a)

[We fix a countable set of all possible constants S*]
Canonical model theorem



     ML,u ⊨ A iff  A ∈ u

(for any closed formula A in the language of u)



The corresponding notion of canonicity: L is canonical if it 
is valid in the canonical frame.
Fact QK4 is canonical

But density makes a problem, and probably  QK4Ad is 
not canonical.

Technically:
The theory   ⃞ —u  ∪ {◇ A | A∈v} is consistent, but if we 

extend it an L-place  w, we get new constants (from the 
Henkin condition), 
so we cannot guarantee that    ⃞ —w ⊆  v.



To prove completeness we need a careful step-by-step 
construction. It gives a fragment of some canonical 
model.
The whole construction is easier to describe in game-
theoretic terms.
Such a method orginates from classical model theory 
(Wifrid Hodges), afterwards it was applied by Ian 
Hodkinson and Robin Hirsch (“Relation algebras by 
games”, 2002) and in modal logic by Agi Kurucz (book 
“Many-dimensional modal logics” by Gabbay, Kurucz, 
Wolter, Zakharyaschev, 2003).



Def A (finite) network is a monotonic (homomorphic) map 
h from an irreflexive transitive finite tree to L-places.
Put 
h ≤ h' iff  dom(h) is a subframe of dom(h') and h(u) ⊆ 

h'(u) for u∈ dom(h).
A defect in h is a pair (u,A) such that  ◇A∈ h(u).
h eliminates (u,A) if A ∈ v for some v such that uRv.
Def The selection game SGL(Г) for an L-place Г is played 
by two players: A and E. The rules:

1. Every position hn before the (n+1)th move of A is a 
network.

2. The initial network h maps an irreflexive node to Г.
3. The (n+1)th move of A can be of two kinds:

(i) a defect in hn ,



(ii) an insert queries: a pairs of succesors (u,v) in 
hn .

4. E should reply with a network hn+1 ≥ hn such that
(i) for a defect move of A hn+1 should eliminate this 
defect, 
(ii) for an insert query (u,v) of A   v should no 
longer be a successor of u in dom(hn+1) .
5. E wins if the play continues infinitely or if A 
cannot move (this may happen at the very 
beginning if the initial Г is an endpoint in the 
canonical model VML).

Main Lemma 1 E has a winning strategy in the selection 
game.



Every infinite play generates a limit network
hω  = ∪n hn  (the values hω(u) can be 'large')

and the limit Kripke model M(hω) over dom(hω) such that
M(hω),u ⊨ A iff  A ∈ hω(u)

for any atomic sentence A in the language of hω(u). 
Main Lemma 2 If Г is not an endpoint in VML, then there 
exists a play generating a limit network  hω  over a dense 
transitive frame such that 

M(hω),u ⊨ A iff  A ∈ hω(u)

for any sentence A in the language of hω(u).

The idea of the proof: A should choose new defects at 
odd moves and new inserts at even moves. A countable 
enumeration allows to count all possible defects and 



inserts. Once E wins the play,  hω  has no defects, and its 
domain has no successor pairs.
 
Theorem   QK4Ad is strongly Kripke-complete: every 
consistent theory is satisfied in a model over a dense 
transitive frame.

Remark The method is applicable to QK4.3Ad, thus 
giving  the result by Giovanna Corsi (1993):

ML(𝓚(Q, <))=QD4.3Ad
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