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Outline

Aim: explore the interface of GR and a logic of real possibilities

Plan:

1. Preliminaries: manifest image, scientific image, GR, and real
possibilities

2. Co-possibility

3. Hausdorffness and bifurcate curves

4. Non-isometric extensions of GR space-times: overview

5. Misner space-time

6. Whence bifurcate curves of II kind?

7. Interpreting Anaxagoras

8. Discussion: two options
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Preliminaries

Some areas of conflicts between manifest image and scientific image:

- are tenses objective?

- does time flow?

- are some possibilities real?
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Preliminaries

Real possibilities: debates in GR inform (or are parallel to) the debates in
logic and metaphysics of real possibilities.

On real possibilities (part of manifest image):

Dependent on time, location, and the present state of the world

Example:
It is still possible for Hans to take the 2.54 Berlin train from Keleti.
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Co-possibility

Construction of a branching model for real possibilities:

As this particular event just occurred, what other events can occur as well?

Keep a particular event e fixed; ask what events are co-possible with it.

A history = a maximal set of events that are co-possible with a given one.
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Co-possibility

Alternatively, consider the set of all possible events, carve from it maximal
sets of events that can occur together

In a branching parlance, what is a criterion for being a (possible) history?

Similar question in GR: which manifolds represent space-times?

Common understanding: histories and GR space-times are modally flat,
i.e., they do not tolerate a pair of events that are not co-possible.

An object larger than a history or a space-time: our world of all real
possibilities? Modal representation of alternative space-times?
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Co-possibility

Historical digression:

Co-possibility and maximal sets of co-possible events, i.e., possible
histories or GR space-times - some proposal from metaphysics:

- Lewis: “spatiotemporal relations, or perhaps natural external relations
generally—that unify a world”.

- Prior: linear order, histories = maximal chains in a base set

- Belnap: having an upper bound, histories = maximal upward directed
subsets of a base set

- Müller and TP : history = a maximal Hausdorff sub-manifold of an
otherwise non-Hausdorff manifold.
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Co-possibility

Is there a room for real possibilities (or non-trivial co-possibility) in a
Block Universe view (part of scientific image)?

e ′ is co-possible with e iff e and e ′ inhabit same Block Universe.

Can there be alternative (not co-possible) events, e ′ and e ′′, but each
co-possible with e? Only if e inhabits more than one Block Universe
. . . Qua one BU e is co-possible with e ′, qua the other BU e is co-possible
with e ′′.

That’s a highly non-standard concept of Block Universe.
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Co-possibility

Standard BU:
Space and time are best described as a 4- dimensional space-time which
represents all the places and all the times that ever exist as a single
unchanging entity. There is no essential difference between the past and
the future, because there is no present time defined to separate them; [. . . ]
The underlying dynamical idea is that given data at an arbitrary time,
everything occurring at any later or earlier time can be uniquely
determined from that initial data by time reversible Hamiltonian dynamics,
which is assumed to be the basis of dynamics of physics in general and of
gravitation in particular. (Ellis 2014)

Go non-standard: look at non-unique solutions to EFE (initial value
problem, IVP for GR).
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Co-possibility

Claim: IVP informs on how to conceive of co-possibility.
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Hausdorffness and bifurcate curves

Topology 〈X , T 〉 has Hausdorff Property iff any two distinct elements of X
have non-overlapping open neighborhoods.
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Hausdorffness and bifurcate curves

bifurcate 
curve I kind

bifurcate 
curve II kind

A bifurcate curve of kind II on a C k manifold M is a triple 〈C1,C2, g〉,
where C1 : I → M, C2 : I → M are C k -continuous curves, g ∈ I and
∀x ∈ I [x < g ⇔ C1(x) = C2(x)] (Háj́ıček 1971)

12 / 51



Hausdorffness and bifurcate curves

bifurcate 
curve I kind

bifurcate 
curve II kind

A bifurcate curve of kind I on a C k manifold M is a triple 〈C1,C2, g〉,
where C1 : I → M, C2 : I → M are C k -continuous curves, g ∈ I and
∀x ∈ I [x 6 g ⇔ C1(x) = C2(x)]
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A bifurcate curve of kind II implies non-Hausdorffness

bifurcate 
curve I kind

bifurcate 
curve II kind

but not the other way round.

Which bifurcate curves are really problematic? Those of II kind.
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Hausdorffness and bifurcate curves

A happy discovery in GR:

Although non-Hausdorff manifolds naturally pop up in extensions of some
GR space-times, they do not contain bifurcate curves.

Geroch (1968 Jour Math Phys 9, 450) on non-Hausdorff manifolds:

“ It would seem that some restriction must be imposed on these
non-Hausdorff manifolds which are to be deemed acceptable candidates for
a space-time manifold. Two possible restrictions immediately come to
mind:
1. Only those non-Hausdorff space-times are permitted in which every
geodesic has a unique extension.
2. Only those non-Hausdorff space-times are permitted in which every
curve has no more than one end point.”
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Hausdorffness and bifurcate curves

Non-Hausdorff manifolds without bifurcate curves

If a space-time (history) identified with a maximal Hausdorff sub-manifold,
we have some weirdness:

alternative possible histories without any “small” object facing alternative
developments
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Hausdorffness and bifurcate curves

A common sentiment in GR and branching: a bifurcate curve II kind
signals alternative possibilities, hence it cannot occur in a modally thin
structure, like a GR space-time or a possible history of branching.
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Non-isometric extensions of GR space-times

IVP in GR

A 3-dim spacelike surface Σ of a 4-dim space-time 〈M, g〉, with some data
(fields) on Σ.

Is Σ with the data compatible with one space-time 〈M, g〉 only?

It depends on a kind of data assumed on Σ and on restrictions on
sought-for extended space-times 〈M, g〉.
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Non-isometric extensions of GR space-times

For a natural choice of initial data and by restricting attention to globally
hyperbolic extended space-times: a uniqueness result (Choquet-Bruhat
and Geroch 1969)

Moral from uniqueness results: non-unique developments of Σ cannot be
globally hyperbolic.
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Non-isometric extensions of GR space-times

How do multiple extensions arise?

Typical procedure:

(1) construction of a set of auxiliary manifolds, and

(2) pasting the auxiliary manifolds together (by a gluing map or taking a
quotient wrt an equivalence relation), to obtain alternative extensions

(3) these extensions can be further glued together to produce (one)
non-Hausdorff manifold.

The procedure illustrated by Misner space-time.
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Misner space-time

ds2 =
dT 2

T
− Tdϕ2,
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Misner space-time: its two extensions

ds ′2 = −T ′dϕ′2 − 2sgn(T ′)dϕ′dT ′,

ds ′′2 = −T ′′dϕ′′2 + 2sgn(T ′′)dϕ′′dT ′′,
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Misner space-time: compactification

Topology: cylindrical. Identify ϕ, ϕ+ 2π, . . . ϕ + k2π, . . ..

“Identifying” requires a gluing function (or an equivalence relation).

We glue together (regions of) countably many copies of Minkowski
space-time, using a symmetry of Minkowski space-time, hyperbolic
rotations through k2π (k-integer); 0-copy and n-th copy are glued by:

tn = t0 cosh (nπ) + x0 sinh (nπ)

xn = t0 sinh (nπ) + x0 cosh (nπ).

This formula induces gluing between k-th and n-th copies.

Gluing preserves hyperbolas t2 − x2 = const
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Misner space-time: points identified

III

I

II

t
x

T

Φ
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Misner space-time - compactification

Quadrant I induces the initial Misner space-time
Quadrants I+II induces one extension of Misner space-time
Quadrants I + III induces the other extension of Misner space-time
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Misner space-time

Gluing function A defines equivalence relation: x ≡A y iff x = y or
x = A(y) or y = A(x).
This yields a quotient space (Munkres, p. 139)

Target space-times are quotient spaces (I + II )/A and (I + III )/A.

Each extends the (initial) Misner space-time I/A.

Restricted to the Misner region, (I + II )/A and (I + III )/A are isometric.

But isometry of (I + II )/A and (I + III )/A is problematic.
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Misner space-time: : geodesics in (I + III )/A

II

I

III
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Misner space-time: geodesics in (I + II )/A
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I
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Misner space-time: : geodesics in (I + II )/A
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Misner space-time: geodesics

In (I + II )/A (or (I + III )/A) for each point in the initial segment and a
vector, there is exactly one geodesic passing through this point, whose
tangent at this point coincides with the vector.

That’s was to be expected, by the geodesics theorem, since these
manifolds are Hausdorff.

Geodesics theorem for Hausdorff and non-Hausdorff space-times:

(?) if a metric g is appropriately continuous (C 1,1
loc or smoother), given a

point and a vector at this point, there is locally a unique geodesic that
passes through the point and whose tangent at this point coincides with
the vector (after Chruściel 2008).

This local result prohibits bifurcate geodesics of I kind, but does not
exclude bifurcate geodesics of II kind.
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Given the assumption of Hausdorffness, (?) can be strengthened to a
global result:

[. . . ] given a point and a vector at this point, there is a unique geodesic
that passes through the point and whose tangent at this point coincides
with the vector.

So, given Hausdorffness, no geodesic can bifurcate in any of the two
senses.
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Misner space-times: (I + II + III )/A

Turn to (I + II + III )/A: it is non-Hausdorff.

II

I

III
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Misner space-time: (I + II + III )/A

Base sets, for elements off diagonal (after Margalef–Bentabol, Villasenor
2015)
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Misner space-time: (I + II + III )/A

Failure of Hausdorffness, in base sets (after Margalef–Bentabol, Villasenor
2015)

36 / 51



Misner space-time: (I + II + III )/A

Moral: a pair consisting of an (arbitrary) point on the left half-diagonal
and a point on the right half-diagonal is a witness for non-Hausdorfness of
(I + II + III )/A.

Each (I + II )/A and (I + III )/A is a maximal Hausdorff sub-manifold of
(I + II + III )/A

What happens to a pair of geodesics, one going to the left extension, the
other - to the right extension? They do not bifurcate.
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Misner space-time: (I + II + III )/A

Since (I + II + III )/A is non-Hausdorff, it could tolerate bifurcating
geodesics (of non-Hausdorff variety).

But (I + II + III )/A does not tolerate them:

“No bifurcate geodesics” carries over, in this context, to “no bifurcate
curves of II kind”.

Why no bifurcate curves of II kind in (I + II + III )/A?
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Why no bifurcate curves of II kind?

Recall a theorem:

A topology (X , τ) is non-Hausdorff iff X contains a sequence (generally, a
net) that has more than one point of convergence (in τ)

Where is a sequence with multiple points of convergence in
(I + II + III )/A?
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Here:
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Recall:
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Why no bifurcate curves of II kind?

The sequence {[xi ]}i∈I has three limits: two on the semi-diagonals, and
[x ], where x = limi→∞ xi (lim in R2).

Can we use this sequence with three convergence pts to produce a
bifurcate curve od II kind? No, problems with continuity (cf. literature on
modular curves).

Observation: by gluing we produce a new topology in which an induced
sequence have more convergence pts than the original sequence. But
gluing alone seems incapable of producing new continuous curves.
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Whence bifurcate curves of II kind?

Skepticism: Can bifurcate curves of II kind arise in gluing constructions?
Yes.

Question: is a sequence with multiple points of convergence “better” than
a bifurcate curve of II kind?
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Whence bifurcate curves of II kind?

Motivating observation: (I + II + III + {o})/A admits bifurcate curves of
II kind (here o is the origin point, (0, 0)).

More precisely, take two copies of (I + II + III + {o}) glued by hyperbolic
rotation in (I + II + III ) only. There will be a bifurcate curve of II kind,
(γ1, γ2) s.t. γ1(x) = γ2(x) for x ∈ (0, 1) but o1 = γ1(1) 6= γ2(1) = o2.

Observation: gluing wasn’t total, it was extendable (moreover,
continuously e.).

Consequence of Háj́ıček’s criterion for the existence of bifurcate curves of
II kind.
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Interpreting Anaxagoras

Back to co-possibility

“For it is no more fitting for what is established at the center and equally
related to the extremes to move up rather than down or sideways. And it
is impossible for it to make a move simultaneously in opposite directions.
Therefore it is at rest of necessity.”
Anaxagoras, as reported by Aristotle in On Heavens.

Majority interpretation: Anaxagoras’s argument for the Earth being at
rests.

Minority interpretation: A’s discovered a notion of co-possibility, like
“alternative trajectories are not co-possible”.
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Discussion: two options

Recall the objection to bifurcate curves, that they indicate alternative
developments

Does this objection carry over to sequences with multiple convergence
points?

If yes, go Hausdorff.
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Discussion: two options

But if one opts for non-Hausdorffness without bifurcate curves, they need
to answer why the objection to bifurcate curves do not carry over to
sequences with multiple convergence points.
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Discussion: two options

I. Co-possibility defined in terms of Hausdorffness:

A history is a maximal Hausdorff sub-manifold of a (possibly
non-Hausdorff) manifold.

A GR space-time is a Hausdorff manifold (satisfying a few other
conditions)

- Pluses: GR mathematical tradition, no bifurcate curves, no sequences
with multiple convergence points.

- Minuses: GR comes out indeterministic (by e.g. J.N. Butterfield’s DM2
analysis, 1989) and it is a weird kind of indeterminism

- What are those non-Hausdorff manifolds met in IVP? Suggestion: modal
representation of alternative space-times.
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Discussion: two options

II. Co-possibility defined in terms of no bifurcate curves:

A history is a maximal sub-manifold (Hausdorff or not) that does not
admit bifurcate curves of II kind.

A GR space-time is a manifold (possibly non-Hausdorff) without bifurcate
curves of II kind (satisfying a few other conditions)

- Pluses: non-isometric extensions need not witness indeterminism—if they
can be further extended to manifolds without bifurcate curves of II kind.
- No conflict between global indeterminism and local determinism

- Minuses: (1) history /spacetime contains a sequence with multiple
convergence points, (2) A role of Hausdorffness in basic constructions of
GR. See Joanna Luc’s talk.
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Thank you for your attention

Thanks to Joanna Luc for many discussions.
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Butterfield’s (1989) analysis of determinism

A theory with models 〈M,Oi 〉 is S-deterministic, where S is a kind of
region that occurs in manifolds of the kind occurring in the models, iff:
given any two models 〈M,Oi 〉 and 〈M ′,O ′i 〉 containing regions S ,S ′ of
kind S respectively, and any diffeomorphism α from S onto S ′:
if α∗(Oi ) = O ′i on α(S) = S ′, then:
there is an isomorphism β from M onto M ′ that sends S to S ′, i.e.
β∗(Oi ) = O ′i throughout M ′ and β(S) = S ′.

By taking for S and S ′ the Misner region in (I + II )/A and (I + III )/A,
resp., and observing that isomorphism = isometry in this case, we get it
that the two extensions witness indeterminism.
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