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Operations on binary relations
Let U be a set. We define operations on elements of ℘(U × U).

Domain
D(X ) = {(u, u) | (u, v) ∈ X for some v ∈ U}

Range
R(X ) = {(v , v) | (u, v) ∈ X for some u ∈ U}

Composition

X ;Y = {(u, v) | (u,w) ∈ X and (w , v) ∈ Y for some w ∈ U}

Identity
1′ = {(u, u) | u ∈ U}

Antidomain
A(X ) = {(u, u) | u ∈ U, (u, v) /∈ X for any v}

Converse
X^ = {(u, v) | (v , u) ∈ X}

for every X ,Y ⊆ U × U.
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Domain–range semigroups

Representable domain–range semigroups
A representable domain–range semigroup is a subalgebra of

(℘(U × U),D,R, ;)

With motivation in software verification:

Jipsen and Struth
Is the class R(D,R, ;) of representable domain–range semigroups finitely
axiomatizable?

[Hirsch and M, JLAP 2011]
Let τ be a similarity type such that {D, ;} ⊆ τ ⊆ {D,R,A, ;, 1′, 0}. The
class R(τ) of representable τ -algebras is not finitely axiomatizable in
first-order logic.
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Adding a semilattice structure?

Adding join?

[Hirsch and M, JLAP 2011] using [Andréka 1988]
Let τ be a similarity type such that
{;,+} ⊆ τ ⊆ {D,R,A, ;,+,^, ∗, 1′, 0, 1}. The class R(τ) of representable
τ -algebras is not finitely axiomatizable in first-order logic.

Adding meet?

[Hirsch and M, AU 2007]
The class R(;, ·, 1′) is not finitely axiomatizable in first-order logic.

An ultraproduct construction of non-representable algebras, where 1′ is an
atom. Thus we can augment these algebras with D,R. Thus R(D,R, ;, ·) is
not finitely axiomatizable.
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Adding a lattice structure?

[Andréka, AU 1991]
Let τ be a similarity type such that {;,+, ·} ⊆ τ ⊆ {;,+, ·,−,^, ∗, 1′, 0, 1}.
The class R(τ) of representable τ -algebras is not finitely axiomatizable in
first-order logic.

Another ultraproduct construction. Observe that we can define
D(x) = (x ; x^) · 1′, R(x) = (x^ ; x) · 1′ and A(x) = −D(x) · 1′. Thus
R(D,R,A, ;,+, ·, . . .) is not finitely axiomatizable.
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Axiomatizing the equational theory

Recall that antidomain is defined as

A(X ) = {(u, u) | (u, v) /∈ X for any v}

Observe that D(x) = A(A(x)).

[Hollenberg, JOLLI 1997]
The varieties V(A, ;) and V(A, ;,+) generated by R(A, ;) and R(A, ;,+),
respectively, are finitely axiomatizable.

Our main result is:

Jackson and M
The variety V(D,R, ;,+) generated by R(D,R, ;,+) is finitely
axiomatizable.
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Ordered domain–range semigroups

Define x ≤ y by x + y = y .
The axioms Ax :

(D1) D(x) ; x = x (R1) x ; R(x) = x

(D2) D(x ; y) = D(x ; D(y)) (R2) R(x ; y) = R(R(x) ; y)
(D3) D(D(x) ; y) = D(x) ; D(y) (R3) R(x ; R(y)) = R(x) ; R(y)
(D4) D(x) ; D(y) = D(y) ; D(x) (R4) R(x) ; R(y) = R(y) ; R(x)
(D5) D(R(x)) = R(x) (R5) R(D(x)) = D(x)
(D6) D(x) ; y ≤ y (R6) x ; R(y) ≤ x

together with associativity of ; and +, idempotency of + and additivity of
;,D,R.
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Eliminating join

Assume
V(D,R, ;,+) |= s ≤ t

and we need Ax ` s ≤ t, for all terms s, t.
Using additivity of the operations we have that

V(D,R, ;,+) |= s1 + . . .+ sn = s ≤ t = t1 + . . .+ tm

for some join-free terms s1, . . . , sn, t1, . . . , tm.
It is not difficult to show that this happens iff for every i there is j such that

V(D,R, ;,+) |= si ≤ tj

Thus it is enough to show Ax ` si ≤ tj for join-free terms.
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Domain elements (in the free algebra)
Claim
Let A be a model of Ax .

1 The algebra (D(A), ;) of domain elements is a (lower) semilattice and
the semilattice ordering coincides with ≤.

2 For every a ∈ A, D(a) (resp. R(a)) is the minimal element d in D(A)
such that d ; a = a (resp. a ; d = a).

Let FVar = (FVar, ;,D,R,+) be the free algebra of the variety defined by Ax
freely generated by a set Var of variables.

Claim
Let r , s, t be join-free terms such that FVar |= D(r) ≤ s ; t. Then
FVar |= D(r) ≤ s = D(s) and FVar |= D(r) ≤ t = D(t).

Claim
Let s, t be join-free terms such that FVar |= s ≤ D(t). Then
FVar |= s = D(s).
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Creating a representable algebra witnessing Ax 6` s ≤ t

Let T−Var be the set of join-free terms and s, t ∈ T−Var. We assume that
Ax 6` s ≤ t and we will construct a representable algebra A ∈ R(D,R, ;,+)
witnessing s 6≤ t: A 6|= s ≤ t.
Let F−Var be the equivalence classes of join-free terms (elements of FVar).
We will define a labelled, directed graph Gω as the union of a chain of
labelled, directed graphs Gn = (Un, `n,En) for n ∈ ω, where

Un is the set of nodes,
`n : Un × Un → ℘(F−Var) is a labelling of edges,
En = {(u, v) ∈ Un × Un | `n(u, v) 6= ∅}
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Coherence

We will make sure that the following coherence conditions are maintained
during the construction:

GenC En is a reflexive, transitive and antisymmetric relation on Un.
PriC For every (u, v) ∈ En, `n(u, v) is a principal upset:

`n(u, v) = a↑ = {x ∈ F−Var | a ≤ x} for some a ∈ F−Var.
CompC For all (u, v), (u,w), (w , v) ∈ Un × Un and a, b ∈ F−Var, if

a ∈ `n(u,w) and b ∈ `n(w , v), then a ; b ∈ `n(u, v).
DomC For all (u, v) ∈ Un × Un and a ∈ F−Var, if `n(u, v) = a↑, then

`n(u, u) = D(a)↑.
RanC For all (u, v) ∈ Un × Un and a ∈ F−Var, if `n(u, v) = a↑, then

`n(v , v) = R(a)↑.
IdeC For all (u, v) ∈ Un × Un, u = v iff `n(u, v) = D(a)↑ for some

a ∈ F−Var.
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Saturation

The construction will terminate in ω steps, yielding Gω = (Uω, `ω,Eω)
where Uω =

⋃
n Un, `ω =

⋃
n `n and Eω =

⋃
n En.

By the end of the construction we will achieve the following saturation
conditions:

CompS For all (u, v) ∈ Uω × Uω and a, b ∈ F−Var, if a ; b ∈ `ω(u, v),
then a ∈ `ω(u,w) and b ∈ `ω(w , v) for some w ∈ Uω.

DomS For all (u, u) ∈ Uω × Uω and a ∈ F−Var, if D(a) ∈ `ω(u, u),
then a ∈ `ω(u,w) for some w ∈ Uω.

RanS For all (u, u) ∈ Uω × Uω and a ∈ F−Var, if R(a) ∈ `ω(u, u),
then a ∈ `ω(w , u) for some w ∈ Uω.
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Initial step

In the 0th step of the step-by-step construction we define
G0 = (U0, `0,W0) by creating an edge for every element of F−Var. We define
U0 by choosing elements ua, va, . . . ∈ ω so that {ua, va} ∩ {ub, vb} = ∅ for
distinct a, b, and ua = va iff D(a) = a (i.e., a is a domain element of FVar).
We can assume that |ω \ U0| = ω. We define

`0(ua, va) = a↑

`0(ua, ua) = D(a)↑

`0(va, va) = R(a)↑

and we label all other edges by ∅.
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Step for domain

Our aim is to extend Gm to create an edge (u,w) witnessing a, provided
D(a) ∈ `m(u, u) = c↑.

w

R(D(c);a)

��

uD(c)=c 99

D(c);a

OO

p
d

oo

d ;a

__
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Domain step

We assume that we have a loop (u, u) labelled by the upset of a domain
element c = D(c) ≤ a such that D(c) ; a is not a domain element, but we
may miss an edge (u,w) witnessing a.
We choose w ∈ ω \ Um, extend `m by

`m+1(u,w) = (D(c) ; a)↑

`m+1(w ,w) = (R(D(c) ; a))↑

and for every (p, u) ∈ Em with `m(p, u) = d↑ (some d ∈ F−Var)

`m+1(p,w) = (d ; a)↑

All other edges involving the point w have empty labels.
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Step for composition
Our aim is to extend Gm to create edges (u,w) and (w , v) witnessing a
and b, provided a ; b ∈ `m(u, v) = c↑.

w

R(D(c);a);D(b;R(c))

��

R(D(c);a);b;R(c)

  

R(D(c);a);b;e
��

uD(c) 99

D(c);a;D(b;R(c))

>>

c // v R(c)ee

e

��
p

d

OO

d ;a;D(b;R(c))

GG

q
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Composition step
We assume that

(CC1) u 6= v ,
(CC2) D(c) ; a ; D(b ; R(c)) 6= D(D(c) ; a ; D(b ; R(c))),
(CC3) R(D(c) ; a) ; b ; R(c) 6= R(R(D(c) ; a) ; b ; R(c)),

otherwise we define Gm+1 = Gm. If (CC1)–(CC3) hold, then we choose
w ∈ ω \ Um, extend `m by

`m+1(u,w) = (D(c) ; a ; D(b ; R(c)))↑

`m+1(w , v) = (R(D(c) ; a) ; b ; R(c))↑

`m+1(w ,w) = (R(D(c) ; a) ; D(b ; R(c)))↑

and for (p, u), (v , q) ∈ Em with `m(p, u) = d↑ and `m(v , q) = e↑ (some
d , e ∈ F−Var)

`m+1(p,w) = (d ; a ; D(b ; R(c)))↑

`m+1(w , q) = (R(D(c) ; a) ; b ; e)↑

All other edges involving w will have empty labels.
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In the limit

Lemma
Gω is coherent and saturated.

Coherence of Gω follows from the coherence of each Gm (easy but tedious).
Saturation of Gω follows from the fact that we constructed the required
witness edges (if they were not present yet in Gm).
Next we define a valuation [ of variables. Let for term r , its equivalence
class in FVar be denoted by r . We let

x [ = {(u, v) ∈ Uω × Uω : x ∈ `ω(u, v)}

for every variable x ∈ Var.
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Truth lemma

Let A = (A,D,R, ;,+) be the subalgebra of the full algebra
(℘(Uω × Uω),D,R, ;,+) generated by {x [ : x ∈ Var}. Clearly A is
representable.

Lemma
For every join-free term r and (u, v) ∈ Uω × Uω,

(u, v) ∈ r [ iff r ∈ `ω(u, v)

where r [ is the interpretation of r in A under the valuation [.

By coherence and saturation of Gω.
Recall that we assumed that FVar 6|= s ≤ t. In the initial step of the
construction we created the edge (us , vs) such that `0(us , vs) = s↑. Thus
s ∈ `ω(us , vs) and t /∈ `ω(us , vs). Hence, by Lemma, (us , vs) ∈ s[ and
(us , vs) /∈ t[. That is, A 6|= s ≤ t, as desired.
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Open problems

Adding meet and/or antidomain.

Open problems
Are the varieties generated by

R(D,R,A, ;,+)

R(D,R, ;,+, ·)
R(D,R,A, ;,+, ·)

finitely axiomatizable?
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