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SPR 6=⇒ Isotropy SPR =⇒ Isotropy

FrameSPR “Inertial frames
cannot be distinguished by
experiments”

CoordSPR “Inertial coordinate
systems cannot be distinguished
by experiments”

FrameSPR 6=⇒ Isotropy CoordSPR =⇒ Isotropy

We reconstructed the proof of Dixon and Rindler in FOL:

Isotropy & Homogeneity ⇐⇒ CoordSPR

assuming that the world-view transformations between coordinate
systems that rest wrt each other and have the same origin are
spatial rotations.

Without this assumption:

Isotropy & Homogeneity 6=⇒ FrameSPR
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Our results are general:

Our results apply to any language L that contains

our FOL language for kinematics.

E.g. L can talk about special bodies like photons or electron,
masses or energies of bodies, electric field, magnetic field etc.
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Set S of experimental scenarios (set of formulas “describing
experiments”):

S ⊆ “Defined subset of Formulas of L”

FrameSPRS “Inertial frames cannot be distinguished by an
experiment in S”

CoordSPRS , IsoS - isotropy, HomS - homogeneity

Our results do not depend on the choice of S.

IsoS&HomS =⇒ CoordSPRS for any S and L.
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Connections between HomTS-homogeneity of time,
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∃ a clock that gets out of synchronism
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IsoS

HomS

HomSS HomTS

Classical case

IsoS

HomS

HomSS HomTS

Relativistic case
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B ! Bodies (particles that move)
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Lcore = {IOb,B,Q,+, ·,≤,W}

IOb ! Inertial Observers (coordinate systems).

B ! Bodies (particles that move)

Q ! Quantities (numbers)

+, · and ≤ ! field operations and ordering

W ! Worldview (a 6-ary relation of type IObBQQQQ)
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W(k, b, t, x , y , z) ! “observer k coordinatizes body b at
spacetime location (coordinate point) 〈t, x , y , z〉.”

k t

x

y

b

〈t, x , y , z〉

Worldline of body b according to observer k

wlinek(b) = {〈t, x , y , z〉 ∈ Q4 : W(k, b, t, x , y , z)}
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The worldview transformation wkk′ between observers k and k ′

wkk′(t, x , y , z : t ′, x ′, y ′, z ′)
def

⇐⇒

∀b [W(k, b, t, x , y , z) ⇐⇒ W(k ′, b, t ′, x ′, y ′, z ′)].

k t

x

y

b1b2 k ′ t

x

y

b1 b2

wkk′
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Our results apply to any language L for which

Lcore ⊆ L.

E.g. L can talk about special bodies like photons or electron,
masses or energies of bodies, electric field, magnetic field etc.
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Dixon , 1978 relativity book:
“. . . Principle of Uniformity . . . is a formalization of the hypothesis
. . . that space and time appear isotropic and homogeneous when
viewed in an inertial reference frame.”

“ Its physical interpretation is that a
given experiment will produce the same
result wherever and whenever is
performed, and whatever the orientation
of the apparatus, provided that the
circumstances of the experiment are
identical in all other respects.”
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“Two replications of an experiment can
be considered as having the same
circumstances if there exists two natural
coordinate systems for the same inertial
reference frame, one of which may be
associated with each experiment in such
a way that the initial conditions of the
two are identical when each is referred
to its associated coordinate system.
Since natural coordinates are
determined up to translation and
rotation of the axes, this gives the
required homogeneity and isotropy.”
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Axioms:

AxEField (Q,+, ·,≤) is an Euclidean ordered field.

Spatial rotations SRot of Q4.

Translations Tran, Spatial Translations STran, Temporal
Translations TTran of Q4

AxTriv Rotations and translations of inertial coordinate systems are
also inertial coordinate systems
∀k ∀T ∈ SRot ∪ Tran ∃k ′ wkk′ = T .

AxAftr World-view transformations are affine transformations.
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What are experiments? We don’t know.

Gergely: Set S of experimental scenarios:
S ⊆ “Formulas of L”

φ ∈ S =⇒ φ has only one free variable of sort IOb and
all the other free variables are of sort Q.

Scenario φ(k, x̄) = φ(k, x1, . . . , xn) is a description of an

experiment ,
where free variables x1, . . . , xn of sort Q are the experimental
parameters containing the configuration, progress and outcome of
the experiment, and free variable k of sort IOb . . . .
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ψ(k, x1, x2, x3, x4, x5) =

(∀p ∈ Photons)[(x1, x2, x3, x4) ∈ wlinek(p) ⇒ speedk(p) = x5].

M |= ψ(h, 0, 0, 0, 0, 1),

ψ is realizable

M |= ψ(h, 0, 2, 0, 0, 1

2
)

M 6|= ψ(h, 0, 2, 0, 0, 1)

ψ is not realizable.

M 6|= ψ(h, 0, 0, 0, 0, 2)
(0,0,0,0)

1

1

h

(0,2,0,0)

1
2
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Agree〈k , k ′, φ〉: Inertial observers k and k ′ agree

on the realizability of experimental scenario φ

Agree〈k , k ′, φ〉 ∀x̄ [φ(k , x̄) ⇐⇒ φ(k ′, x̄)]
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HomTS (homogeneity of time)

Temporal translations do not effect the
outcomes of experiments.
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HomTS (homogeneity of time)

Temporal translations do not effect the
outcomes of experiments.

HomTS =

{wkk′ ∈ TTran ⇒ Agree〈k , k ′, φ〉 : φ ∈ S}
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HomSS (homogeneity of space)

Spatial translations do not effect the outcomes of experiments.

HomSS = {wkk′ ∈ STran ⇒ Agree〈k , k ′, φ〉 : φ ∈ S}.
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IsoS (isotropy of space)

Rotations do not effect the outcomes of experiments.

IsoS = {wkk′ ∈ SRot ⇒ Agree〈k , k ′, φ〉 : φ ∈ S}.
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AxEField, AxTriv, AxAftr

ϕ ∈ S ⇒
ϕ̃ ∈ S

IsoS

HomSS HomTS

ϕ̃(k, x̄ , X̄ ) =
∃k ′[wk′k is determined byX̄∧
ϕ(k ′, x̄)].
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CoordSPRS

All inertial observers agree on satisfiability of experimental
scenarios.

CoordSPRS = {Agree〈k , k ′, φ〉 : φ ∈ S}

Theorem:

HomS & IsoS ⇐⇒ CoordSPRS

assuming AxEField, AxTriv, AxAftr, ϕ ∈ S ⇒ ϕ̃ ∈ S and an axiom
saying that world-view transformations between inertial observers
that rest wrt each other and have the same origin are spatial
rotations.
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What are the connections between our

formalizations of SPR, Homogeneity, Isotropy with

“real SPR”, “real Homogeneity”, “real Isotropy”?

What are the connections between our set S of

experimental scenarios with “real experiments”?

What are the connections between other

formalizations of SPR, HOM?
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Connections with other approaches:
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Lemma:

Assume ϕ ∈ S ⇒ ϕ̃ ∈ S. Then

[wkh = wk′h′ ∧ Agree(k, k ′,S)] =⇒ Agree(h, h′,S).

k k ′

h h′
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Lemma:

Assume HomTS , ϕ ∈ S ⇒ ϕ̃ ∈ S. Let
k, h, h′ be such that whh′ is a translation
and the origins of h and h′ are time-like
separated in the coordinate system k. Then

Agree(h, h′,S)

k’
h′

h
k
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Proof:
k’

h′

h
k
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Proof:

Let k ′ be such that wk′k is a translation by
the black arrow.

wkh = wk′h′ ,

HomTS =⇒ Agree(k, k ′,S)

Agree(h, h′,S) by the previous lemma.

h′

h
k

k ′
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Lemma:

Assume HomSS , ϕ ∈ S ⇒ ϕ̃ ∈ S. Let k, h, h′ be such that whh′ is
a translation and the origins of h and h′ are space-like separated in
the coordinate system k. Then

Agree(h, h′,S)

h’h
k
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Theorem:

HomTS =⇒ HomSS if observers can move in any spatial direction
and ϕ ∈ S ⇒ ϕ̃ ∈ S
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Theorem:

HomTS =⇒ HomSS if observers can move in any spatial direction
and ϕ ∈ S ⇒ ϕ̃ ∈ S

h

h′

Proof: h′′

k
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Theorem:
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Theorem:

HomSS =⇒ HomTS if there is a clock that gets out of
synchronism and ϕ ∈ S ⇒ ϕ̃ ∈ S

Thank You!

Proof:

h

h′

h′′
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