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5. Hahn’s embedding theorem

This section is devoted to the deepest result in the theory
of f. 0. Abelian groups. This asserts the embeddability of f. o.
Abelian groups in the lexicographic product of real groups.

Theorem 16. (HAuN’s Embedding Theorem, Haux [1].)
Fvery f. o. vector space G over the rational number field is o-iso-
morphic to a subspace of the lexicographically ordered function
space?® W (Q).

Haun, H.[1] Uper die nichtarchimedischen Grossensysteme, S.-B.
Akad. Wiss. Wien. Ila, 116 (1907), 601 —655.



The original proof of HaAaN was extremely long and complicated.
Recently, several authors have obtained simpler proofs and generali-
zations. The proof above is based on an idea of HAUSNER— WENDEL [1]:
they proved Harmn’s theorem for vector spaces over the real field and
CLIrroRD [4] observed that their method works in the general case as
well. For other proofs see BANASCHEWSKI [1], GRAVETT [2], RIBEN-
BOIM [2], ConraD [1], [7]. The last author has extended the theorem
to certain p.o. Abelian groups and to even more general systems;

he uses decompositions of the given group.
Recently, P. ConraDp, J. HARVEY and CaH. HoLrAND proved

HABN’s embedding theorem for commutative 1. o. groups.

HAUSNER, M.— WENDEL, J. G. [1] Ordered vector spaces, Proc. Amer.
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o Hahn’'s theorem: o Our embedding theorem:

o Every totally ordered o Every densely-ordered
Abelian group embeds in group-like FLe-chain,
a lexicographic product which has finitely many
of real groups. idempotents embedsina
finite partial-

lexicographic product of
totally ordered Abelian
groups.



Fl-al gebras

An algebra A = (A, A, V,-,\,/,[,1) is called a full Lambek algebra or
an FL-algebra, if

e (A, A\,V) is a lattice (i.e., A, V are commutative, associative and mu-
tually absorptive),

e (A, - 1) is a monoid (i.e., - is associative, with unit element © ),

e r-y<ziffy<z\ziff x < z/y, for all x,y,z € A,

e  is an arbitrary element of A.

Residuated lattices are exactly the +-free reducts of FL-algebras. So, for
an FL-algebra A = (A, A,V,-,\,/,t,}), the algebra A, = (A, A, V,-,\,/,T)
is a residuated lattice and | is an arbitrary element of A. The maps \ and
/ are called the left and right division.

* commutative: x > 4



e An

:Le~a|gebra Is a commutative ""L—-—algebra.

e An

e An

~|_~chainis a tota”g ordered ';L€~algebra.

;Le—-algebra is called involutive if x=

where x’=x—f (note that £=t)

e An |

:Le~a|gebra is called groul:)~li|<e ititis

involutive and f=t






Residuated Maps

Residuation is a basic concept in mathematics

[T. S. Blyth, M. F. Janowitz, Residuation Theory, Pergamon
Press, 1972].

[t is very strongly connected with Galois maps

|G, K. Gierz, K. H. Hofmann, K. Keimel, |. D. Lawson, M.
W. Mislove, D. S. Scott, Continuous Lattices and Domains,
Encycl. of Math. and its Appl. 93, Cambridge U. Press,
2003. |

and closure operators.



Residuated Monoids

Residuated lattices have been introduced in

the 30s in [Ward, M. and R. P. Dilworth, Residuated
lattices, Transactions of the American Mathematical Society

45: 335--354, 1939] to investigate ideal theory of
commutative rings with unit.



 Classical Logic

o Intuitionistic Logic, Super-intuitionistic Logics
e Relevance Logic

e Many-valued Logics

o Mathematical Fuzzy Logics

» Linear LogicLambek Calculus, along with their
non-commutative versions



» Boolean algebras (Classical Logic)

o Heyting algebras
. T. Johnstone, Stone spaces, Cambridge University Press,
Cambridge, 1982]

(e.g., open sets of topological spaces,
Intuitionistic Logic)



Example Residuated Lattices

complemented semigroups
[B. Bosbach, Komplementadre Halbgruppen. Axiomatik und
Arithmetik, Fund. Math. 64 (1969), 257--287]

bricks [B. Bosbach, Concerning bricks, Acta Math. Acad. Sci.
Hungar. 38 (1981), 89-104],

residuation groupoids [B. Bosbach, Residuation groupoids and
lattices, Studia Sci. Math. Hungar. 13 (1978), 433-451],

semiclans [B. Bosbach, Concerning semiclans, Arch. Math. 37
(1981), 316--324],

Bezout monoids [P. N. Anh, L. Marki and P. Vamos, Divisibility
theory in commutative rings: Bezout monoids, Trans. Amer. Math.
Soc. 364 (2012), 3967-3992],



E:xample Resduatecl | attices
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MV-algebras [Cignoli, R., D'Ottaviano, .M.,
Mundici, D.: Algebraic Foundations ot Many-
Valued Reasoning, Kluwer, Dordrecht, 2000]

BL-algebras [Hajek, P.: Metamathematics of Fuzzy

Logic, Kluwer Academic Publishers, Dordrecht,
1998 |

lattice-ordered groups; a number of other algebraic
structures can be rendered as residuated lattices.






» Every naturally and totally ordered,
commutative semigroup is uniquely
expressible as the ordinal sum of a totally
ordered set of ordinally irreducible such

semigroups

|A. H. Clifford, Naturally totally ordered commutative
semigroups, Amer. J. Math., 76 vol. 3 (1954), 631-646. |
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» Topological semigroups over compact manifolds
with connected, regular boundary B such that B is a
subsemigroup: a subclass of compact connected Lie
groups and via classifying (I)-semigroups, that is,
semigroups on arcs such that one endpoint
functions as an identity for the semigroup, and the
other functions as a zero.

[P.S. Mostert, A.L. Shields, On the structure of semigroups
on a compact manifold with boundary, Ann. Math., 65

(1957), 117-143.]



The Theorg of ComPad: Semlgroups
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(I)-semigroups are ordinal sums of three basic
multiplications which an arc may possess.

The word “topological’ refers to the continuity
of the semigroup operation with respect to the

topology.

[P.S. Mostert, A.L. Shields, On the structure of
semigroups on a compact manifold with boundary,

Ann. Math., 65 (1957), 117-143.]



Structure of GBL~a|gebras
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BL-algebra = naturally ordered + semilinear
integral residuated lattice

BL-algebras are subdirect poset products of
MV-chains and product chains.

[P Jipsen, F. Montagna, Embedding theorems for
normal GBL-algebras, Journal of Pure and Applied
Algebra, 214 (2010), 1559-1575.]

(A generalization of the Conrad-Harvey-Holland
representation)



Weakening the Natura”g Ordered Property
E:ntering the Non—-integral Case

[P Jipsen, F. Montagna,
Embedding theorems
for normal GBL-
algebras, Journal of
Pure and Applied
Algebra, Vol. 214.
1559-1575. (2010)]

|S], E. Montagna,
Strongly Involutive
Uninorm Algebras
Journal of Logic and

Computation \Vol. 23
(3), 707-726. (2013)]

|S], E. Montagna,

A classification of
certain group-like FL. -
chains, Synthese \Vol.
192 (7), 2095-2121.
(2015)]




ea ening the Natura”y Ordered Prol:)ertg
Entering the Non»-integral Case
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Absorbent Continuous Group»-like Commutative
Residuated Monoids on Com[:)lete and Order-dense Chains

[S], FE. Montagna,

A classification of
certain group-like FL. -
chains, Synthese Vol.
192 (7), 2095-2121.
(2015)]




= [5],
Group Representation
and Hahn-type
Embedding for a Class
of Residuated
Monoids, (submitted)

 [S], E. Montagna,
A classification of
certain group-like FL. -
chains, Synthese Vol.
192 (7), 2095-2121.
(2015)]
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- C ome representation of group~|i|<e Bl

i

Conic representation: For any conic, IRL

T Dy iy c X"

T Q@ vy if x,y € X~
(:U—+@y’)’ frec X' e X
L8 = Y : a4 2
(y —g ') iz e X e~
ST = on = e
ez ) et
(:c—+®y) b 8 =, S T B =), A

and z < v’
and x € v’
and x < y’
and x € v’

|S. Jenei, H. Ono, On Involutive FLe-monoids, Archive for
Mathematical Logic, (7-8) 719- 738 (2012)

|S. Jenei, Structural description of a class of involutive
uninorms via skew symmetrization, Journal of Logic

and Computation, 21 vol. 5, 729-737

(2011)



7 Group~|i|<e F‘Le~algebras VS.
lattice-ordered groups

SJ

Theorem 2.5. For a group-like FL.-algebra (X, \,V,®,—e,t, f) the following state-
ments are equivalent:
(1) Each element of X has inverse given by x~! = ', and hence (X, A\, V, , t)
s a lattice-ordered Abelian group,
(2) e is cancellative,
3) 7(x) =t forallz € X. T(X)=x—>Xx
(4) The only idempotent element in the positive cone of X is t.



® Coming soon...






Definition 1. (Partial-lexicographic products)

Let X = (X, Ax, Vx,*, =4 tx, fx) be a group-like FL.-algebra and
Y = (Y, Ay, Vy,*, =, ty, fy) be an involutive FL.-algebra, with
residual complement ~ and ", respectively.

Add a top element T to Y, and extend x by Txy=yxT =T
for y € Y U{T}, then add a bottom element 1 to Y U {T}, and
extend x by Lxy=yx L =1foryeYU{L, T}

Let X; = (X1, Ax,Vx,*, = tx, fx) be any cancellative subal-
gebra of X (by Theorem 1, X; is a lattice ordered group). We
define

XI‘(Xl,YLT) — (XI‘(Xl,Y-LT)) <, 8, e, (th tY)) (fxa fY)) )

where
XI‘(Xl,YLT) = (X1 X (Y U {J_, T})) o ,

< is the restriction of the lexicographic order of <x and <yyg, 1}
to Xp(x, y17), ® is defined coordinatewise, and the operation —, is

given by (z1,y1) —e (22,¥2) = ((z1,41) ® (22, y2)")" where

, [ (@",y) ifze X
(z,9) _{ (", 1) ifzgX,

Call Xpx, vim) the (type-I) partial-lexicographic product of X, X,
and Y, respectively.



Definition 1. (Partial-lexicographic products)

Let X = (X, Ax, Vx,*, =4 tx, fx) be a group-like FL.-algebra and
Y = (Y, Ay, Vy,*, =, ty, fy) be an involutive FL.-algebra, with
residual complement ~ and ", respectively.

Add a top element T to Y, and extend x by Txy=yxT =T
for y € Y U{T}, then add a bottom element 1 to Y U {T}, and
extend x by Lxy=yx L =1foryeYU{L, T}

Let X; = (X1, Ax,Vx,*, = tx, fx) be any cancellative subal-
gebra of X (by Theorem 1, X; is a lattice ordered group). We
define

XI‘(Xl,YLT) — (XI‘(Xl,Y-LT)) <, 8, e, (th tY)) (fxa fY)) )

where
XI‘(Xl,YLT) - (X1 X (Y U {J_, T})) U (X \ Xl) ]

< is the restriction of the lexicographic order of <x and <yyg, 1}
to Xp(x, y17), ® is defined coordinatewise, and the operation —, is

given by (z1,y1) —e (22,¥2) = ((z1,41) ® (22, y2)")" where

, [ (@",y) ifze X
(z,9) _{ (", 1) ifzgX,

Call Xpx, vim) the (type-I) partial-lexicographic product of X, X,
and Y, respectively.



Definition 1. (Partial-lexicographic products)

Let X = (X, Ax, Vx,*, =4 tx, fx) be a group-like FL.-algebra and
Y = (Y, Ay, Vy,*, =, ty, fy) be an involutive FL.-algebra, with
residual complement ~ and ", respectively.

Add a top element T to Y, and extend x by Txy=yxT =T
for y € Y U{T}, then add a bottom element 1 to Y U {T}, and
extend x by Lxy=yx L =1foryeYU{L, T}

Let X; = (X1, Ax,Vx,*, = tx, fx) be any cancellative subal-
gebra of X (by Theorem 1, X; is a lattice ordered group). We
define

XI‘(Xl,YLT) — (XI‘(Xl,Y-LT)) <, 8, e, (th tY)) (fxa fY)) )

where
Xrx,yem)y = (X1 x (YU{L, T})U X\ X1) x {8}),

< is the restriction of the lexicographic order of <x and <yyg, 1}
to Xp(x, y17), ® is defined coordinatewise, and the operation —, is

given by (z1,y1) —e (22,¥2) = ((z1,41) ® (22, y2)")" where

, [ (@",y) ifze X
(z,9) _{ (", 1) ifzgX,

Call Xpx, vim) the (type-I) partial-lexicographic product of X, X,
and Y, respectively.



Definition 1. (Partial-lexicographic products)

Let X = (X, Ax, Vx,*, =4 tx, fx) be a group-like FL.-algebra and
Y = (Y, Ay, Vy,*, =, ty, fy) be an involutive FL.-algebra, with
residual complement ~ and ", respectively.

Add a top element T to Y, and extend x by Txy=yxT =T
for y € Y U{T}, then add a bottom element 1 to Y U {T}, and
extend x by Lxy=yx L =1foryeYU{L, T}

Let X; = (X1, Ax,Vx,*, = tx, fx) be any cancellative subal-
gebra of X (by Theorem 1, X; is a lattice ordered group). We
define

XI‘(Xl,YLT) — (XI‘(Xl,Y-LT)v <, 8, e, (th tY)) (fxa fY)) )

where
Xroayrmy = (Xa x (YU{L, T}H)) U (X \ X1) x {L}),

< is the restriction of the lexicographic order of <x and <yyg, 1}
to Xp(x, y17), ® is defined coordinatewise, and the operation —, is

given by (z1,y1) —e (22,¥2) = ((21,41) ® (22, y2)")" where

, [ (@",y) ifze X
(z,9) _{ (", 1) ifzgX,

Call Xpx, yim) the (type-I) partial-lexicographic product of X, X,
and Y, respectively.






(1ris i
MInmmnm i

UL

||ml.vl‘lllllfh,'-,'?r

WAL

""H,.nulm”‘

=

V0
Wiz

: ‘H|H‘ i

Figure 8: RpnRr+T)



Definition 1. (Partial-lexicographic products)

Let X = (X, Ax, Vx, %, = tx, fx) be a group-like FL.-algebra and
Y = (Y, Ay, Vy,*, = ty, fy) be an involutive FL.-algebra, with
residual complement " and ", respectively.

Add a top element T to Y, and extend x by Txy=yx T =T
for y € Y U{T}, then add a bottom element L to Y U {T}, and
extend x by Lxy=yxlL=1foryeYU{L T}

Let Xy = (X1, Ax, Vx,*, — tx, fx) be any cancellative subal-
gebra of X (by Theorem 1, X; is a lattice ordered group). We
define

XI‘(Xl,YJ-T) — (XF(Xl,YJ-T)a S) 8, _)37 (tX7 tY): (fX7 fY)) ’

where

Xroyrmy = (X x (YU{L, T}H)U X\ X1) x{L}),

< is the restriction of the lexicographic order of <x and <y 1
to Xr(x,,y17),  is defined coordinatewise, and the operation —, is

given by (xla yl) e (x2ay2) — ((mlayl) ® ($27 y2)’), where
Ilk ,‘k .
(x,y)’:{(x y') ifx e Xy

(", 1) ifzgX;
Call Xpx, vir) the (type-I) partial-lexicographic product of X, X,
and Y, respectively.

Let X = (X, <x,*, =« tx, fx) be a group-like FL.-chain, Y =
(Y, <y, *, = ty, fr) be an involutive FL.-algebra, with residual
complement ” and ", respectively.

Add a top element T to Y, and extend x by Txy=y*xT =T
fory e YU{T}.

Further, let X; = (X1, A, V, %, >, tx, fx) be a cancellative, dis-
crete, prime' subalgebra of X (by Theorem 1, X; is a discrete lattice
ordered group). We define

XF(Xl,YT) — (XF(XI,YT)a <, 8, s, (tX7 tY)) (.fX7 fY)) )

where
Xroyn)y = (X x (YU{T}H)U((X\ X1) x{T}),

< is the restriction of the lexicographic order of <x and <yu{m} to
Xr(x,,Y), @ is defined coordinatewise, and the operation —, is given

by (z1,51) —e (22,92) = ((z1,51) © (22,%2)")" where
("), T) ifzgXiandy=T
(z",y") fzrzeX,andyeY .
("), T) fze X;andy=T

(SE, y)l —

u if there exists u < z such that there is no element in X
between u and =,
x if for any u < x there exists v € X such that u < v < x.

5131—

Call Xp(x, y) the (type-1I) partial-lexicographic product of X, X;,
and Y, respectively.
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Theorem 2. Xpx, yi7) and Xrx, y1) are involutive FL.-algebras.
If Y 1is group-like then also Xpx, y17) and Xp(x, yT) are group-like.
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chresentation 139 tota”g ordered

Abelian Groups

Theorem 2.21. (Structural representation) If X is a densely-ordered, group-
like F'L.-chain, which has only n € N idempotents in its positive cone then there
exist linearly ordered Abelian groups G; (¢ € {1,2,...,n}), Hi < Gi, H; <
I'H;_1,G;) (i € {2,...,n—1}), and a binary sequence v € {T L, THZm} sych
that X ~ X, where X1 :=G1 and X; :=X;_1pm, | g,q) (E€{2,...,n}). 52

32In the spirit of Theorem 2.5 we identify linearly ordered Abelian groups by cancellative,
group-like FL¢-chains here; the isomorphism is meant between FLc-algebras.



Surprising’?

Every commutative integral monoid on a finite chain is an FL, -chain.

[t has been shown in [S], F Montagna, A Proof of Standard
Completeness for Esteva and Godo's Logic MTL, STUDIA

LOGICA 70:(2) pp. 183-192. (2002)] that any FL, -chain embeds
into a

By the rotation construction [S], On the structure of rotation-
invariant semigroups, ARCHIVE FOR MATHEMATICAL

LOGIC 42(5) 489-514. (2003)], any
embeds into a densely-ordered, involutive FL, -chain.

Densely-ordered, involutive FL -chains, with the t = f condition and
with the assumption on the number of idempotent elements
results in a strong structural representation, which uses only
linearly ordered Abelian groups.



Coro”arg: Embedding

Corollary 2.23. (Hahn-type embedding) Densely-ordered, group-like FL.-chains

with a finite number of idempotents embed in the finite partial-lexicographic product
of lexicographic products of real groups.

Corollary 2.24. (Lexicographical embedding of the monoid reduct) The
monoid reduct of any densely-ordered, group-like FL.-chain with a finite number of

idempotents embeds in the lexicographic product of the ‘extended’ additive group of
the reals>s.
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