
On Kripke completeness of some modal predicate

logics

Valentin Shehtman

Institute for Information Transmission Problems, Russian Academy of Sciences

National Research University Higher School of Economics, Moscow, Russia

Moscow State University

In this note we present some completeness results for modal predicate logics

in the standard Kripke semantics. The proof is based on the technique developed

by S.Ghilardi, G.Corsi and D. Skvorstov, but now we arrange it in a game-

theoretic style 1.

1 Modal logics and Kripke frames

Let us recall some basic definitions and notation; most of them are the same as

in the book [3].

Atomic formulas are constructed from predicate letters Pn
k (countably many

for each arity n ≥ 0) and a countable set of individual variables V ar, without

constants and function letters. Modal (predicate) formulas are obtained from

atomic formulas by applying classical propositional connectives, quantifiers and

the modal operator �.

In modal propositional formulas only the proposition letters (P 0
k ) are used

as atoms.

A modal propositional logic is a set of modal propositional formulas contain-

ing classical propositional tautologies, the axiom of K (�(p ⊃ q) ⊃ (�p ⊃ �q),

where p, q are proposition letters) and closed under the basic inference rules:

Modus Ponens, �-introduction, and (propositional) Substitution.

1This research was done partly within the framework of the Basic Research Program at

National Research University Higher School of Economics and was supported within the frame-

work of a subsidy by the Russian Academic Excellence Project 5-100, and also by the Russian

Foundation for Basic Research (project No. 16-01-00615).
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As usual K denotes the minimal propositional modal logic, Λ + A is the

smallest logic containing a logic Λ and a formula A, and K4 := K+�p ⊃ ��p.

Recall that Kripke semantics for propositional modal logics is given by

(propositional) Kripke frames of the form (W,R), where W 6= ∅, R ⊆W ×W .

The set of all propositional formulas valid in a frame F (the modal logic of F )

is denoted by ML(F ). The class of all frames validating a propositional logic

Λ (Λ-frames) is denoted by V(Λ).

A p-morphism from (W,R) onto (W ′, R′) is a surjective map f : W −→
W ′ such that for any x ∈ W f [R(x)] = R′(f(x)). In this case ML(W,R) ⊆
ML(W ′, R′) (the p-morphism lemma).

A cone in F = (W,R) with root u (denoted by F↑u) is the restriction of

F to the smallest subset V containing u and such that R(V ) ⊆ V ; obviously,

V = R(u) ∪ {u} if R is transitive.

A modal predicate logic is a set of modal predicate formulas containing clas-

sical predicate axioms, the axiom of K and closed under Modus Ponens, Gen-

eralization, �-introduction, and (predicate) Substitution.

QΛ denotes the smallest predicate logic containing the propositional logic

Λ (the predicate version of Λ).

For predicate formulas we use the standard Kripke semantics. Recall that a

predicate Kripke frame over a propositional Kripke frame F = (W,R) is a pair

F = (F,D), in which D = (Du)u∈W , Du 6= ∅ and such that Du ⊆ Dv whenever

uRv.

For a class of propositional frames C, the class of all predicate frames (F,D)

with F ∈ C is denoted by KC.
A valuation ξ in F is a function sending every predicate letter Pn

k to a family

of n-ary relations on the domains:

ξ(Pn
k ) = (ξu(Pn

k ))u∈W ,

where ξu(Pn
k ) ⊆ Dn

u (D0
u is a fixed two-element set {0, 1}).

The pair M = (F, ξ) is a Kripke model over F. The definition of truth

in a Kripke model is standard. So at every point u ∈ W we evaluate modal

Du-sentences, i.e., modal formulas, in which all parameters are replaced with
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elements of Du; M,u � A means that A is true at u in M . Then

M,u � Pn
k (a1, . . . , an) iff (a1, . . . , an) ∈ ξu(Pn

k ),

M, u � P 0
k iff ξu(P 0

k ) = 1,

M, u � A ⊃ B iff (M,u 6�A or M,u � B),

M, u 6�⊥,
M, u � ∀xA(x) iff ∀a ∈ Du M,u � A(a),

M, u � �A iff ∀v ∈ R(u) M,v � A.

A modal formulaA(x1, . . . , xn) is called true in M (in symbols, M � A(x1, . . . , xn))

if M,u � A(a) for every u∈W and a∈Dn
u .

A modal formula A is valid in a frame F (in symbols, F � A) if it is true in

every Kripke model over F. ML(F) := {A | F � A} is the modal logic of F.

The modal logic of a class of frames C (or the logic determined by C) is

ML(C) :=
⋂
{ML(F) | F ∈ C}. Logics of this form are called Kripke complete.

There is also the notion of strong Kripke completeness; a modal predicate

logic L is strongly Kripke complete if every L-consistent theory is satisfied at a

point of some Kripke model over a frame validating L.

Similar definitions are given for modal propositional logics. Also recall that a

modal propositional logic has the finite model property (fmp) if it is determined

by some class of finite frames.

From the definitions it follows that for a predicate frame (F,D) and a propo-

sitional formula A,

(F,D) � A iff F � A.

So for a propositional logic Λ and a predicate frame F

F � Λ iff F ∈ KV(Λ).

One can easily see that QΛ is complete iff

QΛ = ML(KV(Λ)).

2 Completeness and incompleteness in modal

predicate logic

In modal predicate logic there are too many examples of incompleteness, and

proofs of completeness can be rather nontrivial. For instance, for a propositional

modal logic Λ ⊇ S4, QΛ is complete only if S5 ⊆ Λ or Λ ⊆ S4.3 (cf. [5]).

Still some logics QΛ are complete, in particular, for the well-known modal logics

Λ = K, K4, S4, S5, S4.2, S4.3 (cf. [3], theorems 6.1.29, 6.6.7, 6.7.12). These
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results were obtained by different authors — S. Kripke, D. Gabbay, S. Ghilardi,

G. Corsi and others.

In this paper we are mainly interested in the logic K4Ad := K4+Ad, where

Ad := ��p ⊃ �p

is the axiom of density; (W,R) � Ad iff R is dense, i.e., R ⊆ R ◦R.

An extension of K4Ad is D4.3Ad obtained by adding the axiom of non-

branching (.3) and seriality (3>). It is well-known that D4.3Ad = ML(Q, <),

where Q denotes the set of rationals. Moreover, completeness transfers to the

predicate version [1]:

Q(D4.3Ad) = ML(K(Q, <)).

3 Unravelling and bulldozing

Let us first discuss Kripke semantics for the propositional logic K4Ad.

A (transitive) tree is a strictly ordered set (W,<) with the least element

such that every subset {y | y < x} is linearly ordered and finite. Recall that a

transitive frame (W,R) is rooted with root u if W = R(u), or equivalently, if it

has the first cluster.

Lemma 3.1 Every rooted transitive frame is a p-morphic image of a tree.

A well-known proof is by unravelling: for a rooted frame F = (W,R) with root

u we construct a tree F ] = (W ], <), where W ] is the set of all finite paths from

u to points of W (i.e., finite sequences x0x1 . . . xn such that x0 = u and xiRxi+1

for any i < n), and α < β iff β prolongs α. The required p-morphism sends

every path to its last point.

Hence we have

Proposition 3.2 K4 is determined by the class of all (at most) countable trees.

This follows from lemma 3.1, the p-morphism lemma and the fmp of K4;

note that unravelling of a finite frame is finite or countable.

Definition 3.3 Let (W,<) be a tree, and consider a frame (W,<′), in which

<′ is obtained from < by making some points reflexive. Then (W,<′) is called

a semireflexive tree.

One can easily check that a semireflexive tree (W,<′) validates Ad iff its

irreflexive points can have only reflexive successors. Such a semireflexive tree is

called dense.
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Proposition 3.4 K4Ad is determined by the class of all (at most) countable

dense semireflexive trees.

Proof A standard filtration argument shows that K4Ad has the fmp, so it is

determined by finite rooted K4Ad-frames (cf. [6]). Finite K4-frames consist of

clusters, some of which can be degenerate (i.e., irreflexive singletons), while in

finite K4Ad-frames successors of degenerate clusters are non-degenerate.

Now let us unravel a finite K4Ad-frame F = (W,R) with root u more

carefully than in lemma 3.1. Call a path x0 . . . xn long if

∀i < n∀y ∈ F (xiRyRxi+1 ⇒ yRxi ∨ xi+1Ry).

Consider the set W1 of all long paths from u to points in F and take the

restriction F1 := F ]|W1. This frame is a tree, and the map f sending a path

to its last point is still a p-morphism F1 −→ F . This is because every two

R-related points can be connected by a long path.

Now we extend the relation in F1 by making reflexive every point a such that

f(a) is reflexive. We obtain a semireflexive tree F2 and again f is a p-morphism

F2 −→ F .

F2 is a dense semireflexive tree. In fact, if in F2 we have an irreflexive a and

its successor b, then a is a long path in F ending at an irreflexive point f(a),

and the cluster of f(b) is a successor of f(a). So f(b) is reflexive, and thus b is

reflexive in F2. �

To obtain a class of irreflexive transitive frames determining K4Ad we can

use Segerberg’s bulldozing method (cf. [6]). Viz., given a dense semireflexive

tree F2, we can replace each its reflexive point with a strict dense linear order

without the last element (e.g., the non-negative rationals Q+). Then we obtain

K4Ad-frame F3, and there is a p-morphism from F3 sending every irreflexive

point from F2 to itself and every copy of Q+ to the corresponding reflexive point

in F2. We call such a frame F3 a sprouting tree. So we have

Proposition 3.5 K4Ad is determined by the class of sprouting trees.

Remark 3.6 It is not clear if predicate frames over sprouting trees determine

the predicate logic QK4Ad. The completeness proof proposed below yields

more complicated frames.

4 Completeness of QK4Ad

To prove completeness for QK4Ad we use a method originating from G. Cosri’s

paper [1] and further developed by D. Skvortsov [9]; also cf. [3], sec. 6.4.
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The main idea is to extract an appropriate submodel from a canonical model

of a given logic L and to make a sort of unravelling which leads to a frame

validating L. More exactly, this frame is obtained as a direct limit of a sequence

of finite trees. This sequence can be constructed by induction, or equivalently,

by playing a game.

First we recall some definitions from [3], sections 6.1, 6.3, with little changes.

We fix a denumerable set of extra constants S∗. Its subset is called small if

its complement to S∗ is infinite.

Definition 4.1 For a modal predicate logic L, an L-place is an L-consistent

theory (i.e, a set of sentences) Γ in the basic language with extra constants

from S∗ and with the Henkin property: for any formula ϕ(x) with at most one

parameter x there exists a constant c such that (∃xϕ(x) ⊃ ϕ(c)) ∈ Γ. An L-place

is small if the set of its constants is small.

The canonical model VML is (V PL, RL, DL, ξL), where

• V PL is the set of all small L-places,

• ΓRL∆ iff �−Γ ⊆ ∆, where �−Γ := {A | �A ∈ Γ},

• (DL)Γ (also denoted by DΓ) is the set of constants occurring in Γ,

• (ξL)Γ(Pm
k ) := {c ∈ (DΓ)m | Pm

k (c) ∈ Γ}
for m > 0, and

(ξL)Γ(P 0
k ) := 1 iff P 0

k ∈ Γ.

Then for any A in the language of Γ

VML,Γ � A iff A ∈ Γ

(the Canonical model theorem).

Note that for arbitrary L-places an analogue of this theorem does not hold,

but we still need them for further considerations. So put VM+
L := (V P+

L , RL, DL, ξL),

where V P+
L is the set of all L-places, and RL, DL, ξL are the same as above.2

This VM+
L is actually a submodel of a canonical model for some larger set of

extra constants.

Henceforth we assume that L contains QK4, so L-frames are transitive.

Definition 4.2 Let L be a predicate logic, F = (W,R) a transitive propositional

frame. An L-network over F is a monotonic map from F to (V P+
L , RL), i.e. a

map h : W −→ V P+
L such that for any u, v ∈W

uRv ⇒ h(u)RLh(v).

2More exactly, RL extended to V P+
L × V P+

L , etc.
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The frame F is denoted by dom(h) and called the domain of h. An L-network

is small if every h(u) is small.

With every L-network h we associate a predicate Kripke frame F(h) :=

(F,D), where Du = (DL)h(u) for u ∈ W , and a Kripke model M(h) :=

(F(h), ξ(h)), where

ξ(h)u(Pm
k ) := {c ∈ Dm

u | Pm
k (c) ∈ h(u)}

for m > 0 and

ξ(h)u(P 0
k ) := 1 iff P 0

k ∈ h(u).

We define the partial order on networks.

h ≤ h′ := dom(h) is a subframe of dom(h′) and ∀u ∈ dom(h) h(u) ⊆ h′(u).

Definition 4.3 A defect in a network h over a frame (W,R) is a pair (u,A)

such that u ∈ W and 3A ∈ h(u). A defect (u,A) is eliminated in h if there

exists v ∈ R(u) such that A ∈ h(v).

We will call an L-network h finite if it is small and dom(h) is a finite tree.

Lemma 4.4 (On elimination of defects) Let h be a finite L-network with a

defect (u,A). Then there is a finite L-network h′ ≥ h eliminating this defect.

Proof If h eliminates (u,A), take h′ = h. Otherwise extend dom(h) by adding

a new successor v of u (such that v has no successors). Since 3A ∈ h(u), by

the properties of the canonical model VML, there exists an L-place Γ such that

A ∈ Γ and h(u)RLΓ. So we can put h′(v) := Γ. �

If Γ,∆ are L-places, Γ � ∆ denotes the restriction of Γ to the language of ∆.

Lemma 4.5 (Skvortsov’s extension lemma)

(1) Let Γ,∆ be L-places, Γ0 = Γ � ∆ and suppose that �−Γ0 ⊆ ∆. Then there

exists an L-place ∆′ ⊇ ∆ such that ΓRL∆′.

(2) Let h be a finite L-network over a tree F with root v, and let Γ be an

L-place, Γ0 = Γ � h(v), and suppose that �−Γ0 ⊆ h(v). Let F ′ be the tree

obtained by adding a root u below F . Then there exists a finite L-network

h′ ≥ h over F ′ such that Γ = h′(u).

Proof This is a reformulation of Lemma 6.4.28 from [3], and the proof follows

the same lines.
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(1) The assumptions imply that the theory �−Γ ∪∆ is consistent (see the

details in [3]); so it extends to an L-place ∆′.

(2) We can argue by induction on the cardinality of F . By (1) there exists

an L-place ∆′ ⊇ h(v) such that ΓRL∆′. If v has no successors (i.e., F is a

singleton), we are done: take h′ defined on the chain {u, v} such that h′(u) =

Γ, h′(v) = ∆′.

Suppose v has successors v1, . . . vn, Fi = F↑vi. hi is the restriction of h to

Fi. Since we can rename the constants from D∆′ −Dh(v), we may assume that

they do not occur in any h(vi); thus ∆ = ∆′ � h(vi), and �−∆ ⊆ h(vi). Now by

IH there exists h′i ≥ hi defined on the tree Fi with the added bottom element v

such that h′i(v) = ∆′. Then we define the following network h′ on F ′:

h′(u) = Γ, h′(v) = ∆′, h′|Fi = h′i.

�

Now we assume that L contains QK4Ad.

Lemma 4.6 (On inserts) Let h be a finite L-network, and let v be a successor

of u in dom(h). Then there exists a finite L-network h′ > h such that v is not

a successor of u in dom(h′).

Proof Suppose h(u) = Γ, h(v) = ∆, and let ∆0 = ∆ � Γ. It follows that

the set Γ′ := �−Γ ∪ {3A | A ∈ ∆0} is L-consistent. In fact, otherwise there

exist B ∈ �−Γ and A ∈ ∆0 such that {B,3A} is inconsistent (since the sets

�−Γ, ∆0 are closed under conjunction and 3A1∧3A2 implies 3(A1∧A2)). So

L ` B ⊃ ¬3A, or equivalenty, L ` B ⊃ �¬A. Hence by the monotonicity of

�, L ` �B ⊃ ��¬A; thus L ` �B ⊃ �¬A by Ad. Since �B ∈ Γ and A is in

the language of Γ, this implies �¬A ∈ Γ. Since ΓRL∆, it follows that ¬A ∈ ∆,

which is a contradiction.

Then Γ′ can be extended to an L-place Θ (with new unused constants). Let

Θ0 = Θ � ∆ (= Θ � ∆0, since new constants of Θ do not occur in ∆).

It follows that �−Θ0 ⊆ ∆0. In fact, ¬A ∈ ∆0 implies 3¬A ∈ Γ′ ⊆ Θ.

Consider the tree F ′ obtained from F = dom(h) by adding a new point z

between u and v. By Lemma 4.5 there exists a finite network h1 over F ′↑z
such that h1(z) = Θ and h1 ≥ h on F↑v. Now we can define h′ on F ′, which

coincides with h1 on F ′↑z and coincides with h at all other points. This is a

network, since �−Γ ⊆ Θ, i.e., h′(u)RLh
′(z). �

Definition 4.7 Let Γ0 be a small L-place. The selective game SGL(Γ0) is

played by two players, ∀ (the first) and ∃ (the second). A position after the n-th

turn is a finite network hn over a tree Fn = (Wn, Rn).
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At the initial position F0 is an irreflexive singleton u0 and h0(u0) = Γ0.

For the (n+ 1)-th move the player ∀ has two options.

1. Selecting a defect, i.e., a pair (u,A) such that u ∈Wn and 3A ∈ hn(u).

2. A query for an insert, i.e., a pair (u, v) such that uRnv and there are no

points between u and v.

The player ∃ should respond with a network hn+1 ≥ hn such that

1. If the move of ∀ was a defect (u,A), then there exists v such that uRn+1v

and A ∈ hn+1(v).

2. If the move of ∀ was a query for an insert (u, v), then then there exists

w such that uRn+1wRn+1v.

The player ∃ wins if the play continues infinitely or ∀ cannot make his move.

Note that ∀ cannot make the (n+1)th move in the only case when n = 0 and

h0 has no defects. This happens if Γ0 is an endpoint in VML, i.e., RL(Γ0) = ∅.

Every infinite play of the game generates a sequence of networks h0 ≤ h1 ≤
. . . Then we define the resulting network hω, with dom(hω) = Fω := (Wω, Rω),

Wω :=
⋃

nWn, Rω :=
⋃

nRn, hω(u) :=
⋃
{hn(u) | u ∈ Wn}. One can easily

check that this is really a network (not necessarily finite or small).

Lemma 4.8 ∃ has a winning strategy in SGL(Γ0).

Proof If ∀ cannot make the first move, there is nothing to prove. If the

(n+ 1)-th move of ∀ is a defect, ∃ can eliminate it by her next move according

to Lemma 4.4. If the move of ∀ is a query for an insert, ∃ can respond according

to Lemma 4.6. �

Lemma 4.9 If Γ0 is not an endpoint in VML, then there exists a play gener-

ating a sequence of networks such that Fω � K4Ad and for any u, for any A in

the language of hω(u)

M(hω), u � A iff A ∈ hω(u).

Proof A dense tree is a rooted strictly ordered set (W,≺), in which every

subset {u | u ≺ w} is a dense chain. Let us construct an infinite play such that

Fω is a dense tree.

The worlds will be just natural numbers. At the initial position F0 = (0,∅)

and h0(0) = Γ0.

Let us choose the further strategy for ∀ as follows. Fix an enumeration of

the countable set ω× ω, and an enumeration of ω×Φ, where Φ is the set of all

modal sentences with constants from S∗. An odd move (n+ 1) of ∀ chooses the

9



first new pair (u,A), which is a defect in hn. An even move (n+ 1) of ∀ chooses

the first new pair (u, v) ∈ ω × ω, which is a query for an insert in hn.

By lemma 4.8 there is a winning strategy for ∃. For the resulting network

we have

M(hω), u � A iff A ∈ hω(u).

This is checked by induction. The atomic case holds by the definition of ξ(h);

the cases of propositional connectives and quantifiers hold by the properties of

L-places.

Let us consider the case A = 3B.3 Suppose M(hω), u � A; then M(hω), v �

B for some v ∈ Rω(u). Since A is in the language of hω(u) and hω is a network,

we have hω(u)RLhω(v), so A (and B) is also in the language of hω(v). By IH

it follows that B ∈ hω(v); hence A = 3B ∈ hω(u) by the definition of RL.

The other way round, suppose A ∈ hω(u); then A ∈ hn(u) (i.e., (u,A) is a

defect in hn) for some finite n. Choose the minimal such n; so (u,A) is a defect

in hm for all m > n. Since the defects subsequently appear as odd moves of ∀,
there exists m such that (u,A) is his (m + 1)-th move. By the response of ∃,
we have B ∈ hm+1(v) for some v ∈ Rm+1(u). Hence B ∈ hω(v), v ∈ Rω(u). By

IH, we have M(hω), v � B. Thus M(hω), u � A.

To check the density for Fω, we can use even moves. In fact, if uRωv, there

exists n such that uRnv. If v is a successor of u in Rn, the pair (u, v) must

show up as a later even move of ∀. By the response of ∃ we have w such that

uRωwRωv. �

Definition 4.10 A modal predicate logic L is strongly Kripke complete if every

L-consistent set of sentences is satisfiable at some point of a Kripke model over

a frame validating L.

Theorem 4.11 QK4Ad is strongly Kripke complete.

Proof Every L-consistent theory without constants can be extended to an

L-place Γ0. If Γ0 is an endpoint in VML, then for any A in its language

VML,Γ0 � A iff A ∈ Γ0

by the canonical model theorem. Since Γ0 is an endpoint, the truth at this point

reduces to the truth in a model over an irreflexive singleton.

In all other cases we can apply lemma 4.9. So there exists a model M(hω)

such that M(hω), u0 � Γ0 and Fω � K4Ad. Hence F (hω) � L. �

3Since � is our primitive, we should deal with A = ¬�B, which is equivalent to 3¬B; the

argument is almost the same.
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Theorem 4.12 If S is a set of closed (i.e., constructed only from ⊥, � and ⊃)

propositional formulas, then QK4Ad+ S is strongly Kripke complete.

Proof By the same argument as in the previous theorem. In this case S ⊂ Γ

for all L-places Γ (where L := QK4Ad+S), so M(hω) � S. Hence Fω � S, and

thus F (hω) � L. �

5 Final remarks

Axiomatizing modal predicate logics of specific frames is usually a nontrivial

problem. In particular, we can be interested in predicate logics of relativistic

time. The only clear case is the following.

Theorem 5.1 Let F be the Minkowski lower halfspace with the causal future

relation: aRb iff a signal can be sent from a to b. Them ML(KF ) = QS4.

Proof Every cone in F can be mapped p-morphically onto the infinite reflexive

binary tree IT2 [6]. It is also well-known that ML(KIT2) = QS4 (cf. [3], section

6.4). Hence the claim follows. �

The method proposed in the previous section can also be applied to the

logic K4Ad2, where Ad2 := 3p ∧ 3q ⊃ 3(3p ∧ 3q) is the axiom of 2-density

appearing in the logic of chronological future, cf. [7]. However, axiomatizing

the predicate version of the latter logic seems a difficult problem.

Also note that our method is inapplicable to the case of constant domains.

Moreover, the corresponding logic L′ := QK4Ad+Ba, where

Ba := ∀x�P (x) ⊃ �∀xP (x)

is the Barcan axiom, may be Kripke incomplete. In fact, incompleteness is

known for the logic QKAd + 3> (cf. [4]), and it probably extends to L′ (al-

though the proof from [4] does not fit for L′, because of transitivity).
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