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Abstract.
The recent discovery of the gravitational waves provides a new method to study the interior

of compact astrophysical objects, such as neutron stars. The high-accuracy measurements of
neutron star mass gives constraint for the nuclear models of compact stars interior, which may
further restricted by the gravitational wave data. Neutron star mergers, which are the most
common predicted sources of gravitational waves, are very sensitive to the nuclear equation
of state and different phases of high-density nuclear matter. Investigation of these compact
star ”fingerprints” are one of the most active areas of this field. Equation of state zoo of the
compact star interior has wide variety. Especially, the applied models have strong impact on
the final observables of the objects. We study the effect of quantum fluctuations on these
physical observables, using the Functional Renormalization Group (FRG) method in effective
field theories of the nuclear matter. Within this framework we explored the effect of the running
self interaction coupling in a simple model of Fermions coupled to a fluctuating scalar field with
Yukawa-coupling. We calculated the phase diagram and the equation of state in this model,
and compared the results to mean field and one-loop calculations.We extracted the mass-radius
relation for a static, spherically symmetric compact star corresponding to our model, which was
compared to other results as well. Here we present our results and the latest extended models
on the effect of quantum fluctuations in neutron star mass and radii.

1. Introduction
Describing the behavior of nuclear matter and providing equation of state is still an active
research field, with many challenges. At low densities and high temperatures accelerator
experiments and lattice QCD provides information, but states characterized by high density
and low temperature are inacessible for direct measurements. Nuclear matter in this extreme
state is present in compact astrophysical objects such as neutron-, quark-, or hybrid stars, and
by modelling these objects one can get more insight into the nuclear equation of state for high
densities. Studying the inner structure of compact stars is a challenge due to the lack of direct
probes or measurements of their interior. Recent spectroscopic radius measurements using X-ray
data analysis [1] and even the gravitational-wave discoveries [2, 3] may provide additional data,
which led us to a more reliable description of super-dense nuclear matter.

The above mentioned task is shaded by the masquarade problem: different equation of state
(EoS) results similar observeables of compact astrophysical obejcts [4]. On the other hand,
model calcualtions for the phase structure of nuclear matter shows the importance of correct



treatmnet of quantum fluctuations in the bosonic sector [5], so considering bosonic quantum
fluctuations in neutron star EoS may weaken the masquerade problem.

In this work we follow Refs. [6, 7, 8] and use a simple model of Yukawa interaction between one
fermionic and bosonic degree of freedom where the effect of bosonic quantum fluctuations induced
by self interaction is considered. We use the Wetterich equation to compute thermodynamic
quantities in Local Potential Approximation (LPA) with the optimized Litim regulator [9]. The
calculated EoS is studied by solving the Tolman – Oppenheimer – Volkov (TOV) equations and
calculating the mass-radius relation of compact stars in different levels of approximation for
quantum fluctuations. Comparison of the results with other high density low temperature EoS
is given, and the magnitude of the fluctuations is shown in various observables.

2. The interacting Fermi gas in the FRG framework
The functional renormalization group (FRG) method interpolates smoothly between microscopic
scale and the macroscopic observable quantities in a general system. The FRG formalism led us
to calculate the effect of quantum fluctuations on macroscopic thermodynamical quantities like
pressure and energy density, by using the FRG method at zero temperature and finite chemical
potential, which is a key for investigating the matter of compact stars.

The FRG method accounts for the quantum effects by introducing a regulator Rk in the
action, which acts as a mass term, and suppresses modes below scale k. This makes, the action
Γk and all quantities derived from it, scale dependent, which is determined by the Wetterich
equation (1) as explained in Refs. [10, 11, 12],
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normal trace operation but includes a negative sign for fermionic fields and sums over all indices.
The observable quantities are derived from the low-scale IR effective action which is computed
by integrating the Wetterich equation (1), from the classical limit at the UV-scale k = Λ to
the IR scale k = 0, where quantum effects are taken into account. The parameters of the UV
(classical) action Γk=Λ, has to be chosen in a way that the known IR quantities are correctly
reproduced.

To study the effect of quantum fluctuations on EoS and on compact star observables, we use
a simple Yukawa-type model with one bosonic and one fermionic degree of freedom described
by the bare action, (2).
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The effect of bosonic fluctuations is characterized by the scale dependent effective potential
Uk. Following [6] the Wetterich equation for Uk at finite temperature is,
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where nB and nF are the Bose – Einstein and the Fermi – Dirac distributions, respectively
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Equation (3) for the running of the effective potential Uk is solved by the method described
in Ref. [7] at zero temperature. The resulting EoS is studied in Ref. [8] and the corresponding
neutron stars are compared to other models. In the next chapter we show the effect of quantum
fluctuations on compact star observables and study how they manifest in different levels of
approximations.



Figure 1: Comparison of the M-R diagram corresponding to different approximations

3. Results: The effect of quantum fluctuations on compact star observables
In Ref. [8] we calculated the mass-radius relation for the neutron stars corresponding to our
simplified model with quantum fluctuations. The results showed that the mass and the radius
of the compact stars depend on the level of approximation for the quantum fluctuations as it is
shown on Fig. 1.

Figure 2: The density dependece of neutron star mass and radius for the FRG based calculation
is compared to the GNH3 and SQM3 models which are taken from Ref. [1]. The density is the
nuclear saturation density units ρ0 = 0.153 fm−3

The mean field calculation (MF) contains no quantum fluctuations, the one-loop model (1-
Loop) is the simplest case which considers the effect of fluctuations, and the FRG method
(Exact FRG-LPA) takes into account sufficiently high order terms so that the solution to the
Wetterich equation converges. Fig. 1 shows that taking into account quantum fluctuations
increases the radius and mass of the corresponding neutron star, but only if sufficiently high
terms are considered, which is demonstrated by the fact that the one-loop solution has smaller
radius and mass than the mean field one. It is also apparent from Fig. 1 that the effect of
fluctuations is the most relevant at the high mass stars, and it disappears at the unstable and
low star mass (approximately below 0.4 M�) part of the M-R diagram

We calculated how the mass and radius of neutron stars depend on the averge density of
the star using the TOV equations, and compared our model to some other EoS taken from
Ref. [1], which are typically used in compact star models. Since our model does not contain any
repulsive force besides the fermionic behaviour of the matter, the resulting objects are much



more dense, but the situation is similar to Fig. 1: including bosonic fluctuations improves the
situation, but they have to be considered up to sufficiently high order as in the exact FRG
calculation (considering one loop only worsen the situation). The FRG calculations shows that
fluctuations lower the density corresponding to the highest mass stars and increases maximum
neutron star mass, by approximately 5 percent. The difference between the Exact FRG-LPA,
MF and 1-Loop calculations disappears above a given average density which is approximately
8ρ0 and 6ρ0 corresponding to mass and radius calculations. It is also apparent that considering
fluctuations only in one loop order has an opposite effect to observables than the correct high
order FRG-LPA calculation, therefore low order corrections are not enough to understand the
physical effects of quantum corrections.

Figure 3: Matter density in neutrons stars as a function of distance from the centre calculated in
the interacting Fermi gas model and EoS from Ref. [1]. The mass of the resulting stars are: Mean
field: 1.37M�, one-loop: 1.31M�, FRG-LPA: 1.38M�, GNH3: 1.96M�, SQM3: 1.91M�

To see exactly how quantum corrections influence neutron star observables we calculated the
matter density in the neutron star as a function of distance from the centre for a spherically
symmetric and static case. The results for the highest mass stars corresponding to each EoS is
shown on Fig. 3. The Fermi gas model starts at higher densities because of reasons mentioned
above, but the FRG calculation shows that the quantum fluctuations lower the density and
make the curve less steeper, overall much more similar to the sophisticated GNH3 and SQM3
models. Fig 3 also shows that although the MF and 1-Loop EoS start at higher densities they
do not produce higher star mass, because the integration reach the edge of the star defined by
p = 0 earlier than FRG-LPA, GNH3 and SQM3. The curve corresponding to the GNH3 model
is also less steeper than the SQM3 curve and it produces a higher mass star too, so including
quantum fluctuations in other models may increase neutron star mass, since the density curve
becomes less steep.

4. Summary
Based on Refs. [6, 7, 8] using the FRG method, we demonstrated the effect of bosonic quantum
fluctuations on neutron star observables considering the simplest interacting Fermi-gas model
and compared our results to other EoS as well. We highlighted that quantum fluctuations
improve on the model if they considered in sufficiently high precision.
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