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Abstract. We look at various versions of domain algebras and provide a

survey of axiomatizability results. We also present a finite axiomatization

for the variety generated by representable upper semilattice-ordered domain–
range semigroups.
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1. Introduction

The family of domain algebras provides an elegant, one-sorted formalism for
automated reasoning about program and system verification, see [DS11, DS08] and
[HM11] for details and further motivation. Their primary models are algebras of
binary relations, viz. representable domain algebras.

There are several variants of domain algebras depending on the choice of the sig-
nature. They agree on having a domain operation D and a composition operation ;.
In addition, they may have other operations that can be interpreted on binary re-
lations: range R, antidomain A, converse ^, join + and meet ·, and constants:
zero 0, identity 1′.

Definition 1.1. Let U be a set. We define operations on elements of ℘(U × U).

Composition:

X ; Y = {(u, v) | (u,w) ∈ X and (w, v) ∈ Y for some w ∈ U}
Domain:

D(X) = {(u, u) | (u, v) ∈ X for some v ∈ U}
Range:

R(X) = {(v, v) | (u, v) ∈ X for some u ∈ U}
Antidomain:

A(X) = {(u, u) | (u, v) /∈ X for any v ∈ U}
Converse:

X^ = {(u, v) | (v, u) ∈ X}
Identity:

1′ = {(u, u) | u ∈ U}
for X,Y ⊆ U × U .

Let Λ be a signature such that (;,D) ⊆ Λ ⊆ (;,D,R,A,^,+, ·, 0, 1′). A repre-
sentable domain algebra of signature Λ is a subalgebra of

(℘(U × U), λ : λ ∈ Λ)

and a representable ordered domain algebra is a representable domain algebra aug-
mented with an ordering ≤ interpreted as the subset relation ⊆.
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We will denote the class of representable domain algebra of signature Λ as R(Λ)
and the variety generated by R(Λ) as V(Λ).

2. Axiomatizing the representation class?

The algebraic behaviour of domain algebras have been investigated, e.g. in
[DJS09a, DJS09b]. P. Jipsen and G. Struth raised the question whether the class
R(;,D) of representable domain algebras of the minimal signature (;,D) is finitely
axiomatizable.

Theorem 2.1 ([HM11]). Let Λ be a similarity type such that (D, ;) ⊆ Λ ⊆ (;,D,R,A, 1′, 0).
The class R(Λ) of representable Λ-algebras is not finitely axiomatizable in first-order
logic.

Then we looked at whether the representation class can be finitely axiomatized
if we include lattice operations into the signature. We start with adding join.

Theorem 2.2 ([HM11] using [AM11]). Let Λ be a similarity type such that (;,+) ⊆
Λ ⊆ (;,D,R,A,+,^, ∗, 1′, 0, 1). The class R(Λ) of representable Λ-algebras is not
finitely axiomatizable in first-order logic.

Adding meet does not seem more promising.

Theorem 2.3 ([HM07]). The class R(;, ·, 1′) is not finitely axiomatizable in first-
order logic.

The proof is an ultraproduct construction of non-representable algebras, where
1′ is an atom. Thus we can augment these algebras with D,R.

Corollary 2.4. Let Λ be a similarity type such that (;,D, ·) ⊆ Λ ⊆ (;,D,R, ·, 1′).
The class R(Λ) of representable Λ-algebras is not finitely axiomatizable in first-order
logic.

Adding a (distributive) lattice structure does not work either.

Theorem 2.5 ([An91]). Let Λ be a similarity type such that (;,+, ·) ⊆ Λ ⊆
(;,+, ·,−,^, ∗, 0, 1). The class R(Λ) of representable Λ-algebras is not finitely ax-
iomatizable in first-order logic.

The proof is another ultraproduct construction. Observe that we can define
D(x) = (x ; x^) · 1′, R(x) = (x^ ; x) · 1′ and A(x) = −D(x) · 1′. Thus we get the
following.

Corollary 2.6. Let Λ be a similarity type such that (;,D,+, ·) ⊆ Λ ⊆ (;,D,R,A,+, ·,^, 0, 1).
The representation class R(Λ) is not finitely axiomatizable.

However, if we restrict ourselves to ordered algebraic structures, then a Cayley-
type representation works.

Theorem 2.7 ([Br75] and [HM13]). The representation class R(;,D,R,^, 0, 1′,≤)
is finitely axiomatizable (by quasiequations) and has the finite representation prop-
erty.
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3. Axiomatizing the generated variety

Since the representation classes are not finitely axiomatizable in general, it is
a natural task to look at the generated varieties and see wehther they are finitely
based. M. Hollenberg looked at the case of antidomain.

Theorem 3.1 ([Ho97]). The variety V(;,A) generated by R(;,A) is finitely axiom-
atizable.

Recently, we looked at the case of upper semilattice-ordered domain–range semi-
groups.

Theorem 3.2 (M. Jackson and Sz. Mikulás). The variety V(;,D,R,+) generated
by R(;,D,R,+) is finitely axiomatizable.

The axioms Ax are:

(D1) D(x) ; x = x (R1) x ; R(x) = x

(D2) D(x ; y) = D(x ; D(y)) (R2) R(x ; y) = R(R(x) ; y)

(D3) D(D(x) ; y) = D(x) ; D(y) (R3) R(x ; R(y)) = R(x) ; R(y)

(D4) D(x) ; D(y) = D(y) ; D(x) (R4) R(x) ; R(y) = R(y) ; R(x)

(D5) D(R(x)) = R(x) (R5) R(D(x)) = D(x)

(D6) D(x) ; y ≤ y (R6) x ; R(y) ≤ x
together with associativity of ; and +, idempotency of + and additivity of ;,D,R.

The proof uses the following observations.

3.1. Eliminating join. Assume

V(;,D,R,+) |= s ≤ t
and we need Ax ` s ≤ t, for all terms s, t.

Using additivity of the operations we have that

V(;,D,R,+) |= s1 + . . .+ sn = s ≤ t = t1 + . . .+ tm

for some join-free terms s1, . . . , sn, t1, . . . , tm.
It is not difficult to show that this happens iff for every i there is j such that

V(;,D,R,+) |= si ≤ tj
Thus it is enough to show Ax ` si ≤ tj for join-free terms.

3.2. Domain elements (in the free algebra). Let A be a model of Ax . The set
D(A) of domain elements is defined as

D(A) = {a = D(a) | a ∈ A}

Lemma 3.3. (1) The algebra (D(A), ;) of domain elements is a (lower) semi-
lattice and the semilattice ordering coincides with ≤.

(2) For every a ∈ A, D(a) (resp. R(a)) is the minimal element d in D(A) such
that d ; a = a (resp. a ; d = a).

Let FVar = (FVar, ;,D,R,+) be the free algebra of the variety defined by Ax
that is freely generated by a set Var of variables.

Lemma 3.4. Let r, s, t be join-free terms such that FVar |= D(r) ≤ s ; t. Then
FVar |= D(r) ≤ s = D(s) and FVar |= D(r) ≤ t = D(t).
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Lemma 3.5. Let s, t be join-free terms such that FVar |= s ≤ D(t). Then FVar |=
s = D(s).

3.3. Step-by-step construction. Using the above observations, we can construct
an antisymmetric graph Gω labelled by join-free terms T−Var that yields a represen-
tation of the free algebra FVar.

We will define a labelled, directed graph Gω as the union of a chain of labelled,
directed graphs Gn = (Un, `n, En) for n ∈ ω, where

• Un is the set of nodes,
• `n : Un × Un → T−Var is a labelling of edges,
• En = {(u, v) ∈ Un × Un | `n(u, v) 6= ∅} is a reflexive, transitive and

antisymmetric set of edges.

Initial step. In the 0th step of the step-by-step construction we defineG0 = (U0, `0,W0)
by creating an edge for every element of T−Var. We define U0 by choosing elements
ua, va, . . . ∈ ω so that {ua, va} ∩ {ub, vb} = ∅ for distinct a, b, and ua = va iff
D(a) = a (i.e., a is a domain element of FVar). We can assume that |ω \ U0| = ω.
We define

`0(ua, va) = a

`0(ua, ua) = D(a)

`0(va, va) = R(a)

and we label all other edges by ∅.
Domain step. We assume that we have a loop (u, u) labelled by a domain element
c = D(c) ≤ a, such that D(c) ; a is not a domain element, but we may miss an edge
(u,w) witnessing a.

We choose w ∈ ω \ Um, extend `m by

`m+1(u,w) = D(c) ; a

`m+1(w,w) = R(D(c) ; a)

and for every (p, u) ∈ Em with `m(p, u) = d (some d ∈ T−Var)

`m+1(p, w) = d ; a

All other edges involving the point w have empty labels. See Figure 1.
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Figure 1. Step for domain

Range step. This is completely analogous to the domain step.
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Composition step. Our aim is to extend Gm to create edges (u,w) and (w, v) wit-
nessing a and b, provided a ; b ≥ c = `m(u, v).

We assume that

(CC1) u 6= v,
(CC2) D(c) ; a ; D(b ; R(c)) 6= D(D(c) ; a ; D(b ; R(c))),
(CC3) R(D(c) ; a) ; b ; R(c) 6= R(R(D(c) ; a) ; b ; R(c)),

otherwise we define Gm+1 = Gm. If (CC1)–(CC3) hold, then we choose w ∈ ω\Um,
extend `m by

`m+1(u,w) = D(c) ; a ; D(b ; R(c))

`m+1(w, v) = R(D(c) ; a) ; b ; R(c)

`m+1(w,w) = R(D(c) ; a) ; D(b ; R(c))

and for (p, u), (v, q) ∈ Em with `m(p, u) = d and `m(v, q) = e (some d, e ∈ T−Var)

`m+1(p, w) = d ; a ; D(b ; R(c))

`m+1(w, q) = R(D(c) ; a) ; b ; e

All other edges involving w will have empty labels. See Figure 2.
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Figure 2. Step for composition

Limit step. We define Gω =
⋃

n∈ω Gn.

3.4. Representing the free algebra. We let

x[ = {(u, v) ∈ Uω × Uω : x = `ω(u, v)}

for every variable x ∈ Var.
Let A = (A, ;,D,R,+) be the subalgebra of the full algebra (℘(Uω×Uω), ;,D,R,+)

generated by {x[ : x ∈ Var}. Clearly A is representable. It is not difficult to show
that it provides a representation to the free algebra.

Lemma 3.6. A is isomorphic to FVar.
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4. Conclusion

We conclude with some open problems. Are the varieties generated by

• R(;,D,R,A,+)
• R(;,D,R,+, ·)
• R(;,D,R,A,+, ·)

finitely axiomatizable?
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