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Abstract

The mathematical expression of a scientific or geometric law typically does not
depend on the units of measurement. This makes sense because measurement units
have no representation in nature. Any mathematical model or law whose form would
be fundamentally altered by a change of units would be a poor representation of the
empirical world. This paper formalizes this invariance of the form of the laws as a
meaningfulness axiom. In the context of this axiom, relatively weak, intuitive con-
straints may suffice to generate standard scientific or geometric formulas, possibly up
to some numerical parameters. We give several example of such constructions, with a
focus of the Doppler effect and some other relativistic formulas.

When properly formalized, the invariance of the mathematical form of a scientific or geo-
metric law under changes of units becomes a powerful ‘meaningfulness’ axiom.
Combining this meaningfulness axiom with abstract, intuitive, ‘gedanken’ properties such
as associativity, permutability, bisymmetry, or other conditions in the same vein, enables
the derivation of scientific or geometrical laws (possibly up to some parameter values). In
the last section of this paper, I will show how, in the context of meaningfulness, the axiom

L(L(λ, v), w) = L(λ, v ⊕ w) (1)

yields specific numerical expressions for the function L and the operation ⊕.
Equation (1) is an abstract axiom representing the mechanisms conceivably involved

in the Doppler effect (Feynman, Leighton, and Sands, 1963, Vol. 1). The operation ⊕
represents the relativistic addition of velocities. The left hand side of Equation (1)
formalizes an iteration of the function L. The equation states that such an iteration
amounts to adding a velocity via the relativistic addition of velocities operation.

A. Motivating the meaningfulness condition

The trouble with an equation such as (for example)

[LF] L(`, v) = `

√
1−

(v
c

)2
, (2)

representing the Lorentz-FitzGerald Contraction is its ambiguity: the units of `, which
denotes the length of an object, and of v and c, for the speed of the observer and the

∗I am grateful Chris Doble, Jean-Paul Doignon, and Louis Narens for their collaboration on various
part of my work in this area. I also thank Don Saari for his comments.
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speed of light, are not specified. Writing L(70, 3) has no empirical meaning if one does not
specify, for example, that the pair (70, 3) refers to 70 meters and 3 kilometers per second,
respectively. While such a parenthetical reference is standard in a scientific context, it is
not instrumental for our purpose, which is to express, formally, an invariance with respect
to any change in the units. To rectify the ambiguity, I propose to interpret

L(`, v) as a shorthand notation for L1,1(`, v),

in which ` and L on the one hand, and v on the other hand, are measured in terms of
two particular initial or anchor units fixed arbitrarily. Such units could be m (meter) and
km/sec, if one wishes. The ‘1, 1’ index of L1,1 signifies these initial units.

Describing the phenomenon in terms of other units means that we multiply ` and v in
any pair (`, v) by some positive constants α and β, respectively. At the same time, L also
gets to be multiplied by α, and the speed of light c by β. Doing so defines a new function
Lα,β, which is different from L = L1,1 if either α 6= 1 or β 6= 1 (or both).

But, from an empirical standpoint, Lα,β carries exactly the same information as L1,1.
For example, if our new units are km and m/sec, then the two expressions

L10−3,103(.07, 3000) and L(70, 3) = L1,1(70, 3),

while numerically not equal, describe the same empirical situation.
This points to the appropriate definition of Lα,β in the case of the Lorentz-FitzGerald

Contraction. It turns out (see Definition 3) that we should write:

Lα,β(`, v) = `

√
1−

(
v

βc

)2

. (3)

The connection between L and Lα,β is actually:

1

α
Lα,β(α`, βv) =

(
1

α

)
α`

√
1−

(
βv

βc

)2

= `

√
1−

(v
c

)2
= L(`, v).

Writing R++ for the set of positive real numbers and R+ for the set of non negative real
numbers, this implies, for any α, β, ν and µ in R++,

1

α
Lα,β(α`, βv) =

1

ν
Lν,µ(ν`, µv), (α`, ν` ∈ R+, βv ∈ [0, βc[ , , µv ∈ [0, µc[ ). (4)

which is a special case of the invariance equation we were looking for, in the particular
case of the Lorentz-FitzGerald Contraction Equation (or in the cases of the Doppler Effect
or Beer’s Law).

1 Remark. Looking at Equation (4), one might object that going in that direction would
render the scientific or geometric notation very awkward. But the awkwardness is only
temporary. When we have extracted all the useful consequences from the meaningfulness
axiom, we can go back to the usual notation. In fact, we already have the equation
permitting to retrieve our usual notation. Indeed, Equation (4) implies

1
αLα,β(α`, βv) = L1,1(`, v) = L(`, v).

Note that the concept of meaningfulness is of course related to standard physical
concepts such as dimensional analysis. I will not deal with this issue here, but see Narens
(1981, 1988, 2002, 2007).
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B. Defining meaningfulness

Our example of the Lorentz-FitzGerald equation made clear that the concept of
meaningfulness must apply to a collection of scientific or geometric functions (we call
them codes here), and not to a particular function.

2 Definition. Suppose that J1, J2, and J3 are three non-negative real intervals, and let

F = {Fα,β α, β ∈ R++}

be a collection of codes, with the initial code

F = F1,1 : J1 × J2
onto−→ J3

strictly monotonic in both variables.
Each of α and β indexing a code Fα,β in F represents a change of the unit of one of

the two measurement scales1.

Let δ1 and δ2 be two of rational numbers. The collection of codes F defined above is
(δ1, δ2)-meaningful if for any (x1, x2) ∈ J1 × J2 and (α, β), (µ, ν) ∈ R2

++, we have

1

αδ1βδ2
Fα,β(αx1, βx2) =

1

µδ1νδ2
Fµ,ν(µx1, νx2) = F1,1(x1, x2)

which yields

Fα,β(αx1, βx2) = αδ1βδ2F1,1(x1, x2) = αδ1βδ2F (x1, x2).

The role of δ1 and δ2 is to specify the measurement scale of the function Fα,β relative
to those of its two variables. In the case of the Lorentz-FitzGerald and similar equations,
the measurement scale of the code is the same as that of the first variable. The relevant
definition is given below.

3 Definition. A meaningful collection of codes, with F = {Fα,β α, β ∈ R++} as in the
previous definition, is called (1, 0)-meaningful if it is (δ1, δ2)-meaningful with δ1 = 1 and
δ2 = 0. We have then, for any (x1, x2) ∈ J1 × J2 and (α, β), (µ, ν) ∈ R2

++,

1

α1β0
Fα,β(αx1, βx2) =

1

µ1ν0
Fµ,ν(µx1, νx2),

⇐⇒
1

α
Fα,β(αx1, βx2) =

1

µ
Fµ,ν(µx1, νx2), (α1β0 = α, µ1ν0 = µ)

= F1,1(x1, x2)

which yields

Fα,β(x1, x2) = αF1,1

(
x1
α
,
x2
β

)
.

Such collections are also called ST-meaningful, with ST standing for self transforming.

Many scientific or geometric laws are self transforming. We give several examples in
this paper.

1In this paper, we only deal with scientific or geometric functions in two variables, and with ratio
measurement scales.
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C. As an introduction: the Pythagorean Theorem

One example of an abstract axiom is the associativity equation:

F (F (x, y), z) = F (x, F (y, z)) (x, y, z ∈ R++)

which can be shown to hold for right triangles, with each of

F (x, y), F (x, z), F (F (x, y), z) and F (x, F (y, z))

denoting the measures of the hypothenuses of a right triangle as functions of the two
sides of the respective right angles. In the figure below, F (x, y) denotes the length of the
hypothenuse of the right triangle4ABC, with sides lengths x and y, while F (y, z) denotes
the length of the hypothenuse of the right triangle 4BCD.

The two remaining triangles: 4ABD, with sides lengths x and F (y, z), and 4ACD,
with sides lengths z and F (x, y), have the common hypothenuse AD. Its length is

F (F (x, y)z) = F (x, F (y, z). (5)

This shows that the hypothenuse of a
right triangle is an associative function of
(the lengths of) its two sides.

Using functional equations arguments
(Aczél, 1966, Section 6.2), we can prove
that, for some continuous strictly increas-
ing function f on the set R of real num-
bers, the associativity equation (5) has a
representation

F (x, y) = f−1(f(x) + f(y))

an equation generalizing the Pythagorean
Theorem.

AA

B

C

D

x

y

z

F(x,y)
F(F(x,y),z) =

 F(x,F(y,z))

B
F(

y,z
)

Under meaningfulness, and in the context of reasonable background conditions, we can
prove that the function F has the form

F (x, y) = (xη + yη)
1
η ,

(see Theorem 5 below). The exact statement requires recalling some conditions.

4 Definition. A code F : R++ × R++ −→ R++ is

symmetric if F (x, y) = F (y, x) for x, y ∈ R++.

Such a code is

homogeneous if F (θx, θy) = θF (y, x) for x, y, θ ∈ R++.

5 Theorem. Suppose that F = {Fα α ∈ R++} is a (12 ,
1
2)-ST-meaningful collection of

codes, with Fα : R++ × R++
onto−→ R++ for all α in R++. If one of these codes is

strictly increasing in both variables, symmetric, homogeneous and associative, then any
code Fα ∈ F must have the form

Fα(x, y) =
(
xθ + yθ

) 1
θ

= F (x, y) ,

for some constant θ ∈ R++.
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For a proof, see Falmagne and Doble (2015a, Theorem 7.1.1, page 85). The fact that
we must have θ = 2 can be derived from the Area of the Square Postulate and a couple of
other intuitively obvious postulates of geometry.

The proofs of Theorem 5 and a couple of other results given in this paper follow the
schema illustrated by the next graph.

Abstract Axiom
Example: Associativity

F (F (x,y),z)=F (x,F (y,z))

Abstract Representation

Example:

F (x,y)=f(f−1(x)+f−1(y))

Quantitative Formula

Example:

F (x,y)=(xθ+yθ)
1
θ

&

Meaningfulness

Condition

Proof schema: An abstract axiom yields an abstract representation.

The latter, paired with a meaningfulness condition leads, via functional

equation arguments, to one or a couple of potential scientific laws specified

up to the value(s) of numerical parameter(s).

D. Another example: The Translation Equation for Beer’s law

Beer’s law, also known as Beer-Lambert law, Lambert-Beer law, or Beer-Lambert-Bouguer
law is an equation describing the attenuation of light resulting from the properties of the
material through which the light is traveling. (See the figure below.)

Incoming
   light

Outgoing 
    light

Following the guidelines of the Proof Schema, we first formulate the abstract axiom.

6 Definition. Let J and J ′ be two non-negative real intervals. A code F : J × J ′ → J is
translatable, or equivalently, satisfies the translation equation2 if

F (F (x, y), z) = F (x, y + z) (x ∈ J, y, z, y + z ∈ J ′) . (6)

An example of a translatable code is Beer’s Law:

I(x, y) = x e−
y
c . (7)

Indeed, we have

I(I(x, y), z) = I(x, y) e−
z
c = x e−

y
c e−

z
c = x e−

y+z
c = I(x, y + z).

Next, we need the abstract representation in this case. It is formulated in the next lemma.

2See Aczél (1966, page 245) for this concept and for the proof of Lemma 7.
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7 Lemma. Let F : J × J ′ → H be a code such that J ′ =]d,∞ [ for some d ∈ R+, and
for some a ∈ R+, either J =]a, b] for some b ∈ R++ or J =]a,∞ [, with F (x, y) strictly
decreasing in y.

Then, the code F : J × J ′ → H is translatable if and only if there exists a function f
satisfying the equation

F (x, y) = f(f−1(x) + y) .

Injecting now the meaningfulness condition, we obtain our quantitative formula.

8 Theorem. Let F = {Fµ,ν µ, ν ∈ R++} be a (1, 0)-meaningful ST-collection of codes,

with Fµ,ν : R++ × R++
onto−→ R++. Suppose that one of these codes, say the code Fµ,ν ,

is strictly decreasing in the second variable, translatable, and left homogeneous of degree
one, that is: for any a in R++, we have Fµ,ν(ax, y) = aFµ,ν(x, y) . Then there is a positive
constant c such that the initial code F has the form

F (x, y) = x e−
y
c ;

so for any code Fα,β ∈ F , we have

Fα,β(x, y) = x e
− y
βc .

We summarize below the proof contained in Falmagne and Doble (see the proof of
Theorem 7.4.1, page 98, 2015a).

Sketch of proof. We first show that, if one of the codes in the collection F is trans-
latable, then by the meaningfulness condition, the translatability condition propagates to
all the codes in the collection. Without loss of generality, we suppose that the initial code
F = F1,1 is translatable.
Successively, we have for any code Fα,β in F :

Fα,β(Fα,β(x, y), z) = αF

(
Fα,β(x, y)

α
,
z

β

)
(by ST-meaningfulness)

= αF

(
F

(
x

α
,
y

β

)
,
z

β

)
(by ST-meaningfulness)

= αF

(
x

α
,
y

β
+
z

β

)
(by the translatability of F )

= Fα,β(x, y + z) (by ST-meaningfulness) .

So, Fα,β is translatable. By meaningfulness, we can also show that left homogeneity of
degree one propagates to all the codes in the collection F . (We omit this part of the
proof.)

Because Fα,β is translatable, Lemma 7 implies that there exists a strictly decreasing
function fα,β : R++ → R++ such that

Fα,β(ax, y) = fα,β(f−1α,β(ax) + y)

= afα,β(f−1α,β(x) + y) = aFα,β(x, y)
(

by left homogeneity
of Fα,β

)
.

Set f−1α,β(x) = w, and so fα,β(w) = x. Applying f−1α,β on both sides of the second equation
above, we get
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(f−1α,β ◦ afα,β)(w) + y = (f−1α,β ◦ afα,β)(w + y),

or with ga,α,β = (f−1α,β ◦ afα,β),

ga,α,β(w) + y = ga,α,β(w + y),

a Pexider equation in the variables w and y. So,the function ga,α,β is of the form

ga,α,β(w) = w +B(a, α, β).

for some function B(a, α, β) which must be decreasing in a. Rewriting the last equation
in terms of the function fα,β yields

(f−1α,β ◦ afα,β)(w) = w +B(a, α, β)

or equivalently, with x = fα,β(w), we get

f−1α,β(ax) = f−1α,β(x) +B(a, α, β),

another Pexider equation (c.f. Aczél, 1966, page 141) that is, an equation of the form:
h(ax) = h(x) + g(a). By functional equations arguments, the equation

f−1α,β(ax) = f−1α,β(x) +B(a, α, β),

implies for some constants k(α, β) > 0 and b(α, β),

f−1α,β(x) = −k(α, β) lnx+ b(α, β)

which gives us, with t = f−1α,β(x),

fα,β(t) = e
t−b(α,β)
−k(α,β) .

So, we get

Fα,β(x, y) = fα,β(f−1α,β(x) + y) = x e
− y
k(α,β)

after some manipulation. By the left homogeneity of Fα,β and the ST-meaningfulness of
the family F , we must have

1
αFα,β(αx, βy) = Fα,β(x, βy) = x e

− βy
k(α,β) = F (x, y).

The last equation shows that β
k(α,β) does not depend upon α or β.

Defining c = k(α,β)
β , we finally obtain

F (x, y) = x e−
y
c .

Accordingly, we obtain for any code Fµ,ν ∈ F , using left homogeneity of degree 1 in the
second equation below

Fµ,ν(x, y) = µF
(
x
µ ,

y
ν

)
= F

(
x, yν

)
= x e−

y
νc .

Various other results in the same vein are reported in Falmagne and Doble (2015a)
(see also Falmagne, 2015b).

The last two lines of the table below summarizes some of these results. The functional
equations results mentioned in the second (abstract representation) column of the table
may be found, together with a considerable list of other results and extended references,
in Janos Azcél’s classic volume (Aczél, 1966).
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Name and formula

of abstract axiom

Abstract representation:

∃ functions f , m, g, etc.

Resulting possible

scientific laws2

Associativity

F (F (x,y),z)=F (x,F (y,z))
F (x,y)=f(f−1(x)+f−1(y)) F (x,y)=(yη+xη)

1
η

Translatability

F (F (x,y),z)=F (x,y+z)
F (x,y)=f(f−1(x)+y) F (x, y) = xe−

y
c

Quasi-permutability

F (G(x,y),z)=F (G(x,z),y)
F (x,y)=m(f(x)+g(y))

F (x,y)=(xη+λyη+θ)
1
η

or F (x,y)=φxyγ

or (xη+yη)
1
η

Bisymmetry

F (F (x,y),F (z,w))=F (F (x,z),F (y,w))
F (x,y)=f((1−q)f−1(x)+qf−1(y)) F (x,y)=(1−q)xη+qyη)

1
η

or F (x,y)=x1−qyq

E. Meaningful derivation of the relativistic Doppler effect formula

A relativistic Doppler effect occurs when an observer of a source of light with wavelength
λ is in relative motion with respect to that source. Suppose that the observer and the
source are moving toward each other at the speed v. The perceived wavelength L(λ, v)
increases in λ and decreases in v, according to the special relativity formula

[DE] L(λ, v) = λ

√
c− v
c+ v

(λ ∈ R++, v ∈ [0, c[ ),

in which: c is the speed of light, λ is the wavelength of the light emitted by the source, and
L(λ, v) is the wavelength of that light measured by the observer (cf. Ellis and Williams,
1966; Feynman, Leighton, and Sands, 1963).

Our goal is this section is to derive Formula [DE] (up to its 1
2 exponent), from a

meaningfulness axiom, some background constrains, and the abstract condition

[R] L(L(λ, v), w) = L(λ, v ⊕ w).

mentioned earlier in this paper.
Some recent papers dealing with the axiomatization of special relativity concepts are

Andréka et al. (2006a,b, 2008) and Moriconi (2006). In the first three papers, the
axiomatization is based on a logical analysis, while in the last one, it is grounded in
physical principles. The motivation of the present paper is different in that meaningfulness
plays a key role. As mentioned in our introductory paragraph, our aim was to show how
the combination of a meaningfulness axiom with an abstract, possibly intuitive condition,
would result—via an abstract representation of the abstract condition—in an explicit
physical or geometric law (possibly up to real parameters).

It may not be obvious why Condition [R] is relevant to the situation inducing the
Doppler effect in the guise of Formula [DE]. However we will see in Theorem 10 that
Condition [R] is equivalent to the formula

[M] L(λ, v) ≤ L(λ′, v′) ⇐⇒ L(λ, v ⊕ w) ≤ L(λ′, v′ ⊕ w),

which may seem intuitively more consistent with that situation.

8



9 Definition. Let L : R++ × [0, c[→ R++ be a code, with c > 0 a constant standing
for the speed of light. The code L is a Doppler Function if there is a binary operator
⊕ : [0, c[×[0, c[→ [0, c[ such that the pair (L,⊕) satisfies the following five conditions:

1. The function L is strictly increasing in the first variable, strictly decreasing in the
second variable, continuous in both variables, and for all λ, λ′ ∈ R+ and v, v′ ∈ [0, c],
and for any a > 0, we have

L(λ, v) ≤ L(λ′, v′) ⇐⇒ L(aλ, v) ≤ L(aλ′, v′).

2. L(λ, 0) = λ for all λ ∈ R+.

3. limv→c L(λ, v) = 0.

4. The operation ⊕ is continuous, commutative, strictly increasing in both variables,
and has 0 as an identity element.

5. Either Axiom [R] or Axiom [M] below is satisfied for λ, λ′ > 0, and v, v′, w ∈ [0, c[:

[R] L(L(λ, v), w) = L(λ, v ⊕ w);

[M] L(λ, v) ≤ L(λ′, v′) ⇐⇒ L(λ, v ⊕ w) ≤ L(λ′, v′ ⊕ w).

When these five conditions are satisfied, the pair (L,⊕) is called an abstract Doppler-pair.

In words, Axioms [R] and [M] state the following ideas.

Axiom [R]: One iteration of the function L involving two velocities v and w has
the same effect on the perceived length as adding v and w via the operation ⊕.

Axiom [M]: Adding a velocity via the operation ⊕ preserves the order of the
function L.

10 Theorem. Suppose that (L,⊕) is an abstract Doppler-pair. Then the following
equivalences hold:

[R] ⇐⇒
(
[DE†] & [AV†]

)
⇐⇒ [M],

with for some strictly increasing and continuous function u and some positive constant ξ:

[DE†] L(λ, v) = λ
(
c−u(v)
c+u(v)

)ξ
;

[AV†] v ⊕ w = u−1
(
u(v)+u(w)

1+
u(v)u(w)

c2

)
.

(For a proof, see Falmagne and Doignon, 2010).

We now have the representation formulas for the abstract axioms [R] and [M]. The
next definition introduces the meaningful collection with initial pair (L,⊕).

11 Definition. Let L = {Lµ,ν µ, ν ∈ R++} be a ST-meaningful collection of codes,

with Lµ,ν : R++ × [0, c[
onto−→ R++ and c ∈ R++. Let O = {⊕ν ν ∈ R++} be a

( 1
2 ,

1
2 )-meaningful collection of operators, with

⊕ν : [0, c[ × [0, c[
onto−→ [0, c[ and v ⊕ν w = ν

(
v
ν ⊕

w
ν

)
(ν ∈ R++, v, w ∈ [0, c[ ) .

Suppose that each code Lµ,ν ∈ L is paired with a binary operation ⊕ν ∈ O, forming
an ordered pair (Lµ,ν ,⊕ν), with the initial ordered pair (L1,1,⊕1) = (L,⊕). Then the pair
of collections (L,O) is called a meaningful Doppler-system.

9



Note that the measurement scale of the operation ⊕ν is the same as that of the second
variable of the function Lµ,ν .

12 Remark. In the proof of the next lemma, we have as the first equation

Lα,β(λ, v) = αL

(
λ

α
,
v

β

)
(8)

which is equivalent to

Lα,β(αλ, βv) = αL(λ, v). (9)

By definition, the domain of the function L in Equation (9) is R+ × [0, c[ with v ∈ [0, c[.
But in the r.h.s. of Equation (8), we cannot have v

β ∈ [0, c[ since we have

0 ≤ v < c ⇐⇒ 0 ≤ v
β <

c
β .

(Assuming that v
β ∈ [0, c[ would lead to a contradiction.) So, the upper bound of the

second variable in L(λα ,
v
β ) is now c

β . This point is also relevant to the second equation in
Formula (12) in the proof of Theorem 14.

A similar remark applies to the two functions Lα,β in the l.h.s. of (8) and (9) .

13 Propagation lemma for abstract Doppler-pairs. Suppose that one ordered pair
(Lµ,ν ,⊕ν) from a meaningful Doppler-system (L,O) is an abstract Doppler-pair, that is,
(Lµ,ν ,⊕ν) satisfies Conditions 1-5 of the definition of an abstract Doppler-pair. Then any
ordered pair (Lα,β,⊕β), with Lα,β ∈ L and ⊕β ∈ O, is also such an abstract Doppler-pair.

So, meaningfulness enables the propagation of all five conditions to any ordered pair
(Lα,β,⊕β) in a meaningful Doppler-system (L,O).

Proof. Without loss of generality, we can assume that the ordered pair (L,⊕) of
initial code L is an abstract Doppler-pair, and so satisfies the five conditions of Defini-

tion 9. By meaningfulness, we have: Lα,β(λ, v) = αL
(
λ
α ,

v
β

)
and v⊕βw = β

(
v
β ⊕

w
β

)
.

Conditions 1 to 4 readily follow. Condition 1 holds because, successively:

Lα,β(λ) ≤ Lα,β(λ′, v′)⇐⇒ αL

(
a
λ

α
,
v

β

)
≤ αL

(
a
λ′

α
,
v′

β

)
(by ST-meaningfulness)

⇐⇒ αL

(
a
λ

α
,
v

β

)
≤ αL

(
a
λ′

α
,
v′

β

)
(by Condition 1 for (L,⊕))

⇐⇒ Lα,β(aλ, v) ≤ Lα,β(aλ′, v′) (by ST-meaningfulness).

For Condition 3, we have limv→c Lα,β(λ, v) = α lim v
β
→ c
β
L
(
λ
α ,

v
β

)
= 0 (c.f. Remark 12).

We omit the proofs of Conditions 2 and 4 which are straightforward consequences of
ST-meaningfulness.

We turn to Condition 5. Since Axioms [R] and [M] are equivalent by Theorem 10, it
suffices to prove that the ordered pair (Lα,β,⊕β) satisfies Axiom [R].

By the ST-meaningfulness of L,

Lα,β(Lα,β(λ, v), w) = αL

(
Lα,β(λ, v)

α
,
w

β

)
= αL

αL
(
λ
α ,

v
β

)
α

,
w

β

 .
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Canceling the α’s in the fraction inside the parentheses in the r.h.s. gives

Lα,β(Lα,β(λ, v), w) = αL

(
L

(
λ

α
,
v

β

)
,
w

β

)
= αL

(
λ

α
,
v

β
⊕ w

β

) (
by Axiom [R]
applied to L

)
= αL

(
λ

α
,

1

β
(v ⊕β w)

)
(by the meaningfulness of O)

= Lα,β (λ, v ⊕β w) (by the ST-meaningfulness of L).

14 Representation Theorem. Suppose that one ordered pair (Lµ,ν ,⊕ν) from a
meaningful Doppler-system (L,O) is an abstract Doppler-pair, that is, (Lµ,ν ,⊕ν)
satisfies Conditions 1-5 of Definition 9. Suppose also that Lµ,ν does not vary with ν.
Then, Axioms [DE†] and [AV†] of Theorem 10 become for the initial code L:

[DE] L(λ, v) = λ

(
c− v
c+ v

)ξ
(with λ ∈ R+, v ∈ [0, c[ and ξ ∈ R++) (10)

and for the operation ⊕:

[AV] v ⊕ w =
v + w

1 + vw
c2

(with v, w ∈ [0, c[ ). (11)

(See Remark 15 for the condition: “Lµ,ν does not vary with ν.”

Proof. Without loss of generality, we can assume that (L,⊕) is an abstract Doppler-
pair, with L the initial code of the meaningful Doppler-system (L,O); that is, (L,⊕)
satisfies the five conditions of Definition 9.

By ST-meaningulness, we have for any code Lα,β:

Lα,β(λ, v) = αL

(
λ

α
,
v

β

)
= α

(
λ

α

) c
β − u

(
v
β

)
c
β + u

(
v
β

)
ξ (

with
v

β
∈
[
0,
c

β

[)
(12)

by Theorem 10 (c.f. Remark 12 concerning 0 ≤ v
β <

c
β ). So, we have

Lα,β(λ, v) = λ

 c
β − u

(
v
β

)
c
β + u

(
v
β

)
ξ (

with
v

β
∈
[
0,
c

β

[)
. (13)

Since Lµ,ν does not vary with ν, Lα,β(λ, v) in the l.h.s. of (13) cannot depend upon β
either. As the ratio

c
β − u

(
v
β

)
c
β + u

(
v
β

)


is a function of v only,
independent of β,

we must have

 g(v) =

c
β − u

(
v
β

)
c
β + u

(
v
β

)
for some function g : [0, c[ → [0, c[. Setting 1

β = z and rearranging, we get

u(vz) = zc
(
1−g(v)
1+g(v)

)
and with h(v) = c 1−g(v)

1+g(v) , we get the Pexider equation u(vz) = zh(v), whose solution for

the strictly increasing continuous function u is : u(v) = θv for all v ∈]0, c[ with θ > 0.
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Using the representation [DE†] from Theorem 10, we get

L(λ, v) = λ
(
c−u(v)
c+u(v)

)ξ
= λ

(
c−θv
c+θv

)ξ
.

But the code L must satisfy Condition 3 of an abstract Doppler-pair (Definition 9),
which requires that limv→c L(λ, v) = 0. This implies

lim
v→c

λ

(
c− θv
c+ θv

)ξ
= λ

(
c− θc
c+ θc

)ξ
= λ

(
1− θ
1 + θ

)ξ
= 0 which holds only if θ = 1.

We conclude that the function u of Theorem 10 must be the identity function: u(v) = v.

Accordingly, the two equations [DE†] and [AV†] obtained in Theorem 10 from the
representation of abstract Doppler-pairs become

[DE] L(λ, v) = λ

(
c− v
c+ v

)ξ
[AV] v ⊕ w =

v + w

1 + vw
c2
.

15 Remark. Recall that in Equation (3)

Lα,β(`, v) = `

√
1−

(
v
βc

)2
the function Lα,β was strictly increasing in β. This suggests that if the condition
“Lµ,ν does not vary with ν” of Theorem 14 is replaced by : “Lµ,ν is strictly increas-
ing with ν”, we might be able to derive the Lorentz-FitzGerald Contraction (up to its
exponent) along lines similar to those of the above proof. In fact, if we define the function

g(v) = 2u(v)
c−u(v) , we can derive

L(λ, v) = λ
(
c−u(v)
c+u(v)

)ξ
= λ

(
1− g

(
v
c

))ξ
,

whose r.h.s. generalizes the Lorentz-FitzGerald equation. However, this result would be
combined with a different formula for the relativistic addition of velocities. Indeed, one
of the consequences of Theorem 14 is that the Lorentz-FitzGerald Contraction Equation
[LF] is inconsistent with Formula [AV]. One of the results in Falmagne and Doignon (2010,
Corollary 7) is the implication

[AV] =⇒ ([R] ⇐⇒ [DE] ⇐⇒ [M]).

Accordingly, if the standard formula [AV] for the relativistic addition of velocities is
assumed, then [LF] is also inconsistent with either of [R] or [M]. However, the Lorentz-
FitzGerald Contraction is consistent with another candidate equation for the representa-
tion of the relativistic addition of velocities, namely

[AV?] v ⊕ w = c
√(

v
c

)2
+
(
w
c

)2 − (vc )2 (wc )2.
which arises in the case of perpendicular motions (see e.g. Ungar, 1991, Eq. (8)). In fact,
Falmagne and Doignon (2010, Corollary 9) proved the implication

[LF] =⇒ ([R] ⇐⇒ [AV?] ⇐⇒ [M]).

So, [LF] is consistent with both [R] and [M] in that case. In can be shown that [AV?]
is a meaningful representation.

Note that I did obtain a representation theorem for the Lorentz-FitzGerald Equation,
which was using a different kind of meaningfulness constraints based on the concept of
meaningful transformations (see Falmagne, 2004).
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Andréka, H., Madarász, J.X. and Székeli, G. Axiomatizing relativistic dynamics without
conservation postulates. Studia Logica, 89(2):163–186, 2008.

Ellis, G.F.R. and Williams, R.M. (1988). Flat and Curved Space-Times. Clarendon Press,
Oxford.

Falmagne, J.-Cl. Meaningfulness and order invariance: two fundamental principles for
scientific laws. Foundations of Physics, 9:1341–1384, 2004.

Falmagne, J.-Cl. Deriving meaningful scientific laws from abstract, “gedanken” type,
axioms: three examples. Aequationes Mathematicae, 89: 393-435, 2015.

Falmagne, J.-Cl. and Doble, C.W. On meaningful scientific laws. Springer: Berlin, Hei-
delberg, 2015.

Falmagne, J.-Cl. and Doignon, J.-P. Axiomatic derivation of the Doppler factor and related
relativistic laws. Aequationes Mathematicae, 80 (1):85–99, 2010.

Feynman, R.P., Leighton, R.B., and Sands, M. The Feynman lectures on physics. Addison-
Weisley, Reading, Mass, 1963.

Moriconi, M. Special theory of relativity through the Doppler effect. European Journal
of Physics, 27:1409–1423, 2006.

Narens, L. A general theory of ratio scalability with remarks about the measurement-
theoretic concept of meaningfulness. Theory and Decision, 13:1–70, 1981a.

Narens, L. Meaningfulness and the Erlanger program of Felix Klein. Mathématiques
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