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Abstract. We discuss the foundations of digital physics and its implications.

The foundations of digital physics are expanded, and an analogue of the many-

worlds interpretation of quantum mechanics under the digital physics formalism is

presented, in addition to a more ”economical” multiverse theory, which takes into

account resource availability and discusses a naive account of universe likelihood.

We also address some problems in the epistemology of physics along the way, which

help to lay an epistemic groundwork and provide motivation for the feasibility of

pursuing a digital theory of physics.

1. Introduction

To put it succinctly, the many-worlds interpretation of quantum mechanics, as

proposed by Hugh Everett in his 1957 Ph.D. Thesis, denied the existence of the

wavefunction collapse postulate that was included in other quantum theories. This

led to a natural theory of infinitely-many orthogonal universes in Hilbert Space,

which constitute Max Tegmark’s Level III Multiverse [Tegmark, 2005]. This, how-

ever, works under the assumption that space is continuous over the real numbers.

If we allow space to have a discrete topology, then we can give a quasi-synthetic a
1
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priori derivation that space is nothing more than a configuration of alphabet sym-

bols of a Turing Machine, and our ”universe” is exhaustively described by a Turing

Machine (or cellular automaton, in the spirit of Stephen Wolfram [Wolfram, 2002],

but it is at least as natural to use a Turing Machine). This is known as the Zuse

Thesis [Zuse, 1967]. The derivation is intuitively depicted as follows:

Discrete Space Thesis Ñ Kreisel Thesis Ñ Church Thesis Ñ Church-Turing

Thesis Ñ Zuse Thesis.

By assuming the Discrete Space Thesis, and accepting the (mostly non-controversial)

theses of Kreisel, Church, and Church/Turing, we can derive the Zuse Thesis, which

states that the universe is a digital computer. This statement leads to two episte-

mological and ontological discussion points:

(1) We take the Discrete Space Thesis as axiomatic, by virtue of self-evidence.

The issue with this is that it may not be self-evident. There are several

worthy refutations of discrete space, such as Zeno’s Paradoxes of The Ar-

row and The Stadium, Hermann Weyl’s Tile Argument [Weyl, 1949], the

prevalence of continuous mathematical models of physics, e.g. General Rel-

ativity, and lack of empirical tools, for instance. If one can refute all known

counterarguments, under some philosophy of mathematics/physics, to dis-

crete physical space, then one could prove the validity of discrete space.

This does not mean that one has exhaustively proven the validity of dis-

crete space, as there could be other refutations out there that just haven’t

been thought of, but one could ”epistemically” prove the validity at a cer-

tain time, so to speak. To ”epistemically prove” not only the validity, but
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the absolute existence, of discrete physical space, one would have to give an

epistemic proof of the validity of discrete space and an epistemic disproof

of the validity of continuous space. To give an absolute proof of discrete

space would be to give an absolute proof of the validity of discrete space and

an absolute disproof of continuous space, each under the same philosophy

of mathematics/physics. Doing so under every philosophy of math/physics

seems to be impossible. In order to not constrain ourselves and actually

formulate a discrete (henceforth known as digital or computational, thanks

to the several theses listed above) physical theory, we assume digital phi-

losophy as our philosophy of mathematics/physics. That is, we assume a

neo-Pythagorean stance in which ”all is bits” or ”all is computer”; this is

precisely J.A. Wheeler’s ”it from bit” stance.

Indeed, these problems are more concerned with the epistemology of physics,

and may not seem so troubling. In fact, my stance is that these ”problems”

are not so problematic after all, for the same reason that an analytic philoso-

pher of mind or a proponent of computationalism in cognitive science would

tend not to bother with arguments against the possibility of artificial in-

telligence given by an existential phenomenological philosopher: their views

are inconsistent with one another, and often do not intend to address similar

problems. Additionally, there are some philosophies of mathematics/physics

that are inherently inconsistent with continuity (e.g. digital philosophy),

and there are some philosophies that are inconsistent with computational-

ism (e.g. existential Heideggerian phenomenology, though I’d hesitate to

peg this as a sufficient philosophy for that which we are discussing, since it
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has no formal foundation). So what we should take away from this is that

we should not worry so much about exhaustively proving, in the sense that

I have described above, digital physics or continuous physics or any other

philosophy of physics; rather, we should develop as many well-defined theo-

ries of physics as we see fit. The major goal of science and philosophy is to

provide interesting and reasonable ways of thinking about things, after all.

Now we can describe the second issue...

(2) What does it mean for something to be a ”universe”, exactly? What does

it mean to say that the universe is a digital computer? What is that thing

to which we are referring when we say ”the universe”? Is it our Hubble

Volume? Is it the infinite ergodic space predicted by inflationary theory?

Is it the Everettian space of orthogonal worlds? Is it something else? Does

it include the laws that come with the space, or just the space itself? Is it

isomorphic to or just ontologically a mathematical structure, or can it possi-

bly be described by a mathematical structure (the many years of success of

mathematics in physics suggests that it can be)? Obviously we need a pre-

conceived intuitive depiction of what a universe is, before we can describe

it as a digital computer, no? If by a digital computer we mean a Turing

Machine, and by ”the universe is a digital computer” we mean ”the universe

is isomorphic to a Turing Machine”, then it is natural that our usual notion

of a universe is fully characterized by some entities that are isomorphic to

each of the 5 elements contained in the 5-tuple that is the usual definition

of a Turing Machine. A main goal of ours is to figure out what these clas-

sical depictions of the universe are, and how they are isomorphic to their

computational analogues.
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2. Foundations of Digital Physics

This section is dedicated to an overview of the foundations of digital physics,

mostly given by Baravalle and Beraldo-de-Araujo [Baravalle, 2016]. In fact, the

only definitions presented that are not presented in the Baravalle paper are those

after the Zuse Thesis. Let’s list some fundamental definitions:

Definition 2.1. A mathematical structure D is discrete iff its domain contains only

isolated points.

Definition 2.2. A discrete mathematical structure D is digital iff there exists a

finite subset B of D’s domain DA such that all elements of DA are composed of a

finite concatenation of elements of B. That is, any finite mathematical structure

with a discrete topology is digital.

Definition 2.3. Digitalism is the idea that physical reality is isomorphic to a digital

mathematical structure.

Wolfram’s theory of cellular automata as physics would be an example of digitalism,

since cellular automata are digital mathematical structures. A Turing Machine

(with a finite alphabet) analogue in physics would also be an example of digitalism.

Definition 2.4. Pancomputationalism is the idea that the processes performed

by physical objects are computable, i.e. that a Turing Machine (or equivalent

computational structure) can model that physical process isomorphically.

A main cornerstone of digital physics is the idea of Pancomputationalism, since it

is the archetypal argument for the truth of the Zuse Thesis. It is also a cornerstone

of digital philosophy, as it leads to computational theories of mind, especially.
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Definition 2.5. The Zuse Thesis is the idea that physical reality is just a digital

computer.

This is the fundamental thesis of digital physics. There is ambiguity in the phrase

”is just a digital computer”: Do we mean that physical reality can be mathemati-

cally modeled (i.e. an draw an isomorphism between the world and a computer) as

a computer (i)? Do we mean that it can in principle be simulated on a computer,

given enough resources (ii)? Or do we mean that it is ontologically a simulation

carried out by some intelligent creature (iii)? To be conservative, we can say that

(i) is the case. To be philosophically interesting, we can say that (ii) or (iii) is the

case.

Baravalle’s paper was mainly concerned with providing rigorous arguments for

the Zuse Thesis and a logical foundation for the fundamental principles of digi-

tal physics, and not so concerned with coming up with any more ideas in digital

physics, outside of the logical groundwork for the field. It is here that we diverge

from their paper (all the definitions in this section so far come from their paper).

We start by defining what it means to be a universe in a Turing machine (TM)

physical reality.

Definition 2.6. A universe µ is characterized by the 4-tuple pqn, qk, f, tq, where qn

is is the n´ th state of the TM in question, qk is the n-tuple of previously observed

states of µ, f is the transition function governing the TM, and t is the linearly-

ordered time counter over the natural numbers.

We assume time is a discrete variable as well, of course. A digital universe may also

be considered to just be a finite concatenation of TM states, but our definition takes

care of the case when two universes of TM states up to a finite time are the same

but the transition functions are different. For instance, a TM printing the first 100
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natural numbers will have the same TM configuration as a TM printing the numbers

0´ 9 looped over 10 times for the first 10 time-steps, but will differ afterwards. We

wouldn’t say that the TMs are the same, because they serve different functions. For

this reason, we will give the following two definitions:

Definition 2.7. Two TMs µ1 “ pP1, Q1, R1, S1q and µ2 “ pP2, Q2, R2, S2q are said

to be teleologically equivalent iff pP,Q,R, Sq1 “ pP,Q,R, Sq2.

The ”teleological” equivalance comes from the idea the TMs with the same transi-

tion function

Definition 2.8. Two TMs µ1 “ pP1, Q1, R1, S1q and µ2 “ pP2, Q2, R2, S2q are said

to be TM-state equivalent if P1 “ P2, Q1 “ Q2, and S1 “ S2. That is, they are

TM-state equivalent if, at the same point in time, their spatial histories and current

spatial configuration are exactly the same.

We see that all teleologically equivalent TMs are also TM-state equivalent, but not

necessarily vice-versa: a counterexample is seen in the example given above, about

printing natural numbers. However, probabilistic TMs may have the same transition

function but not the same TM-state history, so they could be used to serve similar

purposes but not have the same history. We use this reason to state the following

definition:

Definition 2.9. Two TMs µ1 “ pP1, Q1, R1, S1q and µ2 “ pP2, Q2, R2, S2q are

said to be teleologically similar iff R1 “ R2, i.e. iff they have the same transition

function.

We may infer that TMs that are teleologically equivalent but not teleologically

similar must be non-deterministic, which can be given by a simple reductio-ad-

absurdum argument: if they were deterministic and they were governed by the
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same deterministic function, then they would each have one and only one history,

which would be the history generated by that function, thus they would necessarily

have the same histories (namely that history generated by the governing function).

But we assumed that the histories are not necessarily similar, thus we have arrived

at a contradiction, so each universe must be non-deterministic.

Definition 2.10. A Level III Multiverse M is a 3-tuple pµ, f, tq where µ is a set of

disjoint universes generated by the transition function f , at the time t.

Keep in mind that the universe histories may be the same, under the condition that

the state at time t is different. In fact, in the Everettian sense, there are necessarily

some universes in µ that satisfy this property, since the Everettian multiverse admits

a branching structure (See [Saunders et al, 2010]).

Definition 2.11. A Level IV Multiverse M is a 2-tuple pµ, tq, where µ is, again, a

set of universes, and t is some finite point in time (over N).

This, as well as def. 2.10, is inspired by Max Tegmark’s multiverse hierarchy

[Tegmark, 2005]. The difference is that all the universes in the Level III Multi-

verse are generated by the same governing laws, whereas the universes in the Level

IV Multiverse may be generated by different governing laws.

Definition 2.12. A simulated universe S is a 2-tuple pµ,w1q where µ is a universe,

and w1 is a universe in which S is computed physically. We may then colloquially

think of an observer in S as being in ”w0”.

This is perhaps the least mathematically precise, but so far the most philosophically

interesting. What is more interesting is a simulated universe with an intelligent

”simulation creator”, whatever that may mean.



TOWARDS A FORMAL THEORY OF DIGITAL PHYSICS: DIGITAL MULTIVERSES 9

Definition 2.13. An intelligently simulated universe Si is a 2-tuple pS,Cq, where

S is a canonical simulated universe, and C P w1 Ă S is a ”simulation creator” that

lives in w1 who ”created the simulation”, however vague that may be.

Of course, this is more philosophically interesting, as we now cross into something

of a theological area. We can push further into a theologico-teleological (and of

course an even murkier area) with the following definition:

Definition 2.14. A teleologically simulated universe P is a 2-tuple pSi, rq where

Si is an intelligently simulated universe and r is a ”reason” that C Ă Si had for

creating the simulation.

These past three definitions are a formalism for the concept of a simulated universe,

and may have applications in the philosophy of religion in particular.

Remark 2.15. We should suggest that each universe comes with an implicit finite

alphabet of symbols, s, which are the analogues of elementary particles in the stan-

dard model of particle physics.

Now that we have covered the requisite definitions for a (lite) computational under-

standing of our cosmos, we can start talking about how to interpret modern physical

theories in the language of digital physics.

3. The Finite Many-Worlds Thesis

The main philosophical consequence of the many-worlds interpretation of quan-

tum mechanics is easily stated colloquially: ”if some universe is possible according

to the wavefunction, then it necessarily exists” (in a sense that is just as real as the

”observed” universe relative to some observer). A computational analogue of this
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can be stated in the language of modal logic:

♦Dµnrµn “ pqn, qk, f, tnqs Ñ lDµ♦„nrµ♦„n “ pqn, q♦„k, f, tnqs

This can be read as ”if it’s possible that we can compute some particular state

of our observed universe at time t, then it’s necessary that we can compute that

particular state in some teleologically similar universe, which may or may not be a

universe that is TM-state equivalent to our observed universe”.

Theorem 3.1. The finite many-worlds thesis admits finitely-many universes at any

point in time.

Proof. A universe at time t “ n may be seen as an pn`2q-tuple pq0, ¨ ¨ ¨ , qn, nq, where

each qj is a k-tuple ps0, ¨ ¨ ¨ , sk´1q, where each sj is an alphabet symbol. Then the

upper bound on number of possible universes is expressed by #sn`1, where #s is

the cardinality of the set of alphabet symbols and n P N is the time-step. Since s is

a finite set and n is finite, #sn`1 will always be finite. QED.

However unnatural the many-worlds interpretation of QM seems, this may seem

even less natural, especially when we let the universe be a simulated universe. With

the idea of a simulation comes an natural notion of economics, i.e. we don’t neces-

sarily want to simulate every possible universe in a Level III or Level IV multiverse;

we may rather be concerned with simulating a certain class of universes, with par-

ticular initial conditions, governing laws, certain sets of alphabet symbols, etc. We

may use the example of a game of chess to elucidate this:

Example 3.2. We may think of a chess match as a type of intelligently designed

simulation, perhaps with a vacuous teleological reason (vacuous because we probably



TOWARDS A FORMAL THEORY OF DIGITAL PHYSICS: DIGITAL MULTIVERSES 11

aren’t very interested in why two people are playing chess, and thus it is philosoph-

ically vacuous, it doesn’t lead to anything noteworthy). Given the heuristic that

control of the center in the opening is important, we will see that the move 1. h3

is of very low frequency. Given the heuristic to avoid trades that put you down a

minor piece, we will see very few universes in which this happens. Same with queen

sacrifices, etc. Chess games in which many of these heuristics are violated are few

and far between, if in existence in any chess database at all. The reasons for the

unfeasibility of every possible simulation coming into existence are similar to this

analogy.

It is of interest of us to formalize such an idea, but that will not be examined here.

4. Summary and Further Investigations

We’ve seen that it’s possible to formalize several ideas of modern physics in the

language of theoretical computer science. This leads us to some rather interesting

thoughts in the philosophy of religion and metaphysics; specifically, it allows us to

reasonably talk about the ontological nature of spacetime, and even topics as am-

bitious as theological teleology, from the well-understood perspective of computer

science. In the future, we hope to investigate a digital theory of quantum mechanics

and other specific theories of modern physics; another major aspect of future discus-

sion should be on the philosophy associated with the theory of simulated universes.

Even more ambitiously, it may be interesting to look at transfinite computation and

its applications to physics, as done by people such as Hogarth et al.
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