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Abstract . Fix 2 < n < ω. Ln denotes first order logic restricted to the first n variables and
for any ordinals α < β, (R)CAα denotes the class of (representable) cylindric algebras of dimension
α, and NrαCAβ denotes the class of α-neat reducts of CAβ . Certain CAns constructed from relation
algebras having an n–dimensional cylindric basis are used to show that Vaught’s Theorem (VT)
looked upon as a special case of the omitting types theorem (OTT) fails in the m-clique guarded
fragment (CGFm) of Ln, when m ≥ n + 3. For infinitely many values of n ≤ l < m ≤ ω,
there is an atomic, countable and complete Ln theory T such that the type of co-atoms (of the
formula algebra FmT ) is realizable in every m-square model of T but cannot be isolated using l
variables. Here ‘m-squareness’ is the locally well behaved clique-guarded semantics of CGFm; an
m-square model is l-square, but the converse may be false. The limiting case, an ω-square model,
is an ordinary model. This is proved algebraically by constructing a countable, atomic and simple
algebra A ∈ RCAn ∩ NrnCAl whose Dedekind-MacNeille completion (CmAtA) does not have an
m-square representation, a fortiorti CmAtA /∈ SNrnCAm(⊇ RCAn). OTTs are proved with respect
to standard semantics for Ln countable theories that have quantifier elimination; it is shown that
< 2ω many non-principal types can be omitted in case they are maximal. Our purpose throughout
the paper is twofold. Apart from presenting novel ideas of applying algebra to logic, we present
our new results in both algebraic and modal logic in an integrated format.1

Fix 2 < n < ω. We use blow up and blur constructions to proving non-atom canonicity
of several varities of relation and cylindric algebras. We recall that a class K of Boolean
algebras with operators (BAOs) is atom–canonical if whenever A ∈ K with atom structure
AtA is completey additive, then its Dedekind-MacNeille completion, namely, the complex
algebra of its atom structure CmAtA is also in K. This subtle construction may be applied
to any two classes L ⊆ K of completely additive BAOs. One takes an atomic A /∈ K
(usually but not always finite), blows it up, by splitting one or more of its atoms each to
infinitely many subatoms, obtaining an (infinite) countable atomic Bb(A) ∈ L, such that
A is blurred in Bb(A) meaning that A does not embed in Bb(A), but A embeds in the
Dedekind-MacNeille completion of Bb(A), namely, CmAtBb(A).

Then any class M say, between L and K that is closed under forming subalgebras
will not be atom–canonical, for Bb(A) ∈ L(⊆ M), but CmAtBb(A) /∈ K(⊇ M) because
A /∈M and SM = M. We say, in this case, that L is not atom–canonical with respect to

1Keywords: Omitting types, multi-modal logic, clique guarded fragments, cylindric algebras, Mathe-
matics subject classification: 03B45, 03G15.
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K. This method is applied to K = SRaCAl, l ≥ 5 and L = RRA in [7] and to K = RRA
and L = RRA ∩ RaCAk for all k ≥ 3 in [3], and will applied below to K = SNrnCAn+k,
k ≥ 3 and L = RCAn, where Nrn and Ra denote the operator of forming n–neat reducts
and relation algebra reducts, respectively, [4, Definition 2.6.28, Definition 5.2.7].

Using variations on several blow up and blur constructions, we obtain negative results
of the form (described in the abstract): There exists a countable, complete and atomic Ln

theory T such that the type Γ consisting of co–atoms is realizable in every m–square model,
but Γ cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω. Call it Ψ(l,m), short
for Vaught’s Theorem (VT) fails at (the parameters) l and m. Let VT(l,m) stand for VT
holds at l and m, so that by definition Ψ(l,m) ⇐⇒ ¬VT(l,m). We also include l = ω
in the equation by defining VT(ω, ω) as VT holds for Lω,ω: Atomic countable first order
theories have atomic countable models. In this paper, we provide strong evidence that
VT fails everywhere in the sense that for the permitted values n ≤ l,m ≤ ω, namely, for
n ≤ l < m ≤ ω and l = m = ω, VT(l,m) ⇐⇒ l = m = ω. From known algebraic results
such as non-atom–canonicity of RCAn [9] and non-first order definability of the class of
completely representable CAns [6], it can be easily inferred that VT(n, ω) is false, that
is to say, VT fails for Ln with respect to (usual) Tarskian semantics [13]. From sharper
algebraic results, we prove many other special cases for specific values of l and m, with
l < m, that support the last equivalence.

For example from the non–atom canonicity of RCAn with respect to the variety of
CAns having n+3–square representations (⊇ SNrnCAn+3), we prove Ψ(n, n+k) for k ≥ 3
and from the non–atom canonicity of NrnCAn+k ∩ RCAn with respect to RCAn for all
k ∈ ω, we prove Ψ(l, ω) for all finite l ≥ n. Both results are obtained by blowing up and
blurring finite algebras; a rainbow CAn in the former case, and a finite RA (whose number
of atoms depend on k) in the second case. In this case, we say (and prove) that VT fails
almost everywhere. The non atom–canonicity of NrnCAm−1 ∩ RCAn with respect to the
variety of CAns having m–square representations (⊇ SNrnCAm) for all 2 < n < m < ω,
implies that Ψ(l,m) holds for all 2 < n ≤ l < m ≤ ω, in which case VT fails everywhere.
This is reduced to (finding then) blowing up and blurring a finite relation algebra having a
so-called strong m−1 blur and no m-dimensional relational basis for each 2 < n < m < ω.

Figuratively speaking, VT holds only at the limit when l → ∞ and m → ∞. So
we can express the situation (using elementary Calculas terminology) as follows: For
2 < n ≤ l < m < ω, VT(l,m) is false, but as l and m gets larger, VT(l,m) gets closer to
VT, in symbols, liml,m→∞VT(l,m) = VT(liml→∞l, limm→∞m) = VT(ω, ω).

Throughout the paper we use the notation of [2].
Layout: In §1 a blow up and blur construction is presented showing that RCAn is not
atom-canonical with respect to SNrnCAn+3, cf. Thm 1.3. For n ≤ l < m ≤ ω, a chain
of implications starting from the existence of finite RAs with strong l-bur and no m-
dimensional relational basis leading up to Ψ(l,m) is given, cf. Thm 1.7, ultimately showing
that VT fails almost everywhere. VT is shown to fail for any finite first order definable
expansion of Ln, cf. Thm 1.12. Classical results of Biro, Maddux and Monk on non-finite
axiomatizability of RRA and RCAn are reproved, cf. Cor. 1.13. In §2 positive results on
OTT for Ln are proved, cf. Thm 2.2 and Cor. 2.3. The non-first order definability of the
classes of completely representable CAns and RAs is reproved differently in Cor. 2.5. In
§3 complete representations are studied in connection to neat embeddings cf. Thm 3.1.
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1 Non-atom canonicity and applications in the clique–guarded
fragments

1.1 Non atom-canonicity of SNrnCAn+3

We encounter our first instance of a blow up and blur construction. From now on, unless
otherwise indicated, n is fixed to be a finite ordinal > 2.

Definition 1.1. Let A ∈ CAn be atomic. Assume that m, k ≤ ω. The atomic game
Gm

k (AtA), or simply Gm
k , is the game played on atomic networks of A using m nodes and

having k rounds [8, Definition 3.3.2]. The ω–rounded game Gm(AtA) or simply Gm is like
the game Gm

ω (AtA) except that ∀ has the advantage to reuse the m nodes in play.

In the following lemma and elsewhere throughout the paper Sc denotes the operation
of forming complete subalgebras.

Lemma 1.2. [14] If A ∈ ScNrnCAm is atomic, then ∃ has a winning strategy in Gm(AtA).

For rainbow constructions for CAs, we follow [6, 8]. We use the graph version of the
games Gm

ω (β) and Gm(β) where β is a CAn rainbow atom structure, cf. [6, 4.3.3]; the
board of this game consists of coloured graphs. The (complex) rainbow CAn based on G
and R is denoted by AG,R.

Theorem 1.3. 1. The variety RRA is not atom-canonical with respect to SRaCAk, for
any k ≥ 6,

2. Let m ≥ n+ 3. Then RCAn is not-atom canonical with respect to SNrnCAm.

Proof. For the first item concerning RAs, cf.[8, Lemmata 17.32, 17.34, 17.35, 17.36].
For item (2): The idea for CAs is like that for RAs by blowing up and blurring the

rainbow algebra An+1,n in place of the rainbow relation algebra R4,3 blown up and blurred
in the RA case. We work with m = n+3. This gives the result for any larger m. We give
a fairly complete sketch of the proof detailed in [14, Theorem 5.9].
Blowing up and blurring An+1,n forming a weakly representable atom structure
At: Take the finite rainbow CAn, An+1,n where the reds R is the complete irreflexive graph
n, and the greens are {gi : 1 ≤ i < n − 1} ∪ {gi0 : 1 ≤ i ≤ n + 1}, so that G = n + 1.
Denote the finite atom structure of An+1,n by Atf . One then replaces the red colours of
the finite rainbow algebra of An+1,n each by infinitely many countable reds (getting their
superscripts from ω), obtaining this way a weakly representable atom structure At. The
atom structure At is like the weakly (but not strongly) representable atom structure of
the atomic and countable and simple A ∈ Csn as defined in [9, Definition 4.1]; the sole
difference is that we have n + 1 greens and not ω–many as is the case in [9]. We denote
the resulting term CAn, TmAt by Bb(An+1,n, r, ω) short hand for blowing up An+1,n by
splitting each red graph (atom) into ω many. By a red graph is meant (an equivalence
class of) a surjection a : n → ∆, where ∆ is a coloured graph in the rainbow signature
of An+1,n with at least one edge labelled by a red label (some rij , i < j < n). It can
be shown exactly like in [9] that ∃ can win the rainbow ω–rounded game and build an
n–homogeneous model M by using a shade of red ρ outside the rainbow signature, when
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she is forced a red; [9, Proposition 2.6, Lemma 2.7]. Using this, one proves like in op.cit
that Bb(An+1,n, r, ω) is representable as a set algebra having top element nM.

Embedding An+1,n into Cm(At(Bb(An+1,n, r, ω))): Let CRGf be the class of coloured
graphs onAtf and CRG be the class of coloured graph onAt. WriteMa for the atom that is
the (equivalence class of the) surjection a : n→M ,M ∈ CGR. We define the (equivalence)
relation ∼ on At by Ma ∼ Nb, (M,N ∈ CGR) ⇐⇒ they are identical everywhere except
at possibly at red edges: Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω.
We say that Ma is a copy of Nb if Ma ∼ Nb. Define the map Θ from An+1,n = CmAtf to

CmAt, by specifing first its values on Atf , viaMa 7→
∨

j M
(j)
a whereM

(j)
a is a copy ofMa.

So each atom maps to the suprema of its copies. This map is well-defined because CmAt
is complete. Furthermore, it can be checked that Θ is an injective a homomorphism.
∀ has a winning strategy in Gn+3At(An+1,n): For him to win, ∀ lifts his win-

ning strategy from the private Ehrenfeucht–Fräıssé forth game EFn+1
n+1(n + 1, n) (in n + 1

rounds), to the graph game on Atf = At(An+1,n) [6, p. 841] forcing a win using n + 3
nodes. He bombards ∃ with cones having common base and distinct green tints until ∃
is forced to play an inconsistent red triangle (where indicies of reds do not match). By
Lemma 1.2, An+1,n /∈ ScNrnCAn+3. Since An+1,n is finite, then An+1,n /∈ SNrnCAn+3, for
else A+

n+1,n = An+1,n ∈ ScNrnCAn+3. But An+1,n embeds into CmAtA, hence CmAt =
Cm(AtBb(An+1,n, r, ω)) is outside the variety SNrnCAn+3, as well.

1.2 Clique-guarded semantics

Fix 2 < n < ω. The reader is referred to [7, Definitions 13.4, 13.6] for the notions of
m–flat and m–square representations for relation algebras (m > 2) to be generalized next
to CAns.

Definition 1.4. [14, §5, p.14] Assume that 2 < n < m < ω. Let M be the base of a
relativized representation of A ∈ CAn witnessed by an injective homomorphism f : A →
℘(V ), where V ⊆ nM and

∪
s∈V rng(s) = M. We write M |= a(s) for s ∈ f(a). Let

L(A)m be the first order signature using m variables and one n-ary relation symbol for
each element in A. Let L(A)m∞,ω be the infinitary extension of L(A)m allowing infinite

conjunctions. Then an n-clique is a set C ⊆ M such that (a1, . . . , an−1) ∈ V = 1M for
distinct a1, . . . , an ∈ C. Let Cm(M) = {s ∈ mM : rng(s) is an n-clique}. Cm(M) is called
the n-Gaifman hypergraph of M, with the n–hyperedge relation 1M.

The clique guarded semantics |=c are defined inductively. We give only existential
quantifiers (cylindrifiers): for s̄ ∈ mM, i < m, M, s̄ |=c ∃xiϕ ⇐⇒ there is a t̄ ∈ Cm(M),
t̄ ≡i s̄ such that M, t̄ |= ϕ.

We say that M is an m–square representation of A, if for all s̄ ∈ Cm(M), a ∈ A,
i < n, and injective map l : n → m, whenever M |= cia(sl(0), . . . , sl(n−1)), then there
is a t̄ ∈ Cm(M) with t̄ ≡i s̄, and M |= a(tl(0), . . . , tl(n−1)); M is an (infinitary) m–flat
representation if it is m–square and for all s̄ ∈ Cm(M), for all distinct i, j < m, M |=c

[∃xi∃xjϕ ←→ ∃xj∃xiϕ](s̄), where ϕ ∈ (L(A)m∞,ω)L(A)
m. Complete representability for

m-squareness and m-flatness is defined like the classical case.

The main ideas used in the next Theorem can be found in [7, Definitions 12.1, 12.9,
12.10, 12.25, Propositions 12.25, 12.27] adapted to the CA case. In all cases, the m–
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dimensional dilation stipulated in the statement of the Theorem, will have top element
Cm(M), where M is the m–relativized representation of the given algebra, and the opera-
tions of the dilation are induced by the n-clique–guarded semantics.

Proposition 1.5. [7, Theorems 13.45, 13.36]. Assume that 2 < n < m < ω and let
A ∈ CAn. Then A ∈ SNrnCAm ⇐⇒ A has an infinitary m–flat representation ⇐⇒ A
has anm–flat representation. Furthermore, if A is atomic, then A has a complete infinitary
m–flat representation ⇐⇒ A ∈ ScNrn(CAm ∩At).

1.3 VT for the clique guarded fragments

Fix 2 < n ≤ l < m ≤ ω. We turn to the statement Ψ(l,m) as defined in the introduction.
By an m–square model M of a theory T we understand an m–square representation of the
algebra FmT with base M.

Let VT(l,m) = ¬Ψ(l,m), short for VT holds ‘at the parameters l and m’ where by
definition, we stipulate that VT(ω, ω) is just VT for Lω,ω. For 2 < n ≤ l < m ≤ ω and
l = m = ω, we investigate the plausability of the following statement which we abbreviate
by (**): VT(l,m) ⇐⇒ l = m = ω.

In the next Theorem several conditions are given implying Ψ(l,m)f for various values
of the parameters l and m where Ψ(l,m)f is the formula obtained from Ψ(l,m) replacing
square by flat. For an atomic relation algebra R and n > 3, Matn(AtR) denotes the set
of all n–dimensional basic matrices on R [7, Definition 12.35]. The following definition to
be used in the sequel is taken from [3]:

Definition 1.6. Let R be a relation algebra, with non–identity atoms I and 2 < n < ω.
Assume that J ⊆ ℘(I) and E ⊆ 3ω. We say that (J,E) is a strong n–blur for R, if J is a
complex n–blur as defined in [3, Definition 3.1] and the tenary relation E is an index blur
defined as in item (ii) of [3, Definition 3.1], and satisfying condition (J5)n formulated on
[3, p.79], namely, (∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

Theorem 1.7. Let 2 < n ≤ l < m ≤ ω. Then every item implies the immediately
following one.

1. There exists a finite relation algebra R with a strong l–blur and no infinite m–
dimensional hyperbasis,

2. There is a countable atomic A ∈ NrnCAl ∩RCAn such that CmAtA does not have an
m–flat representation,

3. There is a countable atomic A ∈ NrnCAl ∩RCAn such that A has no complete infini-
tary m–flat representation,

4. Ψ(l′,m′)f is true for any l′ ≤ l and m′ ≥ m.

The same implications hold upon replacing infinitem–dimensional hyperbasis bym–dimensional
relational basis (not necessarily infinite), m–flat by m–square and SNrnCAm by SNrnDm.
Furthermore, in the new chain of implications every item implies the corresponding item
in Theorem 1.7. In particular, Ψ(l,m) =⇒ Ψ(l,m)f .
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Proof. (1) =⇒ (2): Let R be as in the hypothesis with strong l–blur (J,E). The idea is to
‘blow up and blur’ R in place of the Maddux algebra Ek(2, 3) blown up and blurred in [3,
Lemma 5.1], where k < ω is the number of non–identity atoms and k depends recursively
on l, giving the desired strong l–blurness, cf. [3, Lemmata 4.2, 4.3]. Let 2 < n ≤ l < ω.
The relation algebra R is blown up by splitting all of the atoms each to infinitely many
giving a new infinite atom structure At denoted in [3, p.73] by At. One proves that
the blown up and blurred atomic relation algebra Bb(R, J, E) (as defined in [3]) with
atom structure At is representable; in fact this representation is induced by a complete
representation of its canonical extension, cf. [3, Item (1) of Theorem 3.2].

Because (J,E) is a strong l–blur, then, by its definition, it is a strong j–blur for all
n ≤ j ≤ l, so the atom structure At has a j–dimensional cylindric basis for all n ≤ j ≤ l,
namely, Matj(At). For all such j, there is an RCAj denoted on [3, Top of p. 9] by
Bbj(R, J, E) such that TmMatj(At) ⊆ Bbj(R, J, E) ⊆ CmMatj(At) and AtBbj(R, J, E)
is a weakly representable atom structure of dimension j, cf. [3, Lemma 4.3].

Now take A = Bbn(R, J, E). We claim that A is as required. Since R has a strong
j–blur (J,E) for all n ≤ j ≤ l, then A ∼= NrnBbj(R, J, E) for all n ≤ j ≤ l as proved in [3,
item (3) p.80]. In particular, taking j = l, A ∈ RCAn∩NrnCAl. We show that CmAtA does
not have an m–flat representation. Assume for contradicton that CmAtA does have an m–
flat representationM. ThenM is infinite of course. SinceR embeds intoBb(R, J, E) which
in turn embeds into RaCmAtA, then R has an m–flat representation with base M. But
since R is finite, R = R+, so R has an infinite m–dimensional hyperbasis, contradiction.

(2) =⇒ (3): A complete m–flat representation of (any) B ∈ CAn induces an m–flat
representation of CmAtB which implies by Theorem 1.5 that CmAtB ∈ SNrnCAm.

(3) =⇒ (4): By [4, §4.3], we can (and will) assume that A = FmT for a countable,
simple and atomic theory Ln theory T . Let Γ be the n–type consisting of co–atoms of
T . Then Γ is realizable in every m–flat model, for if M is an m–flat model omitting
Γ, then M would be the base of a complete infinitary m–flat representation of A, and
so A ∈ ScNrnCAm which is impossible. But A ∈ NrnCAl, so using exactly the same
(terminology and) argument in [3, Theorem 3.1] we get that any witness isolating Γ needs
more than l–variables. We have proved Ψ(l,m). The rest follows from the definitions.

For squareness the proofs are essentially the same undergoing the obvious modifica-
tions. In the first implication ‘infinite’ in the hypothesis is not needed because any finite
relation algebra having an infinite m–dimensional relational basis has a finite one, cf. [7,
Theorem 19.18] which is not the case with hyperbasis, cf. [7, Prop. 19.19].

Corollary 1.8. For 2 < n < ω and n ≤ l < ω, Ψ(n, n+ 3) and Ψ(l, ω) hold.

Proof. From Theorem 1.3, 1.7 and [3].

It is timely that we tie a few threads together.

Definition 1.9. Let 2 < n < ω. We say that VT fails for Ln almost everywhere if there
exist positive l,m ≥ n such that V(k, ω) and V(n, t) are false for all finite k ≥ l and all
t ≥ m. We say that VT fails for Ln everywhere if for 3 ≤ l < m ≤ ω and l = m = ω,
V(l,m) holds ⇐⇒ l = m = ω, that is to say (∗∗) above holds.
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From Corollary 1.8 and the implication (1) =⇒ (6) in Theorem 1.7 (by taking
l = m− 1), we get:

Theorem 1.10. Let 2 < n < ω. Then VT fails for Ln almost everywhere. Furthermore,
if for each n < m < ω, there exists a finite relation algebra Rm having m− 1 strong blur
and no m-dimensional relational basis, then VT fails for Ln everywhere.

Theorem 1.3 says that VT fails for the packed fragment of Ln [7, §19.2.3]. For a class
K of BAOs, let K∩Count denote the class of atomic algebras in K having countably many
atoms.

Proposition 1.11. Let 2 < n < ω.

1. The variety SNrnCAn+1 is atom-canonical. For n < m < ω if there exists a finite
RA with an n-blur (not necessarily strong) and no infinite m-dimensional hyperbasis,
then RCAn is not atom-canonical with respect to SNrnCAm,

2. For any ordinal 0 ≤ j, RCAn∩NrnCAn+j ∩Count is not atom–canonical with respect
to RCAn ⇐⇒ j < ω,

3. There exists an atomic RCAn such that its Dedekind-MacNeille (minimal) completion
does not embed into its canonical extension.

Proof. (1): Let R be as described; denote its an n-blur by (J,E). Let B = Bbn(R, J, E).
Then, since (J,E) is an n blur, B ∈ RCAn. But CmAtB /∈ SNrnCAm, for otherwise, R
will have an infinite m–dimensional basis.

(2): Follows from the first item of Theorem 1.7 by taking R = Ek(2, 3); the finite
Maddux algebra with k generators used in [3, Lemma 5.1], where k is finite tuned to give
that R has an n+j strong blur (J,E). In this case A = Bbn(R, J, E) ∈ NrnCAn+j ∩RCAn

and CmAtA /∈ RCAn. Conversely, for any infinite ordinal j, NrnCAn+j = NrnCAω and if
A ∈ NrnCAω ∩ Count, then TmAtA is countable, atomic, and TmAtA ⊆c A ∈ ScNrnCAω,
so by [13, Theorem 5.3.6], TmAtA ∈ CRCAn, so A ∈ CRCAn, thus CmAtA ∈ RCAn.

(4): Let A = TmAt be as defined in the proof of Theorem 1.3. Since CmAtA /∈ RCAn,
it does not embed into A+.

Summary of results on VT: In the coming table 2 < n < ω. For any finite j,
‘j-hyp’ is short hand for infinite j–dimensional hyperbasis, and j–basis is short hand for
j–dimensional relational basis. VT(l,m) for n ≤ l < m ≤ ω and VT(ω, ω) are defined as
before. All conditional statements can be recovered from the proof of Theorem 1.7 and
item (1) of Proposition 1.11.

VT(n, ω) no, [3] and Theorem 1.3

VT(n, n+ 3) no, Theorem 1.3

VT(n, n+ 2)f no, if ∃ R with n–blur and no n+ 2-hyp

VT(l, ω) no, Ek(2, 3) has strong l-blur, and no ω-hyp

VT(l,m)f , l ≤ m− 1 no, if ∃ R with strong l-blur, and no m-hyp

VT(l,m), l ≤ m− 1 no, if ∃ R with strong l-blur, and no m-bases

VT(ω, ω) yes, VT for Lω,ω.
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Now we formulate an algebraic result implying that VT fails for any finite first order
definable expansion of Ln as defined in [10]. We deviate from the notation in [10] by
writing RCA+

n for a first order definable expansion of RCAn.

Proposition 1.12. Let 2 < n < ω. Let RCA+
n be a first order definable expansion of

RCAn such that the non–cylindric operations are first order definable by formulas using
only finitely many variables l > n. If RCA+

n is completely additive, then it is not atom–
canonical.

Proof. Let n be the finite number of variables occuring in the first order formulas defining
the new connectives and let l = n + 1. Let A be countable and atomic such that A ∈
RCAn ∩ NrnCAl and A has no complete representation; such an A exists, cf. Corollary
1.11. Without loss, we can assume that we have only one extra operation f definable by
a first order formula ϕ, say, using n < k < ω variables with at most n free variables. Now
ϕ defines a CAk term τ(ϕ) which, in turn, defines the unary operation f on A, via f(a) =
τ(ϕ)B(a). Call the expanded structure A∗(∈ RCA+

n ). By complete additivity, CmAtA∗

is the Dedekind-MacNeille completion of A∗. But RdcaCmAtA∗ = CmAtA /∈ RCAn, a
fortiori, Cm(AtA∗) /∈ RCA+

n , and we are done.

Let 2 < n ≤ l < m ≤ ω. In VT(l,m), while the parameter l measures how close we
are to Lω,ω, m measures the ‘degree’ of squareness of permitted models. One can view
liml→∞VT(l, ω) = VT(ω, ω) algebraically using ultraproducts as follows. Fix 2 < n < ω.
For each 2 < n ≤ l < ω, let Rl be the finite Maddux algebra Ef(l)(2, 3) with strong l–blur
(Jl, El) and f(l) ≥ l as specified in [3, Lemma 5.1] (denoted by k therein). Let Rl =
Bb(Rl, Jl, El) ∈ RRA and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn. Then (AtRl : l ∈ ω ∼ n),
and (AtAl : l ∈ ω ∼ n) are sequences of weakly representable atom structures that are
not strongly representable with a completely representable ultraproduct. We immediately
get:

Corollary 1.13. Assume that 2 < n < ω. Then the following hold:

1. The (elementary) class LCAn of algebras satisfying the Lyndon conditions (which is
ElCRCAn) is not finitely axiomatizable,

2. (Biro, Maddux)The set of equations using only one variable that holds in each of the
varieties RCAn and RRA, together with any finite first order definable expansion of
each, cannot be derived from any finite set of equations valid in the variety.

2 Positive OTTs for Ln with standard ‘unguarded’ semantics

Unless otherwise explicitly indicated, n is finite and > 2.

Definition 2.1. Let λ be a cardinal. If A ∈ RCAn and X = (Xi : i < λ) is a family
of subsets of A, we say that X is omitted in C ∈ Gsn, if there exists an isomorphism
f : A → C such that

∩
f(Xi) = ∅ for all i < λ. If X ⊆ A and

∏
X = 0, then we refer to

X as a non-principal type of A.
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Observe that A ∈ RCAn is completely representable ⇐⇒ A is atomic, and the single
non-principal type of co-atoms can be omitted in a Gsn. Let covK be the cardinal used in
[13, Theorem 3.3.4]. We deal also with the cardinal p satisfying ω < p ≤ 2ω and has the
following property: If λ < p, and (Ai : i < λ) is a family of meager subsets of a Polish
space X (of which Stone spaces of countable Boolean algebras are examples) then

∪
i∈λAi

is meager. It is consistent that ω < p < covK ≤ 2ω.

Theorem 2.2. Let A ∈ ScNrnCAω be countable. Let λ < 2ω and let X = (Xi : i < λ) be
a family of non-principal types of A. Then the following hold:

1. If A ∈ NrnCAω and the Xis are non–principal ultrafilters, then X can be omitted in
a Gsn,

2. Every subfamily of X of cardinality < p can be omitted in a Gsn. Furthermore, if A
is simple, then every subfamily of X of cardinality < covK can be omitted in a Csn.

Proof. For the first item we assume that A is simple (a condition that can be easily
removed). We have

∧BXi = 0 for all i < κ because, A is a complete subalgebra of B, cf.
[14, First part of Theorem 2.2]. Since B is a locally finite, we can assume that B = FmT

for some countable consistent theory T . For each i < κ, let Γi = {ϕ : ϕ/T ∈ Xi}. Let
F = (Γj : j < κ) be the corresponding set of types in T . Then each Γj (j < κ) is a
non-principal and complete n-type in T , because each Xj is a maximal filter in A = NrnB.

Let (Mi : i < 2ω) be a set of countable models for T that overlap only on principal
maximal types which exist by [16, Theorem 5.16, Chapter IV]: Assume for contradiction
that for all i < 2ω, there exists Γ ∈ F, such that Γ is realized in Mi. Let ψ : 2ω → ℘(F),
be defined by ψ(i) = {F ∈ F : F is realized in Mi}. Then for all i < 2ω, ψ(i) ̸= ∅.
Furthermore, for i ̸= j, ψ(i) ∩ ψ(j) = ∅, for if F ∈ ψ(i) ∩ ψ(j), then it will be realized in
Mi and Mj , and so it will be principal. This implies that |F| = 2ω which is impossible.
Hence we obtain a model M |= T omitting X in which ϕ is satisfiable. The map f defined
from A = FmT to CsMn (the set algebra based on M [4, 4.3.4]) via ϕT 7→ ϕM, where the
latter is the set of n–ary assignments in M satisfying ϕ, omits X. Injectivity follows from
the facts that f is non–zero and A is simple.

For (2), we can assume that A ⊆c NrnB, B ∈ Lfω and proceed like [13, p. 216 of
proof of Theorem 3.2.4] replacing the formula algebra FmT by B.

By observing that if T is an Ln theory that admits elimination of quantifiers (n < ω),
then FmT ∈ NrnCAω, we get using Theorem 2.2 the following corollary:

Corollary 2.3. Let n be any finite ordinal. Let T be a countable and consistent Ln theory
and λ be a cardinal < p. Let F = (Γi : i < λ) be a family of non-principal types of T .
Suppose that T admits elimination of quantifiers. Then the following hold:

1. If ϕ is a formula consistent with T , then there is a model M of T that omits F, and
ϕ is satisfiable in M. If T is complete, then we can replace p by covK,

2. If the non-principal types constituting F are maximal, then we can replace p by 2ω.

9



Using the full power of (+) together with the argument in item (1) of Theorem 2.2,
one can replace in the last item of the last corollary ω by any regular uncountable cardinal
µ. We show (algebraically) that the maximality condition cannot be removed when we
consider uncountable theories.

Proposition 2.4. Let κ be an infinite cardinal. Then there exists a C ∈ CAω such that
for all 2 < n < ω, |NrnC| = 2κ, NrnC ∈ LCAn, but NrnC is not completely representable.
Thus the non–principal type of co–atoms of NrnC cannot be omitted.

Proof. One uses the ideas in [1] replacing ω and ω1 by κ and 2κ, respectively, constructing
C from a relation algebra. The resulting (new) relation algebra R has an ω dimensional
amalgamation class S, cf. [1, Lemma 3]. Using the notation in [1, Lemma 6], let C be the
subalgebra of Ca(S) generated by X ′; the latter is defined just before the lemma. Then
R = Ra(C), cf. [1, Lemmata 6, 7], but R has no complete representation [1, Lemma
2]. Then NrnC (2 < n < ω) is atomic, but has no complete representation and NrnC ∈
LCAn.

Corollary 2.5. [6] Let 2 < n < ω. Then the classes CRRA and CRCAn are not elementary.

3 Complete representations, neat embedding properties and
the Lyndon conditions

In the following Up, Ur, P and H denote the operations of forming ultraproducts, ul-
traroots, products and homomorphic images, respectively. Sd denotes the operation of
forming dense subalgebrs and for an ordinal α, CRCAα denotes the class of completely
representable CAαs, and El denotes ’elementary closure.’

Theorem 3.1. For 2 < n < ω the following hold:

1. CRCAn ⊆ ScNrn(CAω ∩ At) ∩ At ⊆ ScNrnCAω ∩ At. At least two of these three
classes are distinct,

2. All reverse inclusions and implications in the previous item hold, if algebras consid-
ered have countably many atoms,

3. All classes in the first item are closed under Sc (a fortiori under Sd), P, but are not
closed under S, nor H nor Ur. Their elementary closure coincides with LCAn,

4. NrnCAω ( SdNrnCAω ⊆ ScNrnCAω ( ElScNrnCAω ( RCAn. Furthermore, the
strictness of inclusions are witnessed by atomic algebras,

5. Any class K such that NrnCAω ∩ CRCAn ⊆ K ⊆ ScNrnCAn+3, K is not elementary.

Proof. Throughout the proof, fix 2 < n < ω.
(1): The proof of the first inclusion is similar to the proof for (the analogous result

on) relation algebras proved in [5, Theorem 29]. The construction in [1] shows that the
first and last classes are distinct.

(2): From [12, Theorem 5.3.6] and [8, Theorem 3.3.3].

10



(3): Closure under P and Sc is straightforward. Non-closure under S is trivial. We
prove non–closure under H for all three classes in one blow. Take a family (Ui : i ∈ N)
of pairwise disjoint non–empty sets. Let Vi = nUi(i ∈ N). Take the full Gsn, A with
universe ℘(V ), where V =

∪
i∈N Vi. Then A ∈ CRCAn ⊆ C. Let I be the ideal consisting

of elements of A that intersect only finitely many of the Vi’s. Then A/I is not atomic, so
A/I is outside all three classes.

Now we approach closure under Ur. Let C ∈ CAn ∼ CRCAn be atomic having count-
ably many atoms and elementary equivalent to a B ∈ CRCAn. Such algebras exist, cf.
[6], [14, Theorem 5.12]. Then C ≡ B, C will be outside all three classes (since they co-
incide on atomic algebras having countably many atoms), while B will be inside them
all proving that non of the three is elementary, so being closed under Up, since they are
psuedo-elementary classes (cf. [5, Theorem 21] and [7, §9.3] for similar cases), by the
Keisler-Shelah ultrapower Theorem they are not closed under Ur.

For the last required, we show that LCAn = ElCRCAn = El(ScNrnCAω ∩At). Assume
that A ∈ LCAn. Then, by definition, for all k < ω, ∃ has a winning strategy in Gk(AtA).
Using ultrapowers followed by an elementary chain argument like in [8, Theorem 3.3.5], ∃
has a winning strategy inGω(AtB) for some countableB ≡ A, and so by [8, Theorem 3.3.3]
B is completely representable. Thus A ∈ ElCRCAn. One shows that El(ScNrnCAω∩At) ⊆
LCAn using Lemma 1.2. So LCAn = ElCRCAn ⊆ El(ScNrnCAω ∩At) ⊆ LCAn, and we are
done.

(4): That NrnCAω ( SdNrnCAω follows from the construction in [15]. The atomic
countable C ∈ RCAn used in the previous item is in ElScNrnCAω ∼ ScNrnCAω. Let
A = TmAt be the algebra constructed in Theorem 1.3. We know that A ∈ RCAn ∩At,
but A /∈ LCAn, because AtA does not satisfy the Lyndon conditions, lest CmAtA ∈ LCAn(⊆
RCAn). We conclude that A /∈ ElScNrnCAω proving the strictness of the last inclusion.
Since E,C and A are all atomic, we are done.

(5): We use the construction in [14, Theorem 5.12]. The algebra CZ,N(∈ RCAn) based
on Z (greens) and N (reds) denotes the rainbow-like algebra used in op.cit. One can
devise a k rounded game Hk, where k is ≤ ω, such that a winning strategy in Hω(α), α
a countable atom structure, implies that Cm(α) ∈ NrnCAω, cf. [5] for the RA analogue.
Next, it can be shown that ∃ has a winning strategy in Hk(AtCZ,N) for all k ∈ ω.

Using ultrapowers and an elementary chain argument as in [8, Theorem 3.3.5], one gets
a countable and atomic B ∈ CAn such ∃ has a winning strategy in Hω(At(B)), B ≡ CZ,N
and CmAtB ∈ NrnCAω. Since B ⊆d CmAtB, B ∈ SdNrnCAω, so B ∈ ScNrnCAω. Be-
ing countable, it follows by [12, Theorem 5.3.6] that B ∈ CRCAn. But it is proved in
[14, Theorem 5.12], that ∀ has a winning strategy in Gn+3(AtCZ,N) (denoted in op.cit
by Fn+3(AtCZ,N)), hence by Lemma 1.2, CZ,N /∈ ScNrnCAn+3. Let K be a class be-
tween SdNrnCAω ∩ CRCAn and ScNrnCAn+3. Then K is not elementary, because CZ,N /∈
ScNrnCAn+3(⊇ K), B ∈ SdNrnCAω ∩ CRCAn(⊆ K), and CZ,N ≡ B. We now use the
construction in [11], where two atomic algebras A,B ∈ CAn are constructed such that,
A ∈ NrnCAω, B /∈ SdNrnCAn+1 and A ≡ B. ThusB ∈ El(NrnCAω∩CRCAn) ∼ SdNrnCAω.
Since El(NrnCAω ∩ CRCAn) * SdNrnCAω ∩ CRCAn, there can be no elementary class be-
tween NrnCAω ∩ CRCAn and SdNrnCAω ∩ CRCAn. Having already eliminated elementary
classes between SdNrnCAω ∩ CRCAn and ScNrnCAn+3, we are done.
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