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Modal Axioms S4.2
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+ Duals + Temporal Axioms

v — GPvy
v — HFY
FPy < PFvy



S4.2 is Sound and Complete for modal logic of ...

e Confluent partial orders

e (R*, <) (any n > 2)

e (Q", <)

S4.2 + Temporal Axioms is complete for confluent partial orders.
Proof, by filtration.



Problems

. Axiomatise temporal logic of (R?,<), (R?, <), (Z2,<), (Q3,<),...

. Prove decidability of (R?, <), (R?, <), (R2, <),

. Prove undecidability of (R3,<), (RZ?, <),

. Find temporal formula distinguishing (R™, <) and (R™, <) for 2 <
n < m.



Rectangles

x,y € R, xANy<z<xVy—z€eR

Cartesian product of two convex intervals.
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Topology

. Boundary of S is closure minus interior — a closed set.

. If S, T are closed and bounded subsets of R? and
Ve >03ds e S, teT d(s,t) <ethen SNT # 0.

. R is a closed rectangle, say [0, 1] x [0, 1].
If S is closed downward and has non-trivial boundary then bound-
ary is homeomorphic to a closed line segment.

. If open line segment is partitioned into closed line segments, then
at least one is a single point.



Distinguishing Formulas
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Filtration

¢ a fixed temporal formula.

Cl(¢) = {subformulas, single negations of subformulas of ¢}.
MCS is set of maximal consistent subsets of Cl(¢).

m<n <= (Gvem-—->Gypen N HYp en— Hy € m)

(MCS, <) is reflexive, transitive, confluent, but not antisymmetric.

Cluster is equivalence class of MCSs. MCS/ ~ is a confluent partial
order.



Trace

(607 mop,C1,M31,...,ME_1, Ck’)

where c; < m; < Ci+1 and c; < Cit1: for ¢« < k.
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Rectangle Model

h: R— MCS

e x<yeR—h(x) <h(y)

o If Fyy € h(x) then either
— dy > x v € h(y),
— R includes boundary point y due East of x and Fv € h(y), or

— R includes boundary point y due North of x and Fv € h(y).
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e Similar for Pa.



Defects

MCS Fiy € m, ¢ € m,

Cluster Fy € Uc, ¥ € Uc,

Trace Fv is a defect of ¢; but Fy € m;.
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Boundary Maps

0 :{—,+}tu{b,t,,r}U{N,S, E, W} — {clusters} U MCS U {traces}

Z
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Rectangle Model to Boundary Map

Rectangle model h determines boundary map ol

14



Simple boundary maps

0 € By if

e 0(—) =0(+),

e NO internal defects

15



Joining
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Limits
Suppose
e 0 =0 0,

e 71 undecomposable rectangle model h where 0 = oh

e 0" is identical to 0 except 0*(W) is either undefined or it can be
a single cluster trace, such that there are no internal defects.

then 0* is a Western limit of 0.
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Shuffles
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B

B is closure of Bp under joins, limits and shuffles.

Algorithm 1 Algorithm to compute B

1: B = Bpg

2: wWhile new elements can be found do

3: Add any joins of elements of B to B
4: Add any limits of elements of B to B
5 Add any suffles from B to B
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Main Theorem

e B < (3n) 9 =09"

= By induction on number of iterations of the while loop in algorithm
for B.

< By induction on maximum length of chain of distinct clusters from
o"(=) up to 9"(+),
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Good sets

Let h be a rectangle model. Must show 8" € B.
Def: S C Cl(dom(h)) is good if it is a finite union of rectangles and
for every defined subrectangle R of S we have olr ¢ B
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e G(X),G(Y)=G(XUY),

Main Proof

o (Vi > 0G([x;,y0l) = Glx,yol,
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Boundaries

Let I be boundary of h~1(9(-)), let A be boundary of h=1(8(4+)).

h=1(o(+))
N A

h=1(0(=))

o If T NANInt(dom(h)) =0 then dom(h) is good,
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Equivalence Relation ~ over [ N A

Contains « successor relation, and closed under limits.

e SCINA a~= equiv. class, <-bounded by x,y then R(S) = [xAy, xVy]
IS good,

e Union of the lower boundaries of the R(S)s (for S a ~-class) is
homeomorphic to a simple line segment,

e [ here is a singleton = class,

e 0" is a shuffle of 8" ES)s for § c F.
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