
The Bridge between

Mathematical Models of Physics

and Generic Simulations
Dániel Berényi - Wigner Research Centre for Physics

Gábor Lehel – Eötvös University

Logic, Relativity and Beyond

2015, Budapest

http://wigner.mta.hu/

Early summary

Motivating Category Theory as a common language to use

between Mathematics, Physics and Programming.

2015 Aug 11D Berényi - G. Lehel 2

An example from Physics

Basis changes

 Covariant quantities (like linear functionals)

Successive basis transformations, M and N act as:

𝑀 ∙ 𝑁

 Contravariant quantities (vectors)

Successive basis transformations, M and N act as:

𝑁−1 ∙ 𝑀−1

2015 Aug 11D Berényi - G. Lehel 3

An example from Programming

Apply an single valued function on a list

Like:

 multiply a list of numbers by 2

 Take the square root of each of a list of numbers

2015 Aug 11D Berényi - G. Lehel 4

Programming Paradigms

Imperative Programming:

 Von Neumann systems: an abstract model of hardware

 Sequence of commands, r/w memory cells

A := [1, 2, 3, 4]
i := 0
while(i ≤ 3)

Ai:= Ai · 2
i := i + 1

2015 Aug 11D Berényi - G. Lehel 5

Programming Paradigms

Imperative Programming:

 Von Neumann systems: an abstract model of hardware

 Sequence of commands, r/w memory cells

A := [1, 2, 3, 4]
i := 0
while(i ≤ 3)

Ai:= Ai · 2
i := i + 1

Two problems:

 Low level, unnecessary details
→ Functional Programming

 Error prone
→ Type Theory

2015 Aug 11D Berényi - G. Lehel 6

Programming Paradigms

Functional Programming

(solution to the low-levelness):

 Definitions of functions in terms of other functions

 Declarative (what-to-do instead of how-to-do)

 Functions first class citizens (and higher-order functions)

A = [1, 2, 3, 4]
B = map (·2) A

2015 Aug 11D Berényi - G. Lehel 7

Type Theory

Typed programming languages

(solution to error proneness): Terms and Types

 Each term has a type,

 operations on terms may be restricted to certain types

A : [ℤ]

map : ℤ → ℤ × ℤ → ℤ

A = [1, 2, 3, 4]
B = map (·2) A

2015 Aug 11D Berényi - G. Lehel 8

Generic Programming

Abstraction over types:

A : [ℝ]

map : ∀𝑎 . 𝑎 → 𝑎 × 𝑎 → [𝑎]

A = [1.6, 2.5, 3.1, 𝜋]
B = map (•) A

more general version:

map : ∀𝑎, 𝑏 . 𝑎 → 𝑏 × 𝐹 𝑎 → 𝐹 𝑏

2015 Aug 11D Berényi - G. Lehel 9

Another example

Consider equivalence relations:

eq : ℤ × ℤ → True ∨ False

or:

eq : a × a → True ∨ False for some a

What if, we’d like to modify this to be an equivalence over lists

and use something like ‘map’ to compose a length function to ‘eq’?

map2 : ∀𝑎, 𝑏 . 𝑏 → 𝑎 × 𝐹 𝑎 → 𝐹 𝑏
2015 Aug 11D Berényi - G. Lehel 10

Successive maps

Investigating the properties, we find that:

𝑚𝑎𝑝 𝑓 ∘ 𝑚𝑎𝑝 𝑔 ≡ 𝑚𝑎𝑝 (𝑓 ∘ 𝑔)
𝑚𝑎𝑝2 𝑓 ∘ 𝑚𝑎𝑝2 𝑔 ≡ 𝑚𝑎𝑝2 (𝑔 ∘ 𝑓)

2015 Aug 11D Berényi - G. Lehel 11

Successive maps

Investigating the properties, we find that:

𝑚𝑎𝑝 𝑓 ∘ 𝑚𝑎𝑝 𝑔 ≡ 𝑚𝑎𝑝 (𝑓 ∘ 𝑔)
𝑚𝑎𝑝2 𝑓 ∘ 𝑚𝑎𝑝2 𝑔 ≡ 𝑚𝑎𝑝2 (𝑔 ∘ 𝑓)

We’ve already seen this earlier:
Successive basis transformations on linear functionals act similarly to map,

Successive basis transformations on vectors act similarly to map2!

Is there anything deeper here?
2015 Aug 11D Berényi - G. Lehel 12

Category Theory

In a nutshell…

2015 Aug 11D Berényi - G. Lehel 13

Category Theory

A category consists of:

 A collection of Objects, dented by capital letters: 𝑋

 A collection of Morphisms, that map between objects: 𝑋 → 𝑌

 the binary operation of Morphism Composition

Required properties:

 Associativity of Morphism composition

 Existence of Identity morphisms for all objects

2015 Aug 11D Berényi - G. Lehel 14

Category Theory - Functors

Functor from 𝐶 → 𝐷:

 𝑋 ∈ 𝐶 → 𝐹 𝑋 ∈ 𝐷

 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐹 𝑓 : 𝐹 𝑋 → 𝐹(𝑌) ∈ 𝐷

Such that:

 𝐹 𝑖𝑑𝑋 → 𝑖𝑑𝐹(𝑋) ∀𝑋 ∈ 𝐶

 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝑔 ∘ 𝐹(𝑓) ∀𝑓, 𝑔 ∈ 𝐶

2015 Aug 11D Berényi - G. Lehel 15

Category Theory - Functors

Example: Lists and Natural numbers

binary operations:

On lists: list concatenation:
[a, b, c] + [d, e] = [a, b, c, d, e]

On naturals:
addition

Functor: Length of List

2015 Aug 11D Berényi - G. Lehel 16

Category Theory - Functors

Some functors reverse the direction of morphisms:

Covariant Functors, F: 𝐶 → 𝐷:

 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐹 𝑓 : 𝐹 𝑿 → 𝐹(𝒀) ∈ 𝐷

 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝒈 ∘ 𝐹(𝒇) ∀𝑓, 𝑔 ∈ 𝐶

Contravariant Functors, G: 𝐶 → 𝐷:

 𝑓: 𝑌 → 𝑋 ∈ 𝐶 → 𝐺 𝑓 : 𝐺 𝒀 → 𝐺(𝑿) ∈ 𝐷

 𝐺 𝑔 ∘ 𝑓 = 𝐺 𝒇 ∘ 𝐺(𝒈) ∀𝑓, 𝑔 ∈ 𝐶

2015 Aug 11D Berényi - G. Lehel 17

Functors in Physics

Example from Physics:

Consider the following category 𝑨𝑩𝑺:

Objects: Bases of a Vector space,

Morphisms: Basis changes

and an other category 𝑹𝑬𝑷𝑹 that consists of

coordinate representations of 𝑨𝑩𝑺.

See the online paper for details!

For a fixed vector 𝑣, the Functor 𝐹𝑣 : 𝑨𝑩𝑺 → 𝑹𝑬𝑷𝑹 is contravariant,

since the basis transformation matrices act in the reverse order.

For a fixed linear functional 𝜙, the Functor 𝐺𝜙: 𝑨𝑩𝑺 → 𝑹𝑬𝑷𝑹 is covariant,

since the basis transformation matrices act in normal order.
2015 Aug 11D Berényi - G. Lehel 18

http://www.renyi.hu/conferences/lrb15/LRB15_Berenyi--Lehel.pdf

Functors of Physics in Haskell

Covariant class – fmap:

class Functor G where

fmap :: (B1 → B2) → (G B1 → G B2)

In words:

fmap can take an abstract basis change and create the coordinate

representation of it

2015 Aug 11D Berényi - G. Lehel 19

Functors of Physics in Haskell

Covariant class – fmap:

class Functor G where

fmap :: (B1 → B2) → (G B1 → G B2)

Contravariant class – contramap:

class Contravariant F where

contramap :: (B2 → B1) → (F B1 → F B2)

contramap takes the inverse of the abstract coordinate transform!
2015 Aug 11D Berényi - G. Lehel 20

Functors In Generic Programming

Series of abstractions in a generic linear algebra library:

 Vector of doubles – Scalar Multiplication function

 Vector of doubles – Generic Unary operation

 Vector of any type – Generic Unary operation

This leads to the implementation of fmap and

the application of the implicit “concept” of Functor over the Vector of any type

See the online paper for an

example in C++!

2015 Aug 11D Berényi - G. Lehel 21

http://www.renyi.hu/conferences/lrb15/LRB15_Berenyi--Lehel.pdf

ZipWith

fmap on containers can be viewed:

Easily generalized to n-ary functions, called zipWith:

2015 Aug 11D Berényi - G. Lehel 22

Fold

Another important concept is the Foldable, whose method is fold

(from the left):

foldl (a -> b -> a) -> a -> Foldable b -> a

On container like structures it is like:

2015 Aug 11D Berényi - G. Lehel 23

Example: The case of a linear Algebra library

If fmap, zipwith and fold are available, we can express everything

that people usually want from a linear algebra library.

Scalar multiplication:

sclmul v x = fmap (*x) v

The dot product for example:
dot u v = foldl (+) 0 (zipWith (*) u v)

The dyadic product for example:
dyadic u v = fmap (sclmul v) u

2015 Aug 11D Berényi - G. Lehel 24

Outlook

2015 Aug 11D Berényi - G. Lehel 25

Future tendencies

Until very recently these programming concepts were just seen as

toys of research in academic programming languages

However, recent directions

in the evolution of

mainstream programming

languages (like C++) shows

a drastic shift towards

functional and generic

programming!

2015 Aug 11D Berényi - G. Lehel 26

Future tendencies

Todays physics simulations and other

HPC solutions have to parallelize

calculations in order to utilize

hardware.

When combining generic programming

with automatic parallelization,

abstractions like the presented ones

from Category Theory are ubiquitous!

2015 Aug 11D Berényi - G. Lehel 27

http://fireuser.com/blog/8_amd_firepro_s10000s_16_gpus_achieve_8_tflops_real_world_double_precision_

Future tendencies

If programmers, physicists,

mathematicians would agree to

speak a common language,

Category Theory,

they could be more effective in

their own fields and their

collaborative efforts.

2015 Aug 11D Berényi - G. Lehel 28

Correspondences

Curry-Howard Correspondence:

Logic Programming

Proposition Type

Proof Program

Disjunction Sum type (tagged union)

Conjunction Product type (struct, tuple)

Implication Function

Invalidity Uninhabited type (bottom type)

2015 Aug 11D Berényi - G. Lehel 29

Correspondences

More correspondences (John C. Baez [arxiv:0903.0340]):

Category Th., Logic, Topology, Physics, Computation

Category Theory Physics Topology Logic Programming

Object Hilbert space Manifold Proposition Type

Morphism Operator Cobordism Proof Program

Tensor Product Hilbert space of

joint system

Disjoint union of

manifolds

Conjunction Product type

(struct, tuple)

Internal

Homomorphism

Hilbert space of

anti-X and Y

Disjoint union of

orientation-

reversed X and Y

Implication Function

2015 Aug 11D Berényi - G. Lehel 30

Further outlook

 Homotopy Type Theory:

http://homotopytypetheory.org/

 Urs Schreiber - Differential cohomology in a cohesive

infinity-topos:

arxiv:1310.7930

2015 Aug 11D Berényi - G. Lehel 31

http://homotopytypetheory.org/
http://arxiv.org/abs/1310.7930

Thank you for your attention!

2015 Aug 11D Berényi - G. Lehel 32

Work supported in part by

OTKA grant: NK 106119

Type Theory

Origins: The need to avoid paradoxes in formal logic

 Example: predicate cannot refer to its self

Ingredients: Terms and Types
Each term has a type, operations may be restricted to certain types

Contrast to Set Theory:

 Constructive (No Law of Excluded middle)

 can be run as a program

2015 Aug 11D Berényi - G. Lehel 33

