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Early summary

Motivating Category Theory as a common language to use 

between Mathematics, Physics and Programming.
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An example from Physics

Basis changes

 Covariant quantities (like linear functionals)

Successive basis transformations, M and N act as:

𝑀 ∙ 𝑁

 Contravariant quantities (vectors)

Successive basis transformations, M and N act as:

𝑁−1 ∙ 𝑀−1

2015 Aug 11D Berényi - G. Lehel 3



An example from Programming

Apply an single valued function on a list

Like:

 multiply a list of numbers by 2

 Take the square root of each of a list of numbers
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Programming Paradigms

Imperative Programming:

 Von Neumann systems: an abstract model of hardware

 Sequence of commands, r/w memory cells

A := [1, 2, 3, 4]
i := 0
while(i ≤ 3)

Ai:= Ai · 2
i := i + 1
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Programming Paradigms

Imperative Programming:

 Von Neumann systems: an abstract model of hardware

 Sequence of commands, r/w memory cells

A := [1, 2, 3, 4]
i := 0
while(i ≤ 3)

Ai:= Ai · 2
i := i + 1

Two problems:

 Low level, unnecessary details
→ Functional Programming

 Error prone
→ Type Theory
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Programming Paradigms

Functional Programming

(solution to the low-levelness):

 Definitions of functions in terms of other functions

 Declarative (what-to-do instead of how-to-do)

 Functions first class citizens (and higher-order functions)

A = [1, 2, 3, 4]
B = map (·2) A
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Type Theory

Typed programming languages

(solution to error proneness): Terms and Types

 Each term has a type,

 operations on terms may be restricted to certain types

A : [ℤ]

map : ℤ → ℤ × ℤ → ℤ

A = [1, 2, 3, 4]
B = map (·2) A
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Generic Programming

Abstraction over types:

A : [ℝ]

map : ∀𝑎 . 𝑎 → 𝑎 × 𝑎 → [𝑎]

A = [1.6, 2.5, 3.1, 𝜋]
B = map ( •) A

more general version:

map : ∀𝑎, 𝑏 . 𝑎 → 𝑏 × 𝐹 𝑎 → 𝐹 𝑏
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Another example

Consider equivalence relations:

eq : ℤ × ℤ → True ∨ False

or:

eq : a × a → True ∨ False for some a

What if, we’d like to modify this to be an equivalence over lists

and use something like ‘map’ to compose a length function to ‘eq’?

map2 : ∀𝑎, 𝑏 . 𝑏 → 𝑎 × 𝐹 𝑎 → 𝐹 𝑏
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Successive maps

Investigating the properties, we find that:

𝑚𝑎𝑝 𝑓 ∘ 𝑚𝑎𝑝 𝑔 ≡ 𝑚𝑎𝑝 (𝑓 ∘ 𝑔 )
𝑚𝑎𝑝2 𝑓 ∘ 𝑚𝑎𝑝2 𝑔 ≡ 𝑚𝑎𝑝2 (𝑔 ∘ 𝑓 )
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Successive maps

Investigating the properties, we find that:

𝑚𝑎𝑝 𝑓 ∘ 𝑚𝑎𝑝 𝑔 ≡ 𝑚𝑎𝑝 (𝑓 ∘ 𝑔 )
𝑚𝑎𝑝2 𝑓 ∘ 𝑚𝑎𝑝2 𝑔 ≡ 𝑚𝑎𝑝2 (𝑔 ∘ 𝑓 )

We’ve already seen this earlier:
Successive basis transformations on linear functionals act similarly to map,

Successive basis transformations on vectors act similarly to map2!

Is there anything deeper here?
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Category Theory

In a nutshell…
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Category Theory

A category consists of:

 A collection of Objects, dented by capital letters: 𝑋

 A collection of Morphisms, that map between objects: 𝑋 → 𝑌

 the binary operation of Morphism Composition

Required properties:

 Associativity of Morphism composition

 Existence of Identity morphisms for all objects
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Category Theory - Functors

Functor from 𝐶 → 𝐷:

 𝑋 ∈ 𝐶 → 𝐹 𝑋 ∈ 𝐷

 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐹 𝑓 : 𝐹 𝑋 → 𝐹(𝑌) ∈ 𝐷

Such that:

 𝐹 𝑖𝑑𝑋 → 𝑖𝑑𝐹(𝑋) ∀𝑋 ∈ 𝐶

 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝑔 ∘ 𝐹(𝑓) ∀𝑓, 𝑔 ∈ 𝐶
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Category Theory - Functors

Example: Lists and Natural numbers

binary operations:

On lists: list concatenation:
[a, b, c] + [d, e] = [a, b, c, d, e]

On naturals:
addition

Functor: Length of List
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Category Theory - Functors

Some functors reverse the direction of morphisms:

Covariant Functors, F: 𝐶 → 𝐷:

 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐹 𝑓 : 𝐹 𝑿 → 𝐹(𝒀) ∈ 𝐷

 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝒈 ∘ 𝐹(𝒇) ∀𝑓, 𝑔 ∈ 𝐶

Contravariant Functors, G: 𝐶 → 𝐷:

 𝑓: 𝑌 → 𝑋 ∈ 𝐶 → 𝐺 𝑓 : 𝐺 𝒀 → 𝐺(𝑿) ∈ 𝐷

 𝐺 𝑔 ∘ 𝑓 = 𝐺 𝒇 ∘ 𝐺(𝒈) ∀𝑓, 𝑔 ∈ 𝐶
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Functors in Physics

Example from Physics:

Consider the following category 𝑨𝑩𝑺:

Objects: Bases of a Vector space,

Morphisms: Basis changes

and an other category 𝑹𝑬𝑷𝑹 that consists of 

coordinate representations of 𝑨𝑩𝑺.

See the online paper for details!

For a fixed vector 𝑣, the Functor 𝐹𝑣 : 𝑨𝑩𝑺 → 𝑹𝑬𝑷𝑹 is contravariant,

since the basis transformation matrices act in the reverse order.

For a fixed linear functional 𝜙, the Functor 𝐺𝜙: 𝑨𝑩𝑺 → 𝑹𝑬𝑷𝑹 is covariant, 

since the basis transformation matrices act in normal order.
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Functors of Physics in Haskell

Covariant class – fmap:

class Functor G where 

fmap :: (B1 → B2) → (G B1 → G B2) 

In words:

fmap can take an abstract basis change and create the coordinate

representation of it
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Functors of Physics in Haskell

Covariant class – fmap:

class Functor G where 

fmap :: (B1 → B2) → (G B1 → G B2) 

Contravariant class – contramap:

class Contravariant F where 

contramap :: (B2 → B1) → (F B1 → F B2)

contramap takes the inverse of the abstract coordinate transform!
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Functors In Generic Programming

Series of abstractions in a generic linear algebra library:

 Vector of doubles – Scalar Multiplication function

 Vector of doubles – Generic Unary operation

 Vector of any type – Generic Unary operation

This leads to the implementation of fmap and

the application of the implicit “concept” of Functor over the Vector of any type

See the online paper for an 

example in C++!
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ZipWith

fmap on containers can be viewed:

Easily generalized to n-ary functions, called zipWith:
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Fold

Another important concept is the Foldable, whose method is fold 

(from the left):

foldl (a -> b -> a) -> a -> Foldable b -> a

On container like structures it is like:

2015 Aug 11D Berényi - G. Lehel 23



Example: The case of a linear Algebra library

If fmap, zipwith and fold are available, we can express everything 

that people usually want from a linear algebra library.

Scalar multiplication:

sclmul v x = fmap (*x) v

The dot product for example:
dot u v = foldl (+) 0 (zipWith (*) u v)

The dyadic product for example:
dyadic u v = fmap (sclmul v) u
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Outlook
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Future tendencies

Until very recently these programming concepts were just seen as 

toys of research in academic programming languages

However, recent directions 

in the evolution of 

mainstream programming 

languages (like C++) shows 

a drastic shift towards 

functional and generic 

programming!
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Future tendencies

Todays physics simulations and other 

HPC solutions have to parallelize 

calculations in order to utilize 

hardware. 

When combining generic programming 

with automatic parallelization, 

abstractions like the presented ones 

from Category Theory are ubiquitous!
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Future tendencies

If programmers, physicists, 

mathematicians would agree to 

speak a common language,

Category Theory, 

they could be more effective in 

their own fields and their 

collaborative efforts.
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Correspondences

Curry-Howard Correspondence:

Logic Programming

Proposition Type

Proof Program

Disjunction Sum type (tagged union)

Conjunction Product type (struct, tuple)

Implication Function

Invalidity Uninhabited type (bottom type)
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Correspondences

More correspondences (John C. Baez [arxiv:0903.0340]):

Category Th., Logic, Topology, Physics, Computation

Category Theory Physics Topology Logic Programming

Object Hilbert space Manifold Proposition Type

Morphism Operator Cobordism Proof Program

Tensor Product Hilbert space of 

joint system

Disjoint union of 

manifolds

Conjunction Product type

(struct, tuple)

Internal 

Homomorphism

Hilbert space of 

anti-X and Y

Disjoint union of 

orientation-

reversed X and Y

Implication Function
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Further outlook

 Homotopy Type Theory:

http://homotopytypetheory.org/

 Urs Schreiber - Differential cohomology in a cohesive 

infinity-topos:

arxiv:1310.7930
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Thank you for your attention!
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Type Theory

Origins: The need to avoid paradoxes in formal logic

 Example: predicate cannot refer to its self

Ingredients: Terms and Types
Each term has a type, operations may be restricted to certain types

Contrast to Set Theory:

 Constructive (No Law of Excluded middle)

 can be run as a program
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