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Overview

Dynamic Epistemic Logic (DEL)

In standard Dynamic Epistemic Logic we work with modal logics
to represent the information states of classical agents and we use
model-transforming operators to represent the information
changes.

Dynamic Quantum Logic

In dynamic Quantum Logic we work with dynamic logics
(PDL-style) to represent quantum information and we use
state-transforming operators to represent the quantum
information changes.

Quantum DEL

Represent both what agents know after an action happens (this
action includes e.g. the act of a quantum measurement) and the
effect of this action on the state of the physical system.
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Quantum Logic

What logical structure do we find in QM? (G. Birkhoff
and J. von Neumann 1936)

I Quantum Logic = the propositional logic of the family of
closed linear subspaces of the state space S (given by a
Hilbert space H).

I OLD Approach: A non-boolean structure of quantum
propositions: a non-distributive or partial/fuzzy logic.

Dynamic Quantum Logic : No need to drop any
classical logical principle!
I Add dynamic modalities to classical logic, expressing the

potential effect of actions, e.g. quantum measurements.

I IDEA = All the “non-classicality” of QL is due to
actions! To be captured by dynamic modalities.

I Expression [ϕ?]ψ captures: after any sucessful test of ϕ, the
system satisfies ψ. 3



Adding a “spatial”-part for compound quantum sytems

Compound systems

To capture the logical structure of compound quantum systems,
we use “spatial” modalities expressing the “local availability” of
information.

A form of spatial logic is needed, capturing notions of “subsystem”
(location/part) of a bigger system.

4



Ontic and Epistemic effect of actions

Non-classical Dynamics
I The non-classical dynamics is reflected in the erosion of the

sharp classical distinction between “ontic” and “epistemic”
(information-gathering) actions.

I In the quantum world, all information-gathering actions have
ontic side-effects. There can be no information change
without changing the world.

I The ontic effects of quantum epistemic actions may be
non-local. An information-gathering action on one part of a
quantum system may affect the ontic state of other, far-away
parts of the system.
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Adding classical agents: “epistemic” actions

Epistemic Effect

Measurements are now “epistemic” actions: information-gathering
actions, which convert potential local information into actual
information for an agent.

Quantum Holism
I A composed system is entangled iff the information carried by

the system is more than the “sum” of all the information
carried by its parts.

I In epistemic terms: the “knowledge” of an entangled system
is more than the “distributed knowledge” of its components.
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Quantum DEL

Quantum Logical Gates

If we also add actions of reversible information processing
(unitaries=“quantum gates”), then

the resulting “Quantum Dynamic Epistemic Logic” can be used to
reason about the specific features of quantum information,
including entanglement, Bell states, quantum protocols
(Teleportation, super-dense coding etc).
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Formal Part: First Main Ingredients

Main Ingredients (e.g. Teleportation Protocol)

I Family of classical Agents A
I Given (quantum) physical system N

I Classical uncertainty, the knowledge of agents about the
quantum system and its properties (but also about what other
agents know etc)

I Agents have local control over part/all of a physical system N

I Agents’ can perform classical and quantum actions, e.g. from
classical communication to quantum measurements. These
can affect either or both: the state of system N and the
knowledge of the agents .
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About Physical Systems

Multi-partite physical systems

Physical system may be compound: composed of subsystems or
parts.

This means that the information carried by a physical system can
be distributed throughout space:

Information can be localized, concentrated at specific spatial
“locations”/“sites”/“components”/“situations” of the system.

Distributed Information

So some information is available only at some locations, but not
others.
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Notation for Physical Sytems

System N

Consider a given (finite) set N = {1, ..., n} of labels for the basic
“components” (in a compound system) or “locations”.

�� ���� ��1
�� ���� ��2 ... �� ���� ��n

Subsystems

Besides the basic components of a system, we work also with more
complex subsystems: groups of components, denoted by sets
I ⊆ N of labels.
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State Space

State Space for N

Given a system N, a state space for N is a structure

S = (SI , p
I
J ,
⊗

)J⊆I⊆N

Where:

I SI associates to subsystem I ⊆ N some set of “I -local states”;

I pIJ : SI → SJ maps I -local states to J-local states (for each
J ⊆ I ⊆ N);

I for each family A of mutually disjoint subsystems of N,⊗
A :

∏
A∈A SA → S⋃A.
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Conditions

These are required to satisfy:
I

pII = idSI ,

I

pJK ◦ pIJ = pIK , for K ⊆ J ⊆ I ,

I

p
⋃
A⋃
B (

⊗
A∈A

SA) =
⊗
B∈B

SB , for B ⊆ A.

I NOTATION: S := SN .
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Example: Quantum State Spaces

Quantum state space

A quantum state space is given by an assignment (Hi )i∈N of
Hilbert spaces to each basic component i ∈ N, together with
putting:

SI := {ρI : ρI density operator on the tensor product
⊗
i∈I

Hi},

pIJ(ρI ) := trI\J(ρI ) , (where tr is the partial trace operator) ,⊗
A∈A

ρA is the standard tensor product of operators (ρA)A∈A.

Special Subcase

Qubit spaces: Let each Hi be a two-dimensional Hilbert space.
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Actions on (parts of) physical systems

Actions on subsystems I ⊆ N

For a subsystem I ⊆ N, I -actions are maps

TI : SI → SI

In the quantum case the actions TI are required to be linear, while
in the classical case they are arbitrary maps.

Two important types of actions
I Quantum I -Tests are actions PI ? induced on the state space

SI by projectors onto some subspace PI of HI =
⊗

I Hi .

I I -Evolutions are actions UI induced on SI by unitary
evolutions U : HI → HI .

Global Actions on N

Global actions are the N-actions T : S → S .
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I -Local Actions

When a global action T can be called local:

A (global) action T : S → S is I -local if there exists some I -action
TI : SI → SI such that

T (sI ⊗ sN\I ) = TI (sI )⊗ sN\I for all sI ∈ SI , sN\I ∈ SN\I .
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Classical Agents and their Access or Control

Classical Agents

We assume given a fixed set n A of labels, called agents.

Access or Control

An access map (or “location map”) is a function I : A → P(N )
such that

I A 6= B ⇒ I (A) ∩ I (B) = ∅.
I I (A) ⊆ N is called call A’s location (or A’s access).

This means that, in principle, agent A “has access” or “can
control” the qubits in I (A).

Agent’s Control is Local

Agent A can perform only “local” actions (local measurements, or
local evolutions) on the qubits in I (A).
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Local States/Actions for a given Agent

Agents identified with their Location/Access

For a fixed access map I , each agent’s access I (A) is fixed: in
this case we can “identify” A with I (A).

Agents’ local states and local actions

We can thus refer, for a fixed access map I and a given agent A,
to the A-local state sA := SI (A) of (some global state) s, or to
A-actions (=I (A)-actions) etc.

Note

But when agents move, or exchange qubits, the access map
changes! So then we cannot maintain the identification between A
and I (A).
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Multi-agent Actions

I -based multi-agent actions

Given an access map I : A → P(N ), a (global) action T : S → S
is an I -based multi-agent action if there exist I (A)-actions
TA : SI (A) → SI (A), one for each agent A ∈ A, such that

T (
⊗
A∈A

sI (A)) =
⊗
A∈A

TA(sI (A)).

Note

For each agent A, the A-local actions are a special case of
multi-agent actions (called single-agent actions).
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Indistinguishability between Multi-Agent Actions

Modelling Classical Uncertainty of Actions

Two global multi-agent actions are indistinguishable for agent A, if
the part she can see/control is the same.

Formally

Given two multi-agent actions T =
⊗

A∈A TA and T ′ =
⊗

A∈A T ′A
for the same set of agents, we put

T ∼A T ′ iff TA = T ′A.
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(Probabilistic Epistemic) State Models

State Model

Given a system N, together with a state space S and a family A of
agents for N, a state model is a tuple M = (W ,∼, µ, state, I ), s.t.

I W is a finite set of “possible worlds”;

I ∼: A → Equiv(W ) is a map associating to each agent some
equivalence relation ∼A⊆W ×W , called
A-indistinguishability (or epistemic accessibility);

I µ : W → [0, 1] is a probability distribution over possible
worlds, called “the (common) prior”;

I I is a function that associates to each world w ∈W some
access map Iw : A → P(N );

I state : W → S is a map associating to each world w ∈W
some global state state(w) ∈ S .

22



State Models Continued

REQUIREMENT: Agents know their location/access

w ∼A w ′ ⇒ Iw (A) = Iw ′(A).
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Agents’ Epistemic Probabilities

Epistemic Probabilities

Agent A’s epistemic probability at a given world w is obtained
by conditionalizing µ on w ’s cell in agent A’s information partition
w(A) = {w ′ ∈W : w ∼A w ′}:

µwA (w ′) =
µ(w ′)∑

v∼Aw
µ(v)

, for w ′ ∼A w ,

and
µwA (w ′) = 0 for w ′ 6∼A w .
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Agents’ Epistemic Potential

Local Observations

By performing local observations (i.e. A-local tests), an agent A
may obtain more information about the current A-local state

stateA(w) := state(w)A = pNI (A)(state(w)).

So A may be able to better distinguish worlds apart, using her
local tests. In the best case, she can fully determine stateA(w).

Epistemic Potential

So A’s potential epistemic indistinguishability relation ∼♦A is:

w ∼♦A w ′ iff w ∼A w ′ and stateA(w) = stateA(w ′).

We also put
w♦(A) = {w ′ ∈W : w ′ ∼♦A w}

for agent A’s potential-information cell.
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Propositions and Truth

Propositions

A (epistemic) proposition is a map P associating to each model
M some set of worlds PM .

We write
w |=M P iff w ∈ PM ,

and in this case we say that P is true at world w in model M (or
world w satisfies P in model M).

Epistemic Operators

Our logic has knowledge operators KA and K♦A for all agents
A ∈ A.
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Semantics

Semantics of KA and K♦A
The knowledge, and potential knowledge operators, are defined
using the standard Kripke semantics: for every proposition P, we
put

w |= KAP iff v |= P for all worlds v ∼A w ,

w |= K♦AP iff v |= P for all worlds v ∼♦A w .

In other words:

(KAP)M := {w ∈W : w(A) ⊆ PM},

(K♦AP)M := {w ∈W : w♦(A) ⊆ PM},

etc.
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Potential Knowledge Operator

Potential Knowledge of agents

The potential knowledge operators K♦A , capture (the upper limit
of) what agents could come to know by performing (only)
more local observations.

K♦A gives only an upper limit: it puts a bound on A’s potential
knowledge.
In practice (given that local observations may change the system’s
state), an agent can really actualize only some of this potential.
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Probabilistic Operators

Operators for Subjective Probabilities

We could also introduce operators for subjective probabilities:

µA(P) ≥ r ,

for every agent A and rational number r ;
“agent A assigns at least probability r to proposition P.

More generally, one can follow Halpern et alia and allow in the
syntax probabilistic linear inequalities:∑

k=1,m

ri · µA(Pk) ≥ r
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Special Atomic Sentences

A has access to qubit i

We may introduce atomic sentences of the form

i ∈ I (A)

“the local I -state of the system is ρI ”

cI

(for some given constants cI denoting specific local states).
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A-Local Propositions

A proposition P is A-local if, for all models M and all worlds w ,w ′,
we have that:

w |= P and w ∼♦A w ′ implies w ′ |= P.

Examples

For every proposition P, the propositions KAP and K♦AP are
A-local.

Proposition

The following are equivalent:

1. P is A-local;

2. P = K♦AP;

3. P = K♦AQ for some proposition Q.
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Special Propositions

Local Propositions

For each I -local state sI , there exists a corresponding proposition
sI , given by

w |=M sI iff stateI (w) = sI .

More generally, for every subspace PI of HI , there exists a
corresponding proposition PI , given by

w |=M PI iff stateI (w) ⊆ PI .

Local Tests

I -local tests can thus be identified with tests PI ? of propositions of
this form.

When I = A is an agent, such propositions are always A-local:

PA = K♦APA.
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(Probabilistic Epistemic) Action Models

Action Model

Given N, S, A and (an access map) I , an I -action model is a
tuple M = (E ,∼, µ, change, I , J)

Where:

I E is a set of “possible events”;

I ∼: A → Equiv(E ) is a map associating to each agent A ∈ A
some equivalence relation ∼A⊆ E × E on events, called
A-indistinguishability (or epistemic accessibility);

I µ : E → [0, 1] is a probability distribution;

I I and J associate to each event e ∈ E some access maps Ie ,
Je ;

I change is a map assigning to every event e ∈ E some type of
state change change(e) = (Φe ,Acte), where:
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State Changes

change(e) = (Φe ,Acte)

I Φe is a set of mutually incompatible propositions, called
preconditions (of event e);

I Acte is a set of Ie-based multi-agent actions.

REQUIREMENTS

e ∼A e ′ ⇒ Ie(A) = Ie′(A) ∧ Je(A) = Je′(A),

T ∈ Acte , ρ, ρ
′ ∈ P ∈ Φe ⇒ Tr(T †Tρ) = Tr(T †Tρ′).
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Intuition

An event e can only happen if one its preconditions is true:

I Event e may be non-deterministic: one of the actions in Acte
is happening in state ρ with probability Tr(T †Tρ);

I The probability of an action T ∈ Acte happening in a state
depends only on the precondition P ∈ Φe holding in that
state;

I Each action T ∈ Acte is actually a Ie-multi-agent action:
every agent A performs the corresponding local action TA on
the set of qubits Ie(A) to which it has access;

I The agents may lose/acquire/exchange qubits (without
necessarily knowing that), change locations etc, so that after
event e, agent A’s new location or set of accessible qubits is
Je(A).
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Agents’ Epistemic Probabilities for Events

Epistemic Probabilities

Agent A’s epistemic probability at a given event e is obtained
by conditionalizing µ on e’s cell in agent A’s information partition
e(A) = {e ′ : e ′ ∼A e}:

µeA(e ′) =
µ(e ′)∑

f∼Ae
µ(f )

, for e ′ ∼A e,

and
µeA(e ′) = 0 for e ′ 6∼A e.
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Example: local measurements in a commonly-known basis

Event Model for agent A’s local observation:

�� ��
�� ��
{sA:p}

PA?⊗idN\A

{sA:p′}
P⊥
A ?⊗idN\A

where µ = 1, loops are implicit for all agents and

p = Tr(PA?sA)

p′ = Tr(P⊥A ?sA)
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Example: measurements in one of a set of possible bases

�� ��
�� ��
{sA:p}

PA?⊗idN\A

{sA:p}
P⊥
A ?⊗idN\A
OO
B 6=A
���� ��

�� ��
{sA:q}

QA?⊗idN\A

{sA:q′}
Q⊥

A ?⊗idN\A

where (say) µ = 1
2 for both events, p, p′ as before and

q = Tr(QA?sA)

q′ = Tr(Q⊥A ?sA)
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Example: public local quantum operations

Public local quantum opertions

�� ��
�� ��
{sA:1}

UA⊗idN\A

where µ = 1.
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Example: performing one of a set of possible operations

�� ��
�� ��
{sA:1}

UA⊗idN\A
OO
B 6=A
���� ��

�� ��
{sA:1}

U ′
A⊗idN\A

where say µ = 1
2 for both events.
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Example: classical communication

It is common knowledge that A privately communicates to B
whether or not she knows P, without changing the system’s
quantum state.

�� ��
�� ��
{KAP:1}

id
OO
C 6=A,B
���� ��

�� ��
{¬KAP:1}

id

where say µ = 1
2 for both events.
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Example: (classical) public announcement

A publicly announces (that she knows) that P.

�� ��
�� ��
{KAP:1}

id

with µ = 1.
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The effect of a Quantum Action on a Quantum State

Occurence Probability of a Quantum Action

We define a map pre : Φe → (Acte → [o, 1]), associating to each
precondition P ∈ Φe a probability distribution over possible actions
in Acte ,

It gives for each action T ∈ Acte the (conditional) probability
pr(T |P) that T will occur in a state satisfying P.

pre is given by Born’s rule:

pre(T |P) = Tr(T †Tρ) for ρ ∈ P ∈ Φe ,T ∈ Acte .
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Update Product: Compute the updated state model after
an action

Following Baltag-Moss-Solecki-98

Given a state model M = (W ,∼, µ, state, I ) and an action
model M = (E ,∼, µ, change, I , J), the new state model after
the action is

M
⊙
M = (W

⊙
E ,∼, µ, state, I ), where

I W
⊙

E= {(w , e,T ) : w ∈W , e ∈ E ,T ∈ Acte such that
w |=M P, Iw = Ie and pr(T |P) > 0},

I (w , e,T ) ∼A (w ′, e′,T ′) iff w ∼A w ′, e ∼A e′ and T ∼A T ′;

I µ(w , e) = µ(w) · µ(e) · pre(T |w) , where we put

I pre(T |w) = pre(T |Pw ), if there exists Pw ∈ Φe s.t. w |=M P,
I pre(T |w) = 0, otherwise.
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Product Update Continued

I state(w , e,T ) = T (state(w)) = Tstate(w)T †

Tr(T †Tstate(w)
;

I I(w ,e,T ) = Je .
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Dynamic Epistemic Logic

Syntax: add dynamic operators

[e,T ]P, [e]P

Semantics: use the updated model

w |=M [e,T ]ϕ iff (w , e,T ) |=M·M ϕ,

w |=M [e]ϕ iff w |=M [e,T ]ϕ for all T ∈ Acte .

We obtain “Reduction Axioms”, that allows us to pre-compute
future informational changes of the form

[e]KAP

or
[e]

∑
k=1,m

ri · µA(Pk) ≥ r

etc.
46



Applications: Teleportation

Quantum teleportation

a technique that makes it possible to teleport “the state” of a
quantum system. We are working in a 3-qubit space S1 ⊗ S2 ⊗ S3.

Two agents, Alice and Bob who are separated in space.

Alice controls qubit 1, in unknown local state q1 ∈ S1. In addition,
she also has an “entangled EPR pair”, i.e. a pair of qubits 2, 3 in
the Bell state β002,3 ∈ S2 ⊗ S3. Alice gives the entangled qubit 3 to

Bob (send it to him, and somehow she’s sure he receives it).
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Teleportation, continued

The program

Alice wants to “teleport” the unknown qubit state to Bob, i.e. she
will perform a program that will output a state satisfying id13(q1).

Protocol

She first entangles qubit 1 with her part (qubit 2) of the EPR pair.
She does this by performing a CNOT1,2 gate on the two qubits and
then a Hadamard transformation H1 on the first component.
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Teleportation continued

Next, Alice measures her qubits in the standard basis, destroying
the entanglement. As a result, Bob’s qubit (3) will collapse to a
state q3.

Moreover, the result that Alice obtains from the two measurements
indicate the actions that Bob has to perform in order to transfer
his qubit from its state q3 into the same state as Alice’s original
qubit, i.e. the state id13(q1) (corresponding to the qubit Alice had
before the protocol).
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Communication part

It is enough for Alice to communicate to Bob the result of her
measurement, i.e. send him two classical bits
(x , y) ∈ {0, 1} × {0, 1}, encoding the result x1 of the first
measurement and the result y2 of the second measurement.

This tells Bob that he will have to apply y times the X -gate
followed by x times the Z gate, if he wants to force his qubit q3
into the state id13(ϕ1).
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Actual physics of teleportation:

out q

• Z x

• X y

�� ���� ��Measure x
�� ���� ��Measure y

H

CNOT

input

time

OO

q β00
2,3

prepareβ00
2,3
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Encoding

System:
N = {1, 2, 3}

Agents’ Control:

Initially: I (A) = {1, 2, 3}, I (B) = ∅.

State Space:
S is the state space of H2 ⊗ H2 ⊗ H2.
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Initial State Model

Assumptions made explicit

Suppose that it is common knowledge that A has entangled
qubits 2, 3 in Bell state β00, but that nobody knows the state of
her qubit 1. Moreover, there is some common prior probabilistic
belief µ about the state of qubit 1.

Initial state model (W ,∼, state):

�� ��
�� ��|ψ >1 β

00
2,3 : pψ

�� ��
�� ��|ϕ >1 β

00
2,3 : pϕ//A,B...oo

with
µ(|ψ >1 β

00
2,3) = pψ,

Iw (A) = {1, 2, 3}, Iw (B) = ∅ in ALL worlds w ,

etc. 53



Relaxing the Common Knowledge Assumptions

Changing the assumptions

What if everything is as above, except that now (it is common
knowledge that) B doesn’t know whether A knows her qubit 1
or not.

EXERCISE: Draw The Picture!

Further Variations Possible

Everything is as in the first model, but now there is an intruder E
who doesn’t know whether A knows her qubit 1 or not (but she
knows that B doesn’t know the state of qubit 1)?
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AN ACTION HAPPENS: Alice gives qubit 3 to Bob

Assumptions

Let’s back to the first model: assume common knowledge of
ignorance of (state of) qubit 1.
Moreover, assume now that the Teleportation Protocol is also
common knowledge.

Event e

The event e of Alice giving qubit 3 to Bob is thus a public one:

�� ��
�� ��
{>:1}
id1,2,3

with µ = 1, Ie = Iw , Je(A) = {1, 2}, Je(B) = {3}.
This changes the model only by changing its access map to

I ′w := Je .
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Alice performs her unitary operations

Since the protocol is common knowledge, Alice’s local unitary
operations are also public:

The action model for A’s unitary operations

�� ��
�� ��

{sA:1}
(CNOT1,2;H2)⊗id3

where µ = 1.
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The new state model

The state model after this is computed using update
product:

�� ��
�� ��
∑

i ,j |ijψ(i ,j) >1,2,3 : pψ

�� ��
�� ��
∑

i ,j |ijϕ(i ,j) >1,2,3 : pϕ//A,B...oo

with pψ, pϕ as before and ψ(i ,j) = X j(Z i (ψ) (and similarly for ϕ
etc).
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Alice’s measurement of first qubit in the canonical basis

Alice’s first measurement (of qubit 1 in the canonical basis) is a
local measurement in a commonly known basis.
(This is because we assumed common knowledge of the protocol)

Action Model of A’s first measurement

�� ��

�� ��
{sA: 12}

|0>1?⊗id2,3
{sA: 12}

|1>1?⊗id2,3

where µ = 1.
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Alice’s measurement of second qubit

The same applies to A’s measurement of the second qubit:

Action model of A’s second measurement

�� ��

�� ��
{sA: 12}

id1⊗|0>2?⊗id3
{sA: 12}

id1⊗|1>2?⊗id3

where µ = 1.
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The Resulting State Model

The resulting state model after these measurements is:

�� ��
�� ��|00ψ(0,0) >1,2,3

ee

B

%%

OO

A,B

��

oo B //
�� ��
�� ��|ijψ(i ,j) >1,2,3

�� ��
�� ��|00ϕ(0,0) >1,2,3

yy

B

99

�� ��
�� ��|ijϕ(i ,j) >1,2,3
//Boo

��

A,B

OO
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Final Step: Communication and Final State Model

Neglecting intruders, we can assume that this is a public
communication of KA|ij >1,2, for the true i , j ∈ {0, 1}.
The resulting model (on the right) is obtained by disconnecting all
arrows except for the vertical ones:

�� ��
�� ��|00ψ(0,0) >1,2,3

OO

A,B

��

�� ��
�� ��|ijψ(i ,j) >1,2,3

�� ��
�� ��|00ϕ(0,0) >1,2,3

�� ��
�� ��|ijϕ(i ,j) >1,2,3

��

A,B

OO
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