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Abstract

At the First International Conference on Logic and Relativity, Bringsjord, on behalf of a trio of RAIR-
Lab researchers, showed a formal, semi-automated, symbolic proof of Theorem NEAT (No Event at
Two Places). Extension and refinement of this research appeared subsequently (in Synthese). This
prior work, like 99.9% of proof-oriented work in the formal sciences, is homogeneously linguistic
in nature: the proofs in question are based exclusively on formal languages; diagrams, pictures,
images, etc. are nowhere to be seen. Yet mathematical physicists routinely employ (informal) visual
and diagrammatic reasoning in their proofs. A formal system leveraging both visual and symbolic
reasoning enables heterogeneous proofs that are (i) not only more readable, intuitive, and consistent
with scientific practice, but also (ii) simpler (in a formal sense), and therefore potentially easier for
machines to discover on their own. Herein, we announce the availability of precisely such a system,
one built directly atop Vivid, a heterogeneous logicist framework in turn built atop denotational
proof languages (DPLs); and we employ the system to move closer to a formal, semi-automated
proof of Theorem NEAT that is at once both linguistic and diagrammatic.

∗We are indebted to Naveen Sundar G. of Yahoo for substantial work in computational logicist physics, carried out while
in Bringsjord’s RAIR Lab. This paper owes a large debt to Konstantine Arkoudas, whose seminal DPL/Vivid research
plays a pivotal role. Finally, without the generous support of AFOSR, Bringsjord’s move into computational logicist physics
would have been flat-out impossible.
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1 Introduction; Plan

“We do not listen with the best regard to the verses of a man who is only a poet, nor to his problems if
he is only an algebraist; but if a man is at once acquainted with the geometric foundation of things and

with their festal splendor, his poetry is exact and his arithmetic musical.”
- Ralph Waldo Emerson, Society and Solitude (1876)

At the First International Conference on Logic and Relativity, one of the authors (SB) presented
“Proof Verification and Proof Discovery for Relativity,” wherein was described the semi-automated
discovery (and verification) of a proof for Theorem NEAT (No Event At Two Places), using the proof-
engineering environment Slate (Bringsjord, Taylor, Shilliday, Clark & Arkoudas 2008), a fertile system
for RAIR-Lab formal, proof-based AI (e.g. see Bringsjord, Govindarajulu, Ellis, McCarty & Licato
2014).1 This work was subsequently refined and expanded, and published in Synthese (Govindarajalulu,
Bringsjord & Taylor 2014). In that paper, a future-work agenda was adumbrated, and the authors
specifically mentioned that (i) informal physics proofs often draw upon visual, geometric concepts not
directly present in standard formal languages (such as the formal languages that anchor first-order logic,
higher-order logic, modal logic, etc.), such as lines, planes, slopes, et cetera, and that (ii) the reasoning
propounded is commonly heterogeneous in nature: it mixes diagrammatic reasoning on the one hand,
with informal linguistic/sentential reasoning naturally modeled in standard formal languages on the other
hand.

In the time since that conference, a first-order proof of the theorem “no inertial observer can travel
faster than light” has also been verified in the proof assistant and interactive theorem prover Isabelle/HOL
by Stannett and Németi (2014). Their proof models the geometric structures common to all models
of spacetime, such as vectors, points, lines and planes. However, it is important to note that these
models are linguistic (or sentential) in nature, and therefore the reasoning involved remains classically
homogeneous: none of the diagrams and pictures common in the presentation of such reasoning by one
human to another are present in the formal reasoning in question.

The Vivid system (Arkoudas & Bringsjord 2009b) for mechanized heterogeneous natural deduction, in
contrast, was developed explicitly to combine linguistic and diagrammatic representations, and deduction
over such representations, at the formal level. The framework represents a member of the family of
denotational proof languages (DPLs) invented by Arkoudas (2000). Vivid is able to: model under-
determined diagrams, and deal with incomplete information; includes a formal semantic framework
based on a Kleenean three-valued logic; includes general inference mechanisms for the valid extraction of
information from diagrams and the incorporation of sentential information into diagrams; and has been
proved sound.

Given this context, the sequence of the sequel is as follows: Section 2 is a brief, non-technical overview
of Vivid, and of an implementation due to one of the authors (NM). Section 3 provides a diagrammatic
proof of a special-relativity theorem that can be directly respresented in a Vivid language and then
automatically verified. Section 4 describes PAGI World (Licato et al. Submitted for Initial Review),
written in the Unity game engine, which we use to simulate a certain proper subset of the space of Vivid
proofs. Section 5 wraps up the paper by among other things pointing toward our goal of Vivid-based
proof-generation, to enable automated scientific discovery in axiomatic physics.

2 Vivid Encapsulated

Diagrams are arguably the most useful tool for visual inference (including deductive inference, our focus).
As opposed to purely linguistic/sentential representations of information, diagrammatic representations
enable visual reasoning. Such representations have structural correspondences with what they represent;
these analogical representations (to use the terminology of Sloman 1971) genuinely resemble what they
depict.2 Often resolution of an image or incomplete information about the representation can make
extracting sentential information from a scene impossible; this is not the case in diagrammatic represen-
tations. In the Vivid system, diagrammatic representations are held as partially complete descriptions

1Slate is based on natural deduction carried out in hypergraphs, a novel form of natural deduction.
2Other thinkers use different adjectives to denote the same kind of representations. E.g., Barwise & Etchemendy (1995)

talk of homomorphic representations.
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of finite system states; this gives the capability of reasoning with incomplete information (which is un-
avoidable) to any system that employs diagrammatic reasoning. This robust ability of diagrammatic
representations to incorporate incomplete information into proofs provides a convenient and efficient
solution to the challenge of formalizing and implementing reasoning that is part linguistic, and part
diagrammatic. Accordingly, Vivid’s proof theory includes sentential deductions (which D ranges over),
diagrammatic deductions (which ∆ ranges over), and heterogeneous deductions that combine these two
types of deductions (which D ranges over). All deduction is natural deduction, rather than for instance
resolution.3

In the following example, the use of Vivid gives rise to an extended concept of “four-dimensional
proof.”4 First, we form a purely sentential representation to define the mathematical relations we
want to incorporate in the visual scene. Then, we utilize PAGI World’s sensors to receive purely visual
information from the scene.5 We then transform this visual information into a more convenient sentential
representation, and then use this representation to form a diagrammatic representation of the scene itself,
in which we solve the task at hand. Our example specifically uses Vivid’s thinning rule (Arkoudas &
Bringsjord 2009a) (see note 3). In this way, we go from a purely sentential representation, to a purely
visual one, then from visual to sentential, and finally from sentential to visual.6

Consider the scene in Figure 11. In this scene, the agent is presented with two clocks. We obtain
a particular instance of a Vivid proof by employing the suite of inference schemata in (Arkoudas &
Bringsjord 2009a) to determine whether or not the first clock is ahead of the second. While the agent
receives visual information from the scene, we restrict the sensors so that the agent can roughly determine
the time on each clock: the agent receives a set of approximately correct times; his vision is a bit fuzzy.
Then, to interpret the Ahead relation, we employ the thinning rule, trying each value in the sets of
potential times of the clocks against each other. Since the first clock is definitively further ahead of the
second clock in the agent’s vision, the agent can deduce that the Ahead relation holds, and that the first
clock is indeed ahead of the second.

3 Example

This section concerns Theorem 2.2 from “Logic of Space-time and Relativity Theory” (Andréka, Madarász
& Németi 2007), which states that no observer observes the same event at two different space-time lo-
cations in models of the field and light axioms of special relativity. We abbreviate this, as before, as
‘Theorem NEAT’ (No Event At Two Places). An informal proof is supplied in English; the proof uses
geometric constructs in its reasoning. We now describe how this proof may be formulated in a formal
heterogeneous (i.e., linguistic/sentential-and-diagrammatic) manner, and represented in a Vivid language
for automatic verification.

Argument: Consider a 2-dimensional plane with two axes, the horizontal axis representing the
spatial dimension and the vertical axis representing the temporal dimension. Let there be an inertial

3Due to space constraints, we cannot inform the reader about the many deductions available in the space D. Some of
the deductions of type D will be fundamentally quite familiar to all readers (e.g.,

specialize ∀x1, x2, · · · , xn.F with t1, · · · , tn)

while others are fully novel. E.g., “sentential-deduction” cognoscenti will not have encountered the present paper having
already in hand an understanding of:

(σ; ρ) by thinning with F1, · · · , Fn.

We do provide some selected information below, to facilitate exposition.
4Such proofs are impossible in standard, linguistic logics. For example, spatial logics, while ironically targeting

phenenomena that are often depicted with diagrams by humans, are exclusively linguistic. This is revealed e.g. by study
of (Aiello, Pratt-Hartmann & Benthem 2007b). In fact, the purely linguistic nature of the logics in question is explicitly
affirmed; e.g., we read:

By a spatial logic, we understand any formal language interpreted over a class of structures featuring geo-
metrical entities and relations, broadly construed. (Aiello et al. 2007a, p. 1; bolded text our emphasis)

5PAGI World, described below, provides both a realistic, physical environment and sufficiently rich visual information,
and is thus a natural choice for an environment that supports heterogenous deduction specified in Vivid.

6Technically, deduction by cases is what constitutes the key nexus between linguistic/sentential and diagrammatic
deduction in Vivid, but space in the current, preliminary version of the present paper prevents us from giving a full
presentation/explanation. However, we do deploy cases below (§3) and doing so provides what we take to be an appreciable
degree of explication of this kind of deduction.
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observer m at the origin. Consider two distinct points x and y on the plane.

From the field axioms, it follows that through any point x, there will be two lines of slope 1,
where the speed of light c = 1.

We now summarize the process of formulating a diagrammatic representation in Vivid, and
provide such a formulation. To specify a formula instance in Vivid, three steps are necessary.

First, we must provide an Attribute Structure A containing a collection of attributes and the set
of their possible values, along with a set of computable relations R involving those attributes. We
choose the attributes position, slope, and line positions with ranges Rn, [0, 1], and Rn∗

(where
∗ is taken to mean the set of all lists of the elements of Rn), respectively. Furthermore, we choose
the relations R1 ⊆ Rn × Rn∗

defined as R1(p1, [p
′
1, ..., p

′
k])⇔ p1 ∈ [p′1, ..., p

′
k], R2 ⊆ Rn × Rn defined

as R2(p1, p2)⇔ p1 = p2, and R3 ⊆ [0, 1] defined as R3(s)⇔ s = 1. Then, in Vivid’s native notation,
our attribute structure is A = ({position : Rn, slope : [0, 1], line positions : Rn∗

};R1, R2, R3),
where R1, R2, and R3 are defined as above.

Next, we must specify a Vocabulary Σ = (C,R,V), consisting of a set of constant symbols
C, a set of relation symbols R, and a set of variables V used as the signature for the state we are
representing. We define C as {x, y,m, l1, l2}; R as the set containing through(p, l), which holds when
point p lies on line l; s(p, x), which holds when photon p is observed at point x; slope of one(l),
which holds when the slope of line l is 1; and V as ∅, i.e., the empty set.

Finally, we must provide an interpretation of the relation symbols of Σ into A. That is, as
dictated by the formal machinery of Arkoudas & Bringsjord (2009b), we must provide a mapping I
that assigns to each relation symbol R ∈ R of arity n:

1. a relation RI ∈ R of some arity m, called the realization of R:

RI ⊂ Ai1 × · · ·× ⊂ Aik

(where we might have m 6= n); and

2. a list of m pairs

[(li1 , j1), ..., (lim , jm)],

the profile of R, denoted by Prof(R), with 1 ≤ jx ≤ n for each x = 1, ...,m.

We summarize this interpretation in the following table.

Symbol Arity Realization Profile

through 2 R1 [(position, 1), (line positions, 2)]

observes 2 R2 [(position, 1), (position, 2)]

slope of one 2 R3 [(slope, 1)]

We now proceed by cases. Vivid has a control-construct built in for the formalization of proofs by
cases.

Case I (1): y is not on either of these two lines. In this case, assume that m observes a
photon p at x, and observes the same photon p at y. However, the line connecting x and
y would have a slope other than 1, which implies that the photon would be traveling at
a speed other than the speed of light. This contradicts the light axiom. It follows that it
is impossible that m should observe the same event at x and y.

Case II (2): y is on one of these lines. Consider the other line l1, also of slope 1, through
x. Let there be a photon q somewhere on this line other than at x. This photon may
legitimately have traveled from x to its current location in space-time; hence q represents
an event m observes at x. Now assume that m observes the same event at y. This would
mean that q is somewhere on line l2, the line of slope 1 through y which is other than
the line passing through x. Then, q must be on both lines l1 and l2, and hence at the
point where they meet. However, there is no such point, since l1 and l2 are parallel to
each other. Hence, m cannot observe the event represented by q at y. It follows that it is
impossible that m should observe the same event at x and y. QED

We now define an additional axiom from our relations defined in Σ above, and proceed to demonstrate
our proof within the framework of Vivid. We define the not on same worldline axiom as the Horn
clause: observes(p, x) ∧ through(x, l) ∧ ¬through(y, l)→ ¬observes(p, y), taken to mean informally
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Figure 1: Case I

Figure 2: Case II
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Figure 3: ∆0

Figure 4: ∆1
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Figure 5: ∆2

Figure 6: ∆3
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Figure 7: ∆4

Figure 8: ∆5
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Figure 9: Proof for Case I
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Figure 10: Proof for Case II
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Figure 11: A demonstration of real-time reasoning with Vivid in PAGI World.

that if an observer observes a photon p at point x and x is on worldline l and y is not on worldline
l, then that same photon p is not observable at y. Beginning with diagram ∆0 (Figure 3), we apply
the diagrammatic rule [C1] with the field axiom AxFd to derive two new diagrams, ∆1 and ∆2,
corresponding to the cases above, respectively. Formally, we have, cases from AxFd : (σ1, p1) →
∆1 | (σ2, p2) → ∆2, where y is either on a worldline or is not. These cases are clearly exhaustive,
which satisfies the side condition necessary to implement [C1].

Case I (Figure 4): From diagram ∆1, we claim a photon p exists at point x and use
the diagrammatic rule [Diagram−Reiteration] to derive ∆3 (Figure 6). We proceed by
using the observe 7 rule to extract sentential information from the diagram. Specifically,
we extract two observations: observe observes(p, x) ∧ through(x, l1) ∧ ¬through(y, l1)
and observe observes(p, x) ∧ through(x, l2) ∧ ¬through(y, l2). Through application of
the not on same worldline axiom with both of the observations obtained from ∆3, we
conclude ¬observes(p, y), that is, m does not observe photon p at y, but does observe p
at x. The semi-automated proof of this is formalized in Figure 9, in the hypergraph-based
automated theorem prover Slate. Then, the set of bodies observed by m at x is different
than the set of bodies m observes at y, completing the first case.

Case II (Figure 5): In the case of ∆2, x and y lie on the same worldline l1 depicted in the
diagram. However, AxFd specifies another line of slope 1 through x. With this in mind,
we apply the diagrammatic rule [∆; ∆] with AxFd to derive diagram ∆4 (Figure 7). Now,
claiming photon p′ exists at point c on the new worldline l2 that goes through x (where
c 6= x), and utilizing the [Diagram−Reiteration], derives the new diagram ∆5 (Figure 8).
We now observe observes(p′, x)∧through(x, l2)∧¬through(y, l2). observes(p′, x) implies
observes(p′, c) as x and c are both on l2. However, observes(p′, c)) implies ¬observes(p′, y)
since AxFd tells us that any line between c and y has slope k 6= 1. Then, photon p′ has
a speed different from the speed of light which is prohibited by the light axiom AxPh.
Hence, m observes photon p′ through x but not through y, the semi-automated proof of
which is formalized in Figure 10, again in Slate. This gives us a body in the set of bodies
that m observes at x but which m does not observe at y. QED

4 PAGI World as a Simulator for Vivid

Psychometric AI (PAI, pronounced “pie”) is an approach that gauges progress in AI by increasing the
performance of AI systems on all tests designed for human intelligence (Bringsjord & Schimanski 2003,
Bringsjord 2011). Psychometric Artificial General Intelligence (PAGI, pronounced “pay-guy”) is likewise
devoted to engineering AI systems capable of performing demonstrably well on all established, validated

7This rule is used to extract sentential information from diagrams. This is similar to what we do when we just look at
something.
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tests of intelligence and mental ability, even those which the systems have never seen before (Bringsjord
& Licato 2012). PAGI tests can include much more than those which would typically appear on written
exams. For example, being placed in a room and asked to make use of the available objects to figure out
how to break out of the room might be considered a test of PAGI.

PAGI World is a simulation environment written in the Unity game development system to easily
showcase artificially intelligent agents performing cognitive tasks. PAGI World is equally accessible to
nearly all existing cognitive systems, as it is cross-platform and allows relevant AI agents to communicate
with the world through TCP/IP, thus enabling AI technology to be tested/simulated using virtually any
programming language. PAGI World has already been used to demonstrate some significant cognitive
phenomena (e.g. see Marton, Licato & Bringsjord forthcoming, Atkin, Licato & Bringsjord forthcoming).

While Vivid serves as an abstract, formal logico-mathematical framework for the diagrammatic rea-
soning we employ, PAGI World promises to serve as an environment in which to construct and manipulate
particular diagrammatic content. This makes it ideal as a simulator for Vivid proofs. For example, Fig-
ure 11 pictures a task in PAGI World containing two clocks, which the artificial agent views. The agent
is able to extract relevant states σi from the clocks, putting them into Vivid formulae. Using those
formulae, the artificial agent is able to determine which of the clocks is showing a later time.

In particular, this PAGI World-Vivid connection offers the enticing possiblity of simulating special
relativistic kinematics. With small on-screen velocities representing velocities close to that of light,
the simulation would demonstrate the famous triad of special relativistic effects; that is, that moving
clocks slow down, moving ‘spaceships’ shrink, and moving pairs of clocks lose their synchrony. Most
importantly, the simulation, since it concretizes the diagrammatic representation of a sequence of steps
in a Vivid proof, is automatically verifiable at each step. This approach to computational simulation
explicitly represents a ‘proof in motion’ (recalling the Curry-Howard Isomorphism), and is thus at once
verifiable and simulation-based.

5 Next Steps

Ultimately, our goal is exactly the rather ambitious one stated in (Govindarajalulu et al. 2014): engineer
intelligent computing machines capable of not only verifying formal reasoning, but discovering proofs.8

We believe that such discovery will be much easier to obtain when the diagrammatic information that
is historically central to human creativity in the formal sciences is made susceptible to mechanical
manipulation. Hitherto, this manipulation, sadly, has been, save for a few rare and rarefied exceptions,
restricted to mere linguistic processing. To put the desired future another way, we are seeking, as a
framework for formal science, a comprehensive, heterogeneous logic of the type that Leibniz, throughout
his professional life, dreamed of (Bringsjord & Govindarajulu forthcoming).

This paper takes steps in that direction by: introducing heterogeneous deduction to a community
that has been exclusively focused on linguistic/sentential formalisms, despite the stark reality of the role
of diagrams in rigorous reasoning in physics; demonstrating the formally verifiable heterogenous proof
of a theorem of special relativity; and introducing a graphical simulator for such proofs. As a domain-
independant project, the implementation of an automated theorem prover for Vivid languages will of
course be necessary to meet our goal. In addition, we will be seeking ways of merging the advantages
of hypergraphical natural deduction, as embodied in the Slate system used for the RAIR Lab’s earlier,
first wave of work in logicist physics, with diagrammatic elements.

Visualizations of various special-relativistic effects should be feasible in PAGI World, such as the pole-
and-barn paradox and the twin paradox. Simulating such effects has potential applications in education,
gaming, and digital art. Once extended to general relativity, our simulation-by-proof approach promises
a merger between the ‘analytic’ and ‘numerical’ traditions of relativity practice, with applications similar
to that of the Lazarus Project (Baker, Campanelli & Lousto 2002), but with numerous advantages over
it: verifiability; potentially increased accuracy; and graphical simulation via PAGI World.

8A full discussion, tied to the Four Color Theorem, now classically proved and verified, is provided in (Arkoudas &
Bringsjord 2007).
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Stannett, M. & Németi, I. (2014), ‘Using Isabelle/HOL to Verify First-Order Relativity Theory’, Journal of automated
reasoning 52(4), 361–378.

12


	Introduction; Plan
	Vivid Encapsulated
	Example
	PAGI World as a Simulator for Vivid
	Next Steps
	References

