
Space invaders and (small) exotic sources

Abstract

We discuss similarities between the space invaders scenario in Newto-
nian mechanics and spacetimes obtained using small exotic smooth struc-
tures on the topological manifold R4 in classical general relativity.

1 Space invaders
The space invaders scenario in Newtonian mechanics describes a situation in

which determinism — understood as a thesis that fixing physical situation of the
system in one moment of time amounts to fixing it at all times — is violated. In
this scenario one usually starts with the system of finitely many bodies which due
to interactions between them (the easiest construction uses collisions) accelerate
without bound, "escaping" to infinity in finite time. Since Newtonian mechanics
is time-reversal invariant, the system’s reverse temporal evolution also is a New-
tonian system, in which bodies appear "out of nowhere" at an arbitrary moment
of time.

Since the scenario makes use of unbounded acceleration, it is relativistically
untenable. One may thus wonder whether any similar scenarios are allowed by
classical general relativity. Indeed, situations somehow resembling space invaders
can happen in spacetimes with timelike infinity, such as anti-de Sitter spacetime.
But this, in turn, can be remedied by postulating the boundary conditions. Are
there situations similar to space invaders which cannot be remedied in this way?
We suggest that if one exploits exotic smooth manifolds the answers is positive.

2 What are exotic R4?
A smooth manifold M′ is called exotic if it is homeomorphic but not diffeo-

morphic to a given manifold M (conventionally, "usual" smooth manifolds, such
as n-spheres and Rn are the non-exotic ones). It is far from obvious that any exotic
manifolds exists. But in 1956 Milnor constructed first exotic manifold, the exotic
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7-sphere, and a number of mathematical results followed, including classification
of exotic spheres in higher dimensions.

In case of Rn, for n , 4 there exists no exotic smooth structure. But in case of
n = 4 uncountably many exotic smooth structures exist. We will denote them by
R4

Θ
and the non-exotic smooth structure as R4. R4

Θ
divide into two classes: small,

which can be smoothly embedded into R4, and large, which cannot.1.
Starting with a series of papers by Brans in early 1990s, exotic R4’s have been

used (among others) in quantum field theory, inflationary cosmological models,
and quantum gravity. See (Asselmeyer-Maluga and Brans, 2007) for an overview
of exotic manifolds directed at physics audience and (Asselmeyer-Maluga and
Brans, 2015) for some recent developments. In contrast, we are interested in the
classical general relativity, in particular, whether any philosophically interesting
morals can be drawn from the existence of exotic smooth structures.

3 "Exotic invaders"
Here we show how to use R4

Θ
to construct scenario we dub "exotic invaders".

Then we discuss its physical and philosophical relevance. We assume that the rela-
tivistic spacetime is a pair 〈M, g〉, where M is a four dimensional second countable
smooth manifold, and g is Lorentz-signature pseudo-metric.

3.1 Construction and similarity to space invaders
In 〈R4, g〉 fix Cauchy surface Σ. Find open subset C above Σ. Remove C and

insert small exotic R4
Θ

. Define g′ in any way on R4
Θ

. "Folklore" knowledge is that
any non-compact smooth manifold admits a Lorentzian metric, so such g′ always
exists.2

Then the result of (Kokkendorff, 2002), that for any non-compact smooth man-
ifold there exists a Lorentzian metric with a smooth time function, can be used to
establish stably causal metric on a small R4

Θ
.

However, R4
Θ

are not globally hyperbolic. Poincare conjecture — now known
to be true — implies that R4

Θ
is not a product of R ×smooth R

3; but by a theorem
due to Dieckmann (Dieckmann, 1988), every globally hyperbolic spacetime can
be represented as R ×smooth Σ, for Σ a Cauchy surface.

1These constructions can be found in (Scorpan, 2005)
2What we mean by "folklore" here is that the author is not aware of a better proof of existence

of Lorentzian metric on non-compact manifolds than the one presented by Geroch and Horowitz
(Geroch and Horowitz, 1979). Their proof, however, predates discovery of R4

Θ
; and thus the author

is not certain whether some subtelties might not block Geroch and Horowitz argument after all,
due the failure of smooth connected-sum-splitting (responsible for some of R4

Θ
).
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Moreover, since there is no diffeomorphism d between R4 and R4
Θ

, g′ , d∗(g),
so 〈R4, g〉 and thus 〈R4

Θ
, g′〉 are not isometric.

To sum up, we constructed two spacetimes: 〈R4, g〉 and 〈R4
Θ
, g′〉 which are

isometric up to a given Cauchy surface Σ, but are no isometric above, with 〈R4, g〉
continuing in a globally hyperbolic way, and 〈R4

Θ
, g′〉 containing structure which

exists due to small exotic smoothness, is localized, and is non-isometric to the
globally hyperbolic developement. Due to freedom of choice of the small R4

Θ

(since there are uncountable many possible choices of the smooth region Θ), we
obtain a large class of spacetimes with "exotic invaders".

The parallel with the space invaders is that the "exotic invader" appears at an
arbitrary moment, without data on Σ determining whether the invader will appear
in the spacetime or not. This situation, however, differs from the space invaders
scenario in important two ways. First, no recourse to time-reversal invariance
is needed. Second, the "exotic invader" does not come from any "infinity", and
prima facie seems to not involve any acceleration at all.

Note also that since R4
Θ

is homeomorphic to R, we obtain indeterministic-
looking scenario which is hole free in the intuitive sense that no points are re-
moved from the spacetime manifold M.

3.2 Brans conjecture
We have used R4

Θ
to construct a new spacetime 〈R4

Θ
, g′〉. But one may object

that 〈R4
Θ
, g′〉 is merely a mathematical construct, and demand an interpretation

in physical terms. Can one provide such an interpretation for the exotic smooth
structure?

It turns out that (Brans and Randall, 1993) suggested such an interpretation:

R4
Θ

acts as a gravitational source.

This could be understood as:

Any Lorentzian metric on R4
Θ

is non-flat in the exotically smooth regions.

Thus, it seems that if Brans conjecture is true in classical general relativity,
there are spacetimes with spontaneously appearing gravitational sources due to
exotic smooth structure of spacetime. This provides a minimal interpretation of
〈R4

Θ
, g′〉.

4 Summary
Using small exotic R4

Θ
we constructed class of spacetimes with behaviour sim-

ilar to Newtonian space invaders. We end with a remark on cosmic censorship.
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Earman (Earman, 1995) noted that cosmic censorship conjecture rules out space-
times with exotic smooth structure. Inspired by the progress in the formulation
of the (notoriously wooly) conjecture (see (Ringström, 2009)), and assuming that
Brans conjecture holds, we suggest the following particular case of the cosmic
censorship might be worth investigating:

(*) any Lorentzian metric which is non-flat due to exotic smoothness leads to
Catastrophe,

(with the Catastrophe being either physically unrealistic in the sense of violat-
ing some interpretative assumptions, such as energy conditions or some structural
properties, or instability under perturbations). It is an open question whether for
various possible meanings of the Catastrophe (*) could be established. Note also
that our reading of Brans conjecture might allow for the weak version of the cen-
sorship to hold, shielding off the exotic regions by black holes.
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