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Abstract 
We would like to draw attention to the fact that abstractions related to logic and mathematical 

models of physics soon going to be necessary to the development of generic high-performance 

simulations to advance computational physics. The common language to describe and 

formulate these is already available in some high-level languages and the main cornerstones 

are rooting in category theory that in turn again related to the basic foundations of mathematics 

and physics. The types that many people thought are just used for differentiating integers from 

floating point numbers in computer programs have grown not just to give the main structure of 

modern computer programs but recent research is focused on founding mathematics and 

physics on them. 

1. Introduction 

Axiomatic foundations of mathematics on set theory was a great program started at the 

beginning of the last century by David Hilbert. Despite being proved to be impossible by Gödel 

it had a great influence on the later development of mathematical logic, proof theory, computer 

science and later type theory. The latter started to develop in parallel from avoiding the Russell 

paradox in logic systems. Hilbert’s student Haskell Curry come to the observation that 

propositions correspond to types and proofs of those propositions to programs inhabiting the 

corresponding types; logical connectives between propositions (for example, logical 

conjunction 𝐴 ∧  𝐵) to type formers (for example, the pair type (A, B)) [1]. Roughly speaking 

this establishes a direct relation between verification of a constructive logical proof and 

successful compilation of a computer program written in a strongly typed programming 

language. Type theory then continued to investigate more and more complex type systems, 

their expressive power, and their connection to (higher-order) logic. Types slowly started to 

diffuse into mainstream programming languages during the dawn of the digital computer era, 

and with the spread of computer programming the evolution of programming languages 

advanced and research in functional programming soon started to realize such type systems in 

the form of compilers. However performance characteristics, division between academic and 

industrial attitudes and implementation maturity polarized the programming community: 

production and performance oriented programmers traditionally developed in lower level and 

less typed languages, while stronger type systems were mainly remained in the realm of 

academic interest were more focused on advanced optimization and generic (reusable) 

development techniques. However in recent years high profile use cases showed that functional 

programming is necessary and more scalable than traditional solutions because of its more 

natural composability. This was followed by the gradual adaptation of features from high-level 

languages like lambda functions (anonymous functions), generics (templates) and more 

recently traits (concepts).  

Meanwhile, Category Theory appeared at the end of the 1940-ties, as a continuation of the 

work of Emmy Noether, but was first investigated in the context of algebraic topology and 

homological algebra [2]. Later connections to deductive systems and type theory was 



established, and the concept of toposes paved the way to the formalization of set theory and 

foundations of mathematics via categories. This line continued to evolve, and we only note [3] 

as recent research direction into founding physics on this concept. More recently category 

theory found application to functional programming, and started to play an essential role in 

designing advanced functional libraries [4, 5]. 

Yet another direction is intuitionistic type theory (Martin-Löf type theory [6]) which was 

introduced in the 70ties as a constructive alternative foundation of mathematics, building on 

top of the Curry-Howard correspondence, introducing dependent types and universal 

quantification amongst other things; a less ambitious construction known as System F (Girard–

Reynolds polymorphic lambda calculus) is at the core of most of today’s functional 

programming languages, such as Haskell and the ML family. It was shortly understood in 

category theory via locally cartesian closed categories [7]. Further developments resulted in 

computer proof assistants and languages that are widely utilized today even in industrial 

applications. Investigation of the decidable intensional type theory lead to the advent of 

homotopy type theory, and recently the univalent foundations project [8, 9]. 

From this introduction it is evident, that logic, programming, and mathematics are deeply 

related, and useful abstractions discovered in one or another can be applied in all of them to 

advance thinking and development. In the following sections we would like to present a 

particular example from different viewpoints to show how these ideas can be utilized to 

advance the development of generic simulation tools of computation physics. 

2. Category Theory 

The concept is usually attributed to Samuel Eilenberg and Saunders Mac Lane, who developed 

the most important concepts in the field. For mathematicians the traditional reference is [10], 

otherwise we recommend [11, 12]. Here we only review the most important basic properties 

of categories. 

A category is a collection of objects and a collection of morphisms that take objects into 

objects. We may denote morphisms with an arrow between objects: 𝑥 →  𝑦. Also, a category 

is equipped with a binary operation called composition (∘) of morphisms that obeys two rules:  

 Associativity: if 𝑓: 𝑥 → 𝑦, 𝑔: 𝑦 → 𝑧, ℎ: 𝑧 → 𝑤, then ℎ ∘  (𝑔 ∘  𝑓)  =  (ℎ ∘  𝑔)  ∘  𝑓, 

 Identity: for each object 𝑥, there exist a morphism 1𝑥: 𝑥 → 𝑥 such that: 1𝑥 ∘ 𝑓 = 𝑓 and 

𝑔 ∘ 1𝑥 = 𝑔, for any morphisms 𝑓 and 𝑔. 

For our purposes one more construction is needed, called a functor, that describes mapping a 

category to another. Let 𝐶 and 𝐷 denote two categories. The functor 𝐹 from 𝐶 to 𝐷 associates 

each object 𝑥 ∈ 𝐶 to an object 𝐹(𝑥) ∈ 𝐷, and each morphism 𝑓: 𝑥 → 𝑦 ∈ 𝐶 to a morphism 

𝐹(𝑓):𝐹(𝑥) → 𝐹(𝑦) ∈ 𝐷 such that it preserves the identity and the composition property. 

The properties above are so general, that is not surprising, that they show up in many different 

scientific disciplines. In fact, one can identify the elements of the Curry-Howard 

correspondence within category theory, and then recognize the same features in Quantum 

Mechanics (Feynman diagrams) and Topology (cobordisms). For an enlightening review and 

introduction we recommend [13].  

 



3. Types and Programming Languages 

In this section we introduce some aspects of types in programming languages and explain the 

syntax that we’ll use later to express program code examples. We will provide most examples 

in Haskell due to its concise and close-to-mathematics syntax, and in C++ due to its abundance 

in modern scientific computing. 

From the practical point of view, types were added to the early programming languages to 

distinguish different variable types: some functions are not valid on some type of variables, for 

example it is not meaningful to divide a number by a character string. Thus, type annotations 

were added to variables.  

It is immediately evident that functions are something special, so they need a special pattern to 

distinguish them from ordinary variables. For example a simple squaring function would look 

like: 

In Haskell: 

sq :: int -> int 

sq x = x*x 

 

In C++: 

int sq(int x){ return x*x; } 

In Haskell the pattern int -> int is called the signature (return type is the rightmost type) of 

the function: it takes an integer and produces an integer. In C++, signatures appear in the form: 

int(int), where the return type is the leftmost type. 

Many languages allow abstractions over types. If we would like to abstract our square function 

over types we’d write the function declarations as: 

In Haskell:   sq :: a -> a 

In C++:        template<typename A> A sq(A);  

’a’ or ’A’ is now a type parameter, that must be substituted with a known type before using the 

function. This construction may be called a generic function. In mathematical notation this 

means a universal quantification: the function may accept all possible types. Types can be also 

parametrized over types: 

In Haskell:   data Vector a = ... 

In C++:        template<typename A> class Vector { ... }; 

The same capability exist in other languages as well: Java/C#/Rust calls these generic types. 

These constructions can be understood one level higher. The type of a type is a kind. Haskell 

denotes kinds with *. Now one may ask, what is the type of Vector? Vector takes a type (a) 

and creates a new type (Vector a), so it is a * → *. In C++ the nearest syntax is 

template<typename>. 

 



However, while simple type-parameterization is sufficient for expressing functions whose 

behaviour is completely uniform over all possible types (parametric polymorphism), further 

tools are required if we wish to express functions whose behaviour depends on type-specific 

structure, such as an equivalence relation, ordering, or numerical operations on that type (ad-

hoc polymorphism). The Haskell language adopted type classes, a form of limited user-

controlled overloading, by which a set of functions (in this context: methods) with specified 

type signatures can be associated with types claiming membership in the class, for this purpose. 

(The class specifies the signatures; instances for particular types provide the 

implementations). C++ has the reverse problem of completely unrestricted overloading, which 

makes it difficult to precisely specify the interface of a function template within C++ code 

itself, and leads to inscrutable error messages when its implicit requirements are not met; it is 

however planning to adopt a similar solution in the form of concepts [14]. Similar ideas have 

also made their way to Java and C# (interfaces) as well as Rust (traits). 

Type system constructs can be also understood in the framework of category theory: the types 

expressible in a language are the objects, and form a category. In the literature, short names are 

given to these, for example the category of Haskell types is known as “Hask”. The morphisms 

on the types are the functions, and the binary operation is the function composition. We will 

see at the end of the next section how functors appear in Haskell. 

4. Covariance and Contravariance 

We would like to illustrate the connection between mathematics, physics and functional 

programming by demonstrating how the concept of covariance and contravariance shows up 

in these subjects connected by category theory. 

Changing a base in a vector space is an important transformation in virtually all areas in physics 

and related mathematics. For a given vector space 𝑉 over field 𝐹, one can choose a Basis 𝐵 

that is represented by an ordered set of basis vectors {𝑒𝑖𝑗}. Then all vectors 𝑣⃗  ∈  𝑉 can be 

represented by their components in the respective basis: 𝑣⃗  =  𝑒𝑗𝑖𝑣𝑖  . Now if we would like to 

change the basis via a transformation 𝑇: 𝐵1 → 𝐵2 such that  𝑒𝑗𝑖
2 = 𝑒𝑗𝑘

1 𝑀𝑘𝑖, but keep the 

represented vector 𝑣⃗ the same we obtain the identity: 

𝑒𝑗𝑘
1 𝑣𝑘

1  =  𝑣⃗ =  𝑒𝑗𝑖
2𝑣𝑖
2 = 𝑒𝑗𝑘

1 𝑀𝑘𝑖𝑣𝑖
2 

 

Assuming that 𝑀𝑘𝑖 is invertible, we can express the transformation of the coordinates of 𝑣⃗: 

𝑣𝑖
2 = 𝑀𝑖𝑗

−1𝑣𝑗
1 

This transformation property is called contravariant, because the components transform by the 

inverse of the transformation matrix. On the other hand, if one considers linear functionals on 

the vector space 𝑉 over field 𝐹, 𝜑:𝑉 → 𝐹, they can be represented by their components also: 

𝜑𝑖  and the inner product can be written: 𝜑(𝑣⃗ ) = 𝜑𝑖  𝑣𝑖. The inner product to be invariant under 

the basis change: 𝜑(𝑣⃗ ) = 𝜑𝑖
1 𝑣𝑖

1 = 𝜑𝑖
2 𝑣𝑖

2 we need 𝜑𝑖
2 = 𝜑𝑘

1𝑀𝑘𝑖 to cancel the effects of the 

coordinate components coefficient matrix: 𝜑(𝑣⃗ ) = 𝜑𝑘
1𝑀𝑘𝑖𝑀𝑖𝑗

−1𝑣𝑗
1. This transformation 

property is called covariant. 



In category theory functors are distinguished based on how they transform compositions of 

morphisms. Let 𝐴,𝐵, 𝐶 denote different objects, 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶, denote morphisms 

and 𝐹, 𝐺 denote two functors. Then 𝐹 is called covariant if 

𝐹(𝑔 ∘ 𝑓)  =  𝐹(𝑔) ∘ 𝐹(𝑓)  

holds, and 𝐺 is called contravariant if 

𝐺(𝑔 ∘ 𝑓)  =  𝐺(𝑓) ∘ 𝐺(𝑔)  
holds. 

Let’s take basis change 

transformations as morphisms on 

bases, let the functors map the bases 

to their coordinate representations 

and consider the compositions of 

successive basis changes. Let the 

basis change 𝑇: 𝐵1 → 𝐵2 be 

represented by the matrix 𝑀, and a 

successive change 𝑈: 𝐵2 →

𝐵3 represented by 𝑁. For coordinate 

representations of bases the 

transformations act as: 

𝑒𝑗𝑖
2 = 𝑒𝑗𝑘

1 𝑀𝑘𝑖  and  𝑒𝑗𝑖
3 = 𝑒𝑗𝑘

2 𝑁𝑘𝑖  and 

finally:   𝑒𝑗𝑖
3 = 𝑒𝑗𝑘

1 𝑀𝑘𝑙𝑁𝑙𝑖  . 

The same can be shown for linear functionals. For these the functor 𝐹 is covariant: 

𝐹(𝑈 ∘ 𝑇) =  𝐹(𝑈) ∘ 𝐹(𝑇)
              
→    𝑀𝑁 

However for coordinate vector components: 

𝑣𝑖
2 =  𝑀𝑖𝑗

−1𝑣𝑗
1   and   𝑣𝑖

3 =  𝑁𝑖𝑗
−1𝑣𝑗

2  and finally 𝑣𝑖
3 =  𝑁𝑖𝑗

−1𝑀𝑗𝑘
−1𝑣𝑘

1 . 

So the functor 𝐺 mapping from bases to coordinate representations of vectors is contravariant 

since: 

𝐺(𝑈 ∘ 𝑇)  =  𝐺(𝑇) ∘ 𝐺(𝑈) 
              
→    𝑁−1𝑀−1 

In other words, the representation of the composition of basis changes accumulating in the 

reverse order in the matrix product that will transform vector components. Also, contravariant 

functors reverse the direction of morphisms that manifests here in the inversion of the 

transformation matrices, see Figure 1. 

The maps represented by functors are quite often encountered in functional programming. Let’s 

consider the category Hask: in the Haskell standard library we have1: 

 

 

                                                           
1 actual Haskell syntax slightly differs: type variables have lowercase names. 

Figure 1. The functor G maps from the category of 

coordinate bases to the category of vector coordinates, 

reversing the directions of arrows. 



class Functor G where 

 fmap :: (B1 → B2) → (G B1 → G B2) 

Which is the type class of endofunctors (a functor from a category to that same category) on 

Hask. Here a Functor G takes types B1 to types G B1, and its method fmap takes morphisms 

from B1 → B2 to morphisms from G B1 → G B2.   

We may also have 

class Contravariant F where 

 contramap :: (B2 → B1) → (F B1 → F B2) 

In the context of the above example this means that an fmap takes an abstract basis change 

function (B1 → B2) and then it can produce a coordinate representation of it in the form of  

G B1  → G B2, for instance the matrix 𝑀. 

For a contravariant functor like the one mentioned above the contramap takes the inverse of 

the original basis change function (B1 → B2) that is: (B2 → B1) and can use it to produce 

the transformation of vector components (F B1 → F B2), for instance the matrix 𝑀−1. 

In a more general programming view covariant functors can be seen as parameterisable 

producers: the user can choose a type and provide a function that produces that type of output, 

and then can use fmap to apply this function on a functor instance. Contravariants are the 

opposite: they are parameterisable consumers, now the user can parametrize what values should 

the functor instance accept and work on. 

5. Application to programming: the case of a linear algebra library 

Categories and category theoretic design also started to dominate in the development of 

functional programming libraries. To see how they help to guide abstraction, we go through a 

series of programming tasks that eventually lead to the need of functors and show how the 

abstraction provided by the fmap method is a valuable building block of today’s parallel 

algorithms. 

As a very basic example, consider the problem of implementing the multiplication of a vector 

or matrix by a scalar. The traditional solution in a performance critical scientific context was 

to develop the code in FORTRAN or C. In the latter an implementation would look something 

like the following2: 

void mulByScalar(double scalar, double* vct, int size) 
{ 

    for(int i=0; i<size; i=i+1) 

    { 
        vct[i] = vct[i] * scalar; 

    }  
} 

                                                           
2 In the following we will not elaborate on different memory management techniques and choose the 
syntactically simplest representation. 



The function receives the value of the scalar represented by a double precision floating point 

number, a pointer to the beginning of a (double precision) data in memory that is the vector 

argument and an integral value that represents the number of components of the vector. The 

body of the function then proceeds with a loop that for each component of the vector performs 

the multiplication by the scalar. While similar behaviour can be implemented in many slightly 

different ways, we would like to draw attention to a few important observations. If one 

considers some more use cases, namely division of a vector by a scalar and both of them for 

different types of components (integral or floating point) it is easy to see that almost the same 

code will be written over and over again to provide the necessary functions. Unfortunately the 

C language does not flexible enough to solve these problems, so we turn to C++. 

For the sake of compactness of the next examples let’s assume that a Vector object exists, that 

takes care of the memory management (allocates an integer number of entries on construction), 

and provides an array subscript operator [•] and a size() member function that returns the 

number of components. At this point, let’s assume it stores some kind of fixed type, say 

double. Moreover let’s change the semantics, so that our function creates a new Vector 

instance: 

Vector mulByScalar(double scalar, Vector v) 
{ 

    Vector r(v.size()); 
    for(int i=0; i<r.size(); i=i+1) 

    { 

        r[i] = v[i] * scalar; 
    } 

    return r;  

} 

At first the new Vector instance is allocated to the same size as the input vector, the for loop 

is just like the previous case, the only difference is at the end, where the new Vector object r 

is returned.  

Now let’s abstract over the division and multiplication part of the problem. In C++ we can 

generalize a function over types and this construct is called function templates in the language. 

Consider the following: 

template<typename F> 

Vector binaryOpOnVector(F f, double scalar, Vector v) 
{ 

    Vector r(v.size()); 
    for(int i=0; i<r.size(); i=i+1) 

    { 

        r[i] = f(v[i], scalar); 
    } 

    return r; 
} 

The function now receives a new argument f, that has type F. f must be a function that can be 

called with two arguments otherwise the above code would be incorrect. We can also observe, 

that we can achieve the same functionality by applying a one argument function to the 



components that we got from a partial application of a binary operator one step before, e. g. 

(scalar * •) is such a partially applied operator. We can take advantage of lambda functions 

introduced in C++11 to express such functions in a short way. They can capture variables, and 

use them later, when called, so we can reduce the function invocation as follows: 

Vector mulByScalar(double scalar, Vector v) 

{ 
    return almost_fmap( [=](double x){ return scalar * x; }, v ); 

} 

where [=](double x){ return scalar * x; } is a lambda function that is equivalent to 

the partially applied operator (scalar * •) still waiting an argument before it can be evaluated. 

The looping implementation is now the application of a single argument function: 

template<typename F> 

Vector almost_fmap(F f, Vector v) 
{ 

    Vector r(v.size()); 
    for(int i=0; i<r.size(); i=i+1) 

    { 

        r[i] = f(v[i]); 
    } 

    return r; 

} 

As C++ language implements argument type deduction for function template arguments, so we 

don’t have to provide the F template argument explicitly to almost_fmap3. Easy to see, that 

for division only the lambda inner operator needs to be changed and there is no need to rewrite 

the complete implementation of almost_fmap for both of them.   

The next step is to abstract over the scalar and vector component types: we would like to use 

the same code for integer (int), single precision floating point (float) and double precision 

floating point (double) arguments. This need change to the Vector class so that it will be 

dependent on a template parameter of the stored type: Vector<T> as well as for the 

almost_fmap. Note, that we can now also express a change in the return type that may be 

induced by the function f:T->R, that’s why another template parameter R is being introduced4: 

template<typename R, typename F, typename T> 
Vector<R> fmap(F f, Vector<T> v) 

{ 
    Vector<R> r(v.size()); 

    for(int i=0; i<r.size(); i=i+1) 

    { 
        r[i] = f(v[i]); 

    } 

    return r; 
} 

                                                           
3 In fact, for lambda functions we couldn’t have provided that. 
4 We could calculate the return type of the function via decltype since C++11, but we didn’t want to 
complicate the example. 



Now, the function can accept any type instances, as far as the function call is compatible with 

them. The interface implementation now has to be changed accordingly: 

template<typename R, typename T> 

Vector<R> mulByScalar(T scalar, Vector<T> v) 
{ 

    return fmap<R>( [=](T x){ return scalar * x; }, v ); 
} 

At this point it should be clear: what we just implemented is the fmap method described at the 

end of the last section. So Vector is a (covariant-, endo-)functor mapping from the category 

of the C++ types to the C++ types, and fmap is capable of applying a simple function over such 

types to the mapped category, that now represents the elements of the Vector. In a more 

general view one may see a functor as a type embedded inside a context, and fmap can apply a 

plain function inside that context. In Haskell one would make Vector to be an instance of the 

Functor typeclass. In C++ this semantic is not yet available, but with the expected adaptation 

of the C++17 standard where concepts are expected to provide exactly this behaviour there will 

be a standard way to express this pattern [14]. 

It is hard to overemphasize the importance of the concept: it took many years for developers to 

realize the power of abstractions like this, but fmap (usually known as simply map, or 

transform) became one of the most important building blocks in programming ranging from 

simple applications to distributed computation systems. If someone was coming from category 

theory or functional programming it might have been evident to start with such representation 

immediately saving hundreds of development hours spent on rewriting and designing. It is 

instructive to note, that all the usual vector-matrix operations can be described with three 

functional building blocks: fmap, fold and zipWith, where fold generalizes the concept of 

summarizing a group of elements into one representative with a binary operation and zipWith 

captures the element wise application of n-ary functions.  

Computational physics is growing to be one of the most important applications of programming 

in physics. Rapid parametrization and investigation of theories and simulations demand highly 

generic codes and expressive programming languages. Category theoretical thinking is already 

a huge advantage and soon will be unavoidable to understand and design such programs. 

6. Conclusion 

In this work we gave a simple example of how category theory appears in linear algebra that is 

one of the main pillars of physics, and then showed how successive generalizations a computer 

program motivated by reducing code duplication and improving flexibility resulted in the 

manifestation of the same category theoretical concept in a high-level programming language 

that is widely used to develop performance oriented physics simulations. 

While we could only barely scratch the tip of the iceberg with these examples due to the limited 

scope of this article but it must be noted that category theoretical concepts in programming are 

being applied in way more advanced and sophisticated use cases. We can only give some 

references to the interested reader [4, 5]. 

While the demand for developers and scientists with these kind of skills is rapidly increasing, 

natural science courses yet to integrate category theoretical attitudes. 
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