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1. Introduction

Pál (Paul) Erdős was born 100 years ago (March 26, 1913 in Budapest). He
died on September 20, 1996 in Warsaw, when he attended a conference. He wrote
about 1500 papers mainly with coauthors including those more than 80 works which
are closely connected with approximation theory (interpolation, mean convergence,
orthogonal polynomials, a.s.o.).

The present lecture tries to give a short summary of some significant results proved
by Erdős (and his coauthors) and their new developments in approximation theory,
primarily in interpolation; in a way it is an updated version of my previous work
[47].
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2. Interpolation, Lagrange interpolation,
Lebesgue function,

Lebesgue constant, optimal Lebesgue
constant

Interpolation theory has been one of the favorite subjects of the twentieth century’s
Hungarian approximators. The backbone (mainly of classical interpolation) is the
theory developed by Lipót Fejér, Ervin Feldheim, Géza Grünwald, Pál Turán
and, of course, by Pál Erdős.

2.1. Let us begin with some definitions and notation. Let C = C(I) denote the
space of continuous functions on the interval I := [−1, 1], and let Pn denote the set
of algebraic polynomials of degree at most n. ‖ · ‖ stands for the usual maximum
norm on C. Let X be an interpolatory matrix (array), i.e.,

X =
{
xkn = cosϑkn; k = 1, . . . , n; n = 0, 1, 2, . . .

}
,

with

(2.1) − 1 ≤ xnn < xn−1,n < · · · < x2n < x1n ≤ 1,
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0 ≤ ϑkn ≤ π, and consider the corresponding Lagrange interpolation polynomial

(2.2) Ln(f,X, x) :=

n∑
k=1

f (xkn)`kn(X, x), n ∈ N.

Here, for n ∈ N,

`kn(X, x) :=
ωn(X, x)

ω′n(X, xkn)(x− xkn)
, 1 ≤ k ≤ n,

with

ωn(X, x) :=

n∏
k=1

(x− xkn),

are polynomials of exact degree n−1. They are called the fundamental polynomials
associated with the nodes {xkn, k = 1, . . . , n} obeying the relations `kn(X, xjn) =
δkj, 1 ≤ k, j ≤ n.

The main question is: For what choices of the interpolation array X we can expect
that (uniformly, pointwise, etc.) Ln(f,X)→ f (n→∞)?
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By the classical Lebesgue estimate,∣∣Ln(f,X, x)− f (x)
∣∣ ≤ ∣∣Ln(f,X, x)− Pn−1(f, x)

∣∣ +
∣∣Pn−1(f, x)− f (x)

∣∣(2.3)

≤
∣∣Ln(f − Pn−1, X, x)

∣∣ + En−1(f )

≤
( n∑

k=1

∣∣`k,n(X, x)
∣∣ + 1

)
En−1(f ),

therefore, with the notations

(2.4) λn(X, x) :=

n∑
k=1

∣∣`kn(X, x)
∣∣, n ∈ N,

(2.5) Λn(X) :=
∥∥λn(X, x)

∥∥, n ∈ N,

(Lebesgue function and Lebesgue constant (of Lagrange interpolation), respec-
tively,) we have for n ∈ N

(2.6)
∣∣Ln(f,X, x)− f (x)

∣∣ ≤ {λn(X, x) + 1
}
En−1(f )

and

(2.7)
∥∥Ln(f,X)− f

∥∥ ≤ {Λn(X) + 1
}
En−1(f ).
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Above, as usual

En−1(f ) := min
P∈Pn−1

‖f − P‖.

In 1914 Georg Faber proved the then rather surprising lower bound

(2.8) Λn(X) ≥ 1

12
log n, n ≥ 1,

for any interpolation array X . Based on this result he obtained

Theorem 2.1. For any fixed interpolation array X there exists a function
f ∈ C for which

(2.9) lim
n→∞

∥∥Ln(f,X)
∥∥ =∞.

2.2. The preceding estimates underline the importance of the Lebesgue function,
λn(X, x), and the Lebesgue constant, Λn(X).

Using an estimate of L. Fejér

Λn(T ) =
2

π
log n + O(1),

one can see that the order log n in (2.8) is best possible (here T is the Chebyshev
matrix, i.e. xkn = cos 2k−1

2n π).
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A very natural problem, raised and answered in 1958 by Erdős, says that λn(X, x)
is “big” on a “large” set.

Theorem 2.2. (Erdős [4]) For any fixed interpolation matrix X ⊂ [−1, 1], real
ε > 0, and A > 0, there exists n0 = n0(A, ε) so that the set{

x ∈ R, λn(X, x) ≤ A for all n ≥ n0(A, ε)
}

has measure less than ε.

The proof of Theorem 2.2 is based on the following simple looking statement (cf.
[4, Lemma 3]).

Let x1, x2, . . . , xn be any n (n > n0) distinct numbers in [−1, 1] not necessarily
in increasing order. Then, for at least one j (1 ≤ j ≤ n),

j−1∑
k=1

1

|xk − xj|
>
n log n

8
.

(The half–page proof is based on the inequality between the arithmetic and har-
monic means.)

Let us mention a nice, relatively new, generalization of this statement. In his paper
[31] Ying Guang Shi proved as follows:
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Theorem A. Let, for a fixed p, 0 < p <∞; x = (x1, . . . , xn),

fj(p,x) :=

j−1∑
k=1

1

|xk − xj|p
, j = 1, 2, . . . , n; n ≥ 2.

Then

1

n

n−1∑
j=1

fj(p,x) ≥



n− 1

21+p
, 0 < p < 1,

(n− 1) log n

4
, p = 1,

(n− 1)1+p

2p n
, p > 1.

Moreover, the order is the best possible and it is attained by the equidistant
nodes.

The next statement, the more or less complete pointwise estimation, is due to P.
Erdős and P. Vértesi [5] from 1981.
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Theorem 2.3. Let ε > 0 be given. Then, for any fixed interpolation matrix
X ⊂ [−1, 1] there exist sets Hn = Hn(ε,X) of measure ≤ ε and a number
η = η(ε) > 0 such that

(2.10) λn(X, x) > η log n

if x ∈ [−1, 1] \Hn and n ≥ 1.

Closer investigation shows that (instead of the original η = cε3) η = cε can be
attained. The behaviour of the Chebyshev matrix, T , shows that (2.10) is the best
possible regarding the order log n.

2.3. Let us say some words about the optimal Lebesgue constant. In 1961, P.
Erdős, improving a previous result of P. Turán and himself (see [6]), proved that

(2.11)

∣∣∣∣Λ∗n − 2

π
log n

∣∣∣∣ ≤ c,

where
Λ∗n := min

X⊂I
Λn(X), n ≥ 1,

is the optimal Lebesgue constant. As a consequence of this result, the closer
investigation of Λ∗n attracted the attention of many mathematicians.
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In 1978, Ted Kilgore, Carl de Boor and Alan Pinkus proved the so–called Bernstein-
Erdős conjectures concerning the optimal interpolation array X (cf. [7] and [8]).

To formulate the conjecture and the result, let X be canonical if x1n = −xnn = 1.
An elementary argument shows that to obtain the value Λ∗n it is enough to consider
the canonical matrices only. Moreover, if

µkn(X) = max
xkn≤x≤xk−1,n

λn(X, x), 2 ≤ k ≤ n, n ≥ 3,

denote the n− 1 unique local maximum values of λn(X, x),1 then we state

Theorem 2.4. Let n ≥ 3. We have

(i) there exists a unique optimal canonical X∗ with

(ii) µkn(X∗) = µ`n(X∗) 2 ≤ k, ` ≤ n.

Moreover, for arbitrary interpolatory X

(iii) min
2≤k≤n

µkn(X) ≤ Λ∗n ≤ max
2≤k≤n

µkn(X).

1It is easy to see that for arbitrary interpolatory X, λn(X,x) is a piecewise polynomial with λn(X,x) ≥ 1 and λn(X,x) = 1 iff x = xkn,
1 ≤ k ≤ n. Between the consecutive nodes λn(X,x) has a single maximum, and in (−1, xnn) and (x1n, 1) it is convex and monotone (see [46,
p. 95]).
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Using this result, (2.11) can be considerably improved. Namely,

(2.12) Λ∗n =
2

π
log n + χ + o(1), n→∞,

where χ = 2
π

(
γ + log 4

π

)
= 0.521251 . . . and γ = 0.577215 . . . is the Euler constant

(cf. P. Vértesi [9]).

2.4. Let us quote two new developments (Parts 2.4 and 2.5) which are closely
connected to the Bernstein–Erdős conjecture. The first is the second part of the
previously mentioned paper of Y. G. Shi [31].

Let (using the notations of 2.3)

Fn(p,x) := max
1≤j≤n−1

fj(p,x).

We sholud like to get the vector

y ∈ X := {x = (x1, x2, . . . , xn) : −1,≤ x1 < x2 < · · · xn ≤ 1}
such that

(2.13) Fn(p,y) = inf
x∈X

Fn(p,x).

We see that the solution admits the equioscillation characterization of Bernstein
and Erdős. Namely, Shi gets as follows
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Theorem B. Let 0 < p < ∞ and n ≥ 2. Then the following statements are
valid:

(a) there exits a unique vector y ∈ X satisfying (2.13);

(b) (2.13) holds if and only if

f1(p,y) = f2(p,y) = · · · = fn−1(p,y);

(c) for any vector x ∈ X \ {y}

min
1≤i≤n−1

fi(p,x) < Fn(p,y) < max
≤i≤n−1

fi(p,x).

2.5. This part of the present lecture gives another (rational) interpolatory pro-
cess which shows the Bernstein–Erdős equioscillation character.

Let us define the classical barycentric interpolation formula for f ∈ C:

(2.14) Bn(f,X, x) =:

n∑
k=1

f (xkn)ykn(X, x), n ∈ N,
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where

(2.15) ykn(X, x) =:
ωn(X, x)

(−1)k

x− xkn

ωn(X, x)
n∑
j=1

(−1)j

x− xjn

=

(−1)k

x− xkn
n∑
j=1

(−1)j

x− xjn

.

The first equation shows that ykn is a rational function of the form Pkn/Qn, where

(2.16) Pkn(X, x) = (−1)k |ω′n(X, xkn)| `kn(X, x), 1 ≤ k ≤ n,

(2.17) Qn(X, x) =

n∑
j=1

|ω′n(X, xjn)| `jn(X, x), n ∈ N.

Above, Pkn ∈ Pn−1 \ Pn−2 and Qn ∈ Pn−1.

The process Bn has the interpolatory property, i.e.

Bn(f,X, xkn) = f (xkn), ykn(X, xjn) = δkj, 1 ≤ k, j ≤ n; n ∈ N.
Moreover it is not so difficult to prove the next fundamental relation valid for
arbitrary matrix X :

Qn(X, x) 6= 0 if x ∈ R, n ∈ N.
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One can verify that {ykn(x), 1 ≤ k ≤ n} is a Haar (Chebyshev (Tchebychev))
system (or briefly, T -system) for any fixed n ∈ N. Actually, T = T (xn) where
xn = (x1n, x2n, . . . , xnn) ∈ Rn.

Slightly modifying our previous notations we define for f ∈ C, xn and n ∈ N

Ln(f,xn, x) :=

n∑
k=1

f (xkn)ykn(xn, x),

λn(xn, x) :=

n∑
k=1

|ykn(xn, x)| ,

Λn(xn) := ‖λn(xn, x)‖ .

By definition, they are the Lagrange interpolatory T -polynomials, T -Lebesgue
functions and T -Lebesgue constants, concerning the above defined T -system.

Using

1 =

n∑
k=1

ykn(x) ≤
n∑
k=1

|ykn(x)| = λn(xn, x),
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the T -Lebesgue function λn(xn, x) ≥ 1 with equality if x ∈ {x1n, x2n, . . . , xnn}.
We define

µkn(xn) := max
xk+1,n≤x≤xkn

λn(xn, x), 1 ≤ k ≤ n− 1, n ≥ 2.

We say that xn is canonical, if x1n = −xnn = 1, n ≥ 2 (if xn is canonical, then
obviously Λn(xn) = max1≤k≤n−1 µkn(xn)).

Very recently we obtained the next statement which verifies the analogue of the
Bernstein–Erdős conjecture for the above defined barycentric interpolation (cf. The-
orem 2.4).

Theorem C. Let n ≥ 3, fixed. We have as follows

(i) There exists a unique optimal canonical x∗n with

(ii) µkn(x∗n) := Λn(x∗n), 1 ≤ k ≤ n− 1.

Moreover for arbitrary interpolatory xn

(iii) min1≤k≤n−1 µkn(xn) ≤ Λn(x∗n) ≤ max1≤k≤n−1 µkn(xn).
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In their paper B. A. Ibrahimoglu and A. Cuyt proved that for the equidistant nodes,
en = {−1 + 2j/(n− 1); j = 0, 1, . . . , n− 1}

Λ(en) =
2

π
(log n + log 2 + γ) + O

(
1

n

)
.

Then by our Theorem C (iii), we immediately obtain

Λn(x∗n) =
2

π
(log n + log 2 + γ) + O

(
1

n

)
= Λ(en) + O

(
1

n

)
.

Let us remark that by (2.12)

Λn(x∗n)− Λ∗n =
2

π
log

π

2
+ o(1) > 0.

The main ingredient of the proof of Theorem C is the next special case of a general
statement proved by Y. G. Shi in 1998. Namely, using [12, Theorem 1], we can
state, by obvious short notations, as follows.

Let n ≥ 3 be fixed. Further, let fi(x) ≥ 0, i = 1, 2, . . . , n − 1, be continuously
differentiable functions on X = {x = (x1, x2, . . . , xn) : −1 = xn < xn−1 < · · · <
x2 < x1 = 1}. Denote

f (x) := max
1≤k≤n−1

fk(x).
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With δk = xk − xk+1 and δ = min δk (1 ≤ k ≤ n− 1), we state

Theorem D. Suppose that the functions fk(x) satisfy the conditions

(A) lim
δ→0

(
max

1≤k≤n−1
|fk+1(x)− fk(x)|

)
=∞

and

(B) Dk(x) := det

(
∂fi(x)

∂xj

)n−1,n−1

i=1,j=2,i 6=k
6= 0, x ∈ X, 1 ≤ k ≤ n−1.

Then we have as follows.

(a) There exists a unique vector x∗ ∈ X with

f (x∗) = min
x∈X

f (x);

(b) the relation (a) holds if and only if

f1(x∗) = f2(x∗) = · · · = fn−1(x∗);

(c) for any other x ∈ X

min
1≤k≤n−1

fk(x) < f (x∗) < max
1≤k≤n−1

fk(x)
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2.6. As we know the Lagrange interpolation can be very bad even for the good

matrix T =
{

cos 2k−1
2n π

}
.

Theorem 2.5 (Grünwald–Marcinkiewicz). There exists a function f ∈ C for
which

lim
n→∞

∣∣Ln(f, T, x)
∣∣ =∞

for every x ∈ [−1, 1].

In their third joint paper, [10] Erdős and Grünwald claimed to prove the existence
of an f ∈ C for which

lim
n→∞

1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ =∞,

for all x ∈ [−1, 1]. However, as it was discovered later by Erdős himself, there
had been an oversight in the proof and the method only gives the result with the
modulus sign inside the summation.

Only in [11], where Erdős and Gábor Halász (who was born four years after the
Erdős–Grünwald paper) were able to complete the proof and obtained the following.
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Theorem 2.6. Given a positive sequence {εn} converging to zero however
slowly, one can construct a function f ∈ C such that for almost all x ∈ [−1, 1]

1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ ≥ εn log log n

for infinitely many n.

The right-hand side is optimal, for in the paper [12] Erdős proved

Theorem 2.7.
1

n

∣∣∣∣ n∑
k=1

Lk(f, T, x)

∣∣∣∣ = o(log log n)

for almost all x, whenever f ∈ C.

The proof of Theorem 2.7 is an ingenious combination of ideas from number theory,
probability and interpolation.

2.7. After the result of Grünwald and Marcinkiewicz a natural problem was
to obtain an analogous result for an arbitrary array X . In [4, p. 384], Erdős wrote:
“In a subsequent paper I hope to prove the following result:
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Let X ⊂ [−1, 1] be any point group [interpolatory array]. Then there exists a
continuous function f (x) so that for almost all x

lim
n→∞

∣∣Ln(f,X, x)
∣∣ =∞.”

After 4 years of work, Erdős and P. Vértesi proved the above result ([14]–[15]).
Erdős writes in [13]: “[Here we prove the above] statement in full detail. The
detailed proof turns out to be quite complicated and several unexpected difficulties
had to be overcome.”2

2.8. Another significant contribution of the Hungarian approximators to inter-
polation is the so called “fine and rough theory” (the name was coined by Erdős
and Turán in their basic joint paper [16] dedicated to L. Fejér on his 75th birthday
in 1955).

2In a personal letter Erdős wrote about the main idea of the proof : [First] “we should prove that for every fixed A and η > 0 there exists
an M (M = M(A, η)) such that if we divide the interval [−1, 1] into M equal parts I1, . . . , IM then∑′

k
|`k,n(X,x)| > A, x ∈ Ir,

apart from a set of measure ≤ η. Here
∑′ means that k takes those values for which x /∈ Ir”.
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In the class Lipα (0 < α < 1; we use the natural setting) a natural error estimate
for Lagrange interpolation is∥∥Ln(f,X)− f

∥∥ ≤ cn−αΛn(X)

(cf. (2.7)). Erdős and Turán raised the obvious question: How sharp is this
estimate in terms of the order of the Lebesgue constant as n → ∞? They
themselves considered interpolatory arrays X where

Λn(X) ∼ nβ (β > 0).

In the above paper [6] they prove essentially

Theorem 2.8. Let X be as above. If α > β, then we have uniform con-
vergence in Lipα. If α ≤ β/(β + 2), then for some f ∈ Lipα, Lagrange
interpolation is divergent.

These two cases comprise what is called the “rough theory”, since solely on the
basis of the order of Λn(X) one can decide the convergence-divergence behavior.
However,
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Theorem 2.9. If β/(β + 2) < α ≤ β then anything can happen. That is,
there is an interpolatory array Y1 with Λn(Y1) ∼ nβ and a function f1 ∈ Lipα
such that limn→∞

∥∥Ln(f1, Y1)
∥∥ = ∞, and another interpolation array Y2 with

Λn(Y2) ∼ nβ, such that limn→∞
∥∥Ln(f, Y2)− f

∥∥ = 0 for every f ∈ Lipα.

That is, to decide the convergence-divergence behavior we need more information
than just the order of the Lebesgue constant. The corresponding situation is
called “fine theory”.

This paper of Erdős and Turán has been very influential. It left open a number
of problems and attracted the attention not only of the Hungarian school of inter-
polation (Géza Freud, Ottó Kis, Melánia Sallay, József Szabados, P. Vértesi),
but also of others (including R.J. Nessel, W. Dickmeis, E. van Wickeren).

2.9. The Faber-theorem is a special case of a general statement proved by S.M.
Losinskii and F.I. Harsiladze on (linear) projection operators (p.o.). (That
means Ln : C → Pn−1 is a linear bounded operator and Ln(f ) ≡ f iff f ∈ Pn−1).
Namely, they proved that if

|||Ln||| := sup
‖f‖≤1

∥∥Ln(f, x)
∥∥, f ∈ C,
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then

(2.18) |||Ln||| ≥
log n

8
√
π

(Ln is a p.o.). If Ln = Ln(X) (Lagrange interpolation), then, obviously Λn(X) =
|||Ln|||.
In his paper [17], G. Halász formulated some results on

Ln(x) := sup
‖f‖≤1

∣∣Ln(f, x)
∣∣, f ∈ C

(it generalizes the Lebesgue function λn(X, x)). Among others he states

Theorem E. For any sequence of projections Ln

(i) lim
n→∞
Ln(x) =∞ on a set of positive measure in [−1, 1];

(ii) lim
n→∞

1∫
−1

h
(
logLn(x)

)
logLn(x) dx =∞ whenever

I :=

∞∫
2

h(x)

x log x
dx =∞.
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(iii) If I <∞ then there exists a sequence Ln such that

sup
n

1∫
−1

h
(
logLn(x)

)
logLn(x) dx <∞.

2.10. Here we mention some recent developments of the previous results. First,
let us see the multidimensional analogon of the estimation (2.18).

Let Rd (direct product) be the Euclidean d-dimensional space (d ≥ 1, fixed) and let
Td = Rd (mod 2πZd) denote the d-dimensional torus, where Z = {0,±1,±2, . . .}.
Further, let C(Td) denote the space of (complex valued) continuous functions on
Td. By definition they are 2π-periodic in each variable.

For g ∈ C(Td) we define its Fourier series by

g(ϑ) ∼
∑
k

ĝ(k)eik·ϑ, ĝ(k) =
1

(2π)d

∫
Td

g(t)e−ik·t dt,

where ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Td, k = (k1, k1, . . . , kd) ∈ Zd and k · ϑ =
∑d

l=1 klϑl
(scalar product).
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The rectangular n-th partial sum of the Fourier series is defined by

S
[r]
nd(g,ϑ) :=

∑
|k|∞≤n

ĝ(k)eik·ϑ (n ∈ N0 = {0, 1, 2, . . .});

the triangular one is

Snd(g,ϑ) :=
∑
|k|1≤n

ĝ(k)eik·ϑ (n ∈ N0).

Above, |k|∞ = max
1≤l≤d

|kl| and |k|1 =
d∑

k=1

|kl| (they are the lp norms of the multiindex

k for p = ∞ and p = 1). The names ”rectangular” and ”triangular” refer to the
shape of the corresponding indices of terms when d = 2 and 0 ≤ k1, k2, |k|∞ ≤ n,
|k|1 ≤ n respectively.

In a way the investigation of the S
[r]
nd is apparent: in many cases in essence it is a

one variable problem (see [42] and [41]).

However there are only relatively few works dealing with the triangular (or l1)
summability (cf. [43] and [44]).
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Introducing the notations

Dnd(ϑ) =
∑
|k|1≤n

eik·ϑ (n ≥ 1),

where k ∈ Zd, one can see that

Snd(g,ϑ) =
(
g ∗Dnd

)
(ϑ) : =

1

(2π)d

∫
Td

g(ϑ− t)Dnd(t) dt =

=
1

(2π)d

∫
Td

g(ϑ + t)Dnd(t) dt,

where as before, g ∈ C(Td), ϑ, t ∈ Td.

Let ‖g‖ := max
ϑ∈Td
|g(ϑ)|,

‖Snd‖ := max
g∈C(Td)
‖g‖≤1

∥∥Snd(g,ϑ)
∥∥ (n ≥ 1)
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and

‖g‖p :=

∫
Td

|g(ϑ)|p dϑ


1/p

if g ∈ Lp := {the set of all measurable 2π periodic (in each variable) functions on
Td}, 1 ≤ p <∞.

We state

Theorem F. We have, for any fixed d ≥ 1,

‖Dnd‖1 = ‖Snd‖ ∼ (log n)d (n ≥ 2).3

One of the most characteristic properties of the Fourier series in one dimension is
the so called Faber–Marcinkiewicz–Berman theorem, namely that the operator Sn
has the smallest norm among all projection operators (cf. [45, p. 281] for other
details). This part extends the above statement for Snd, d ≥ 1.

3 Here and later an ∼ bn means that 0 < c1 ≤ anb
−1
n ≤ c2 where c, c1, c2, . . . are positive constants, not depending on n; they may denote

different values in different formulae.
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Let Tnd be the space of trigonometric polynomials of form∑
|k|1≤n

(
ak cos(k · ϑ) + bk sin(k · ϑ)

)
,

where k = (k1, k2, . . . , kd) and k1, . . . , kd ≥ 0, arbitrary real numbers. Moreover,
let Tnd be a linear trigonometric projection operator onC(Td), i.e. Tnd(g,ϑ) = g(ϑ)
for g ∈ Tnd and Tnd(g,ϑ) ∈ Tnd for other g ∈ C(Td).

Theorem G. For any linear trigonometric projection operator Tnd, one has

1

(2π)d

∫
Td

Tnd(gt,ϑ− t) dt = Snd(g,ϑ) (g ∈ C(Td)),

‖Tnd‖ ≥ ‖Snd‖,
where gt(ϑ) = g(ϑ + t) is the t-translation operator.

Now we formulate a generalization of (2.15).

Theorem H. If Lnd is a projection of C(Id) onto Pnd then

‖Lnd‖ ≥
1

2
‖Snd‖.
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Above, Lnd is a projection of C(Id) (:= the set of continuous functions of d-variables
on Id = [−1, 1]d) onto Pnd iff it is linear, Lnd(p) = p if p ∈ Pnd and Lnd(f ) ∈ Pnd
for any f ∈ C(Id).

Proofs, further statements, references and some historical remarks about Part 2.8
are in the paper László Szili and P. Vértesi [19].

2.11. In this part we give an application of Theorem H.

In one variable, the zeros of Chebishev polynomials are optimal if we consider
Gaussian quadrature with respect to the Chebishev weight w(x) = 1√

1−x2 in I :=

[−1, 1].

Considering several variables many new problems arise. First to ensure that the
interpolation is well-posed, we need a proper subspace of polynomials. Another
natural question is to get a point system which is suitable for Gaussian quadra-
ture. H.M. Möller gave a lower bound which says that the number of points, R,
for two-dimensional Gaussian quadrature must fulfill the relation R = R(n) ≥
dim(Πn−1,2) + [n/2] := M , where Πs2 denotes the set of polynomials of two vari-
ables of total degree ≤ s. (It is easy to see that dim(Πs2) ≡

(
s+2

2

)
).

In his paper Yuan Xu [48] introduced a set of Chebishev-like points for the two-
dimensional Lagrange interpolation in the square I2 (direct product) as follows.
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Let

zr = zr,n = cos
rπ

n
, 0 ≤ r ≤ n,

x2i,2j+1 = x2i,2j+1,n = (z2i, z2j+1),

0 ≤ i ≤ m, 0 ≤ j ≤ m− 1

x2i+1,2j = x2i+1,2j,n = (z2i+1, z2j),

0 ≤ i ≤ m− 1, 0 ≤ j ≤ m,

if n = 2m,

x2i,2j = x2i,2j,n = (z2i, z2j),

0 ≤ i, j ≤ m

xn−2i,n−2j = xn−2i,n−2j,n = (zn−2i, zn−2j),

0 ≤ i, j ≤ m,

if n = 2m + 1

and let with Tn = {xks}, |Tn| = N ,

Ln2(f,Tn,x) =
∑

xks∈Tn

f (xk,s)`ks(x),
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where f (x) = f (x, y) ∈ C(I2) := {the set of continuous functions on I2} and
`ks are the fundamental functions of Lagrange interpolation, `ks ∈ Vn (a certain
subspace of Πn2).

Xu proved the uniqueness of the Lagrange interpolation in Vn and the property
Πn−1,2 ⊂ Vn ⊂ Πn2. Moreover he proved the relation dim(Vn) = N = dim(Πn−1,2)+
[n+1

2 ] . In the same paper Xu proved that the above points Tn are suitable for the
Gaussian quadrature. Considering the number of points, N , we may say that Tn is
“almost” optimal because N −M ≤ 1 (actually, if n = 2m, then N = M).

Generally, to prove the existence and the uniqueness is a difficult problem!

In their paper [49] Bos, De Marchi and Vianello proved that

Λn2(Tn) ≤ C(log n)2, n ≥ 2,

where,as above, the constants C,C1, . . . , are different positive constants which may
assume different values in different formulas,

Λn2(Tn) = max
‖f‖≤1

f∈C(I2)

‖Ln2(f,Tn,x)‖,

and

‖f‖ = max
x∈[−1,1]2

|f (x)|, f ∈ C(I2).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Caliari, De Marchi and Vianello [50] investigated the so-called Padua points Pn,
which are a set of points analogous to Tn. (Let’s remark that the cardinality of Pn
is equal to the dimension of Πn2). In the same paper the authors proved that

Λn2(Pn) ≤ C(log n)2,

when Λn2(Pn) is the corresponding Lebesgue constant.

Our aim is to give lower estimations for the two above mentioned Lebesgue con-
stants.

For the point system Tn we state

Theorem I. We have

Λn2(Tn) ∼ (log n)2.

Similar estimation is valid considering the node-matrix Pn, that means

Theorem J. For the Padua points Pn we have

Λn2(Pn) ∼ (log n)2.

The above Theorems I and J were proved in the paper [51] B. Della Vechia, G.
Mastroianni and P. Vértesi.
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3. Mean convergence of interpolation

3.1. As it has turned out the estimation of the Lebesgue function

λn(X, x) =

n∑
k=1

|`kn(X, x)|

is fundamental in getting ”negative” (divergence)-type results for the Lagrange
interpolation using the uniform (or maximum) norm.

These facts resulted that the attention turned to the mean convergence of inter-
polation. The first such result is due to P. Erdős and P. Turán [20] from 1937.

Theorem 3.1. For an arbitrary weight w and f ∈ C,

lim
n→∞

1∫
−1

{Ln(f, w, x)− f (x)}2w(x)dx = 0.

Here and later w is a weight if w ≥ 0 and 0 <
∫ 1

−1w < ∞; Ln(f, w) is the
Lagrange interpolation with nodes at on the roots of the corresponding orthonormal
polynomials (ONP) pn(w).
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During the years 1936–1939, P. Erdős and P. Turán wrote 3 fundamental papers
”On interpolation I, II, III” [20], [32], [33]; they appeared in 1937, 1938 and 1940).
This survey will quote many problems and theorems of them. We strongly suggest
to read these papers to the interested readers.

Using the Chebyshev roots, P. Erdős and Ervin Feldheim proved much more [21]:

Theorem 3.2. Let f ∈ C and p > 1. Then

lim
n=→∞

1∫
−1

|f (x)− Ln(f, T, x)|p 1√
1− x2

dx = 0.

3.2. Theorem 3.1 is a reasonable motivation of the problem (cf. P. Erdős, Géza
Freud, P. Turán [23, Problem VIII], [24], [25]).

Does there exists a weight w and f ∈ C such that

lim
n→∞
‖f − Ln(f, w)‖p,w =∞

for every p > 2?

(Above ‖g‖p,w stands for ‖gw1/p‖p.)
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After a lot of results proved by Richard Askey, Paul Nevai and others Y.G. Shi
came to a new general idea where the nodes xkn are not necessarily the roots of an
orthogonal system pn(w). Namely he realized the surprising fact that for the mean
convergence the expressions

(3.1) γ1(X, x) :=

n∑
k=1

|x− xkn(X, x)| |`kn(X, x)| , n ≥ 1,

are fundamentals (instead of λn(X, x) =
∑n

k=1 |`kn(X, x)|). Using many basic
ideas of the proof of Theorem 2.3, he proves (among others)

Theorem K. Let ε > 0 be given. Then for any fixed interpolatory matrix
X ⊂ [−1, 1], there exists sets Hn = Hn(ε,X) of measure ≤ ε such that

(3.2) γ1(X, x) ≥ ε

24
, n ≥ 1,

whenever x ∈ [−1, 1] \Hn. (cf. Theorem 2.3).

The above statement is a special case of [26, Theorem 1], the latter one uses the
proof of the generalization of Theorem 2.3 (cf. P. Vértesi [27]).

Now, by [26, Theorem 1], Y.G. Shi ([26, Corollary 14]) obtains.
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Theorem L. Let u and w be weights. If with a fixed p0 ≥ 2∥∥∥∥∥ 1√
w
√

1− x2

∥∥∥∥∥
p,u

=∞ for every p > p0,

then there exists an f ∈ C satisfying

lim
n→∞
‖Ln(f, w)‖p,u =∞ whenever p > p0.

This theorem obviously answers the (generalization of the) question raised at the
beginning of Part 3.2. For other similar problems the reader may consult with [26].
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4. Convergence by raising the degree

4.1. Motivated by Lipót Fejér’s classical results (i.e, if the degree of the in-
terpolation polynomial is about two times bigger than the number of interpolation
points, then we can get convergence (cf. [28, Theorem XI])), Erdős raised the
following question. Given ε > 0, suppose we interpolate at n nodes, but allow
polynomials of degree at most n(1 + ε). Under what conditions will they converge
for all continuous function?

The first answer was given by himself in [29]. Namely, he proved:

Theorem 4.1. If the absolute values of the fundamental polynomials `kn(X, x)
are uniformly bounded in x ∈ [−1, 1], k (1 ≤ k ≤ n) and n ∈ N, then for
every ε > 0 and f ∈ C there exists a sequence of polynomials ϕn = ϕn(x) =
ϕn(f, ε, x) with

(i) degϕn ≤ n(1 + ε),

(ii) ϕn(xkn) = f (xkn), 1 ≤ k ≤ n, n ∈ N,

(iii) lim
n→∞
‖ϕn − f‖ = 0.
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The complete answer for a more general system is in the paper of Erdős, András
Kroó and Szabados [30].

Theorem 4.2. For every f ∈ C and ε > 0, there exists a sequence of polyno-
mials pn(f ) of degree at most n(1 + ε) such that

pn(f, xk,n) = f (xk,n), 1 ≤ k ≤ n,

and that

‖f − pn(f )‖ ≤ cE[n(1+ε)](f )

holds for some c > 0, if and only if

(4.1) lim sup
n→∞

Nn(In)

n|In|
≤ 1

π

whenever In is a sequence of subintervals of I such that lim
n→∞

n|In| =∞ and

(4.2) lim inf
n→∞

(n min
1≤k≤n−1

(ϑk+1,n − ϑn,k)) > 0.

Here Nn(In) is the number of the ϑk,n in In ⊂ I . Condition (4.1) ensures that the
nodes are not too dense, and condition (4.2) says that adjacent nodes should not
be too close.
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5. Weighted Lagrange interpolation,
weighted Lebesgue function,
weighted Lebesgue constant

5.1. Let f be a continuous function. If, instead of the interval [−1, 1], we try
to approximate it on R, we have to deal with the obvious fact that polynomials (of
degree ≥ 1) tend to infinity if |x| → ∞. So to get a suitable approximation tool,
we may try to moderate their growth applying proper weights.

If the weight w(x) = e−Q(x), x ∈ R, satisfies

lim
|x|→∞

Q(x)

log |x|
=∞,

as well as some other mild restrictions and the Akhiezer–Babenko–Carleson–Dzrbas-
jan relation

∞∫
−∞

Q(x)

1 + x2
dx =∞,
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then for f ∈ C(w,R), where

C(w,R) := {f ; f is continuous on R and lim
|x|→∞

f (x)w(x) = 0},

we have, if ‖ · ‖ denotes now the supnorm on R,

En(f, w) := inf
p∈Pn

‖(f − p)w‖ ≡ inf
p∈Pn

‖fw − pw‖ → 0 as n→∞.

So, instead of approximating f ∈ C by Ln(f,X) on [−1, 1], we may estimate
{f (x)w(x)− Ln(f, w,X, x)} on the real line R for f ∈ C(w,R). Here X ⊂ R,

tk(x) := tkn(w,X, x) :=
w(x)ωn(X, x)

w(xk)ω′n(X, xk)(x− xk)
, 1 ≤ k ≤ n,

and

Ln(f, w,X, x) :=

n∑
k=1

{
f (xk)w(xk)

}
tk(x), n ∈ N.

The Lebesgue estimate now has the form

(5.1)
∣∣Ln(f, w,X, x)− f (x)w(x)

∣∣ ≤ {λn(w,X, x) + 1
}
En−1(f, w)

where the (weighted) Lebesgue function is defined by

(5.2) λn(w,X, x) :=

n∑
k=1

∣∣tk(w,X, x)
∣∣, x ∈ R, n ∈ N;
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the existence of rn−1(f, w) for which En−1(f, w) = ‖(f − rn−1)w‖ is well-known.

Formula (5.2) implies the natural definition of the (weighted) Lebesgue constant

(5.3) Λn(w,X) := ‖λn(w,X, x)‖, n ∈ N.

Estimation (5.1) and its immediate consequence

‖Ln(f, w,X)− fw‖ ≤
{

Λn(w,X) + 1
}
En−1(f, w), n ∈ N,

show that, analogously to the classical case, the investigation of λn(w,X, x) and
Λn(w,X) is of fundamental importance to get convergence-divergence results for
the weighted Lagrange interpolation (cf. Part 2.1).

To expect reasonable estimations, as it turns out, we need a considerable knowledge
about the weight w(x) and on the behaviour of the ONP pn(w2, x) corresponding
to the weight w2.

5.2. As P. Nevai writes in his instructive monograph [34, Part 4.15], about 40
years ago there was a great amount of information on orthogonal polynomials on
infinite intervals, however as Géza Freud realized in the sixties, there had been a
complete lack of systematic treatment of the general theory; the results were of
mostly ad hoc nature. And G. Freud, in the last 10 years of his life, laid down the
basic tools of the systematic investigation.
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During the years a great number from the approximators and/or orthogonalists
joined G. Freud and his work, including many Hungarians. As a result, today our
knowledge is more comprehensive and more solid than before.

Now we introduce the so called Mhaskar–Rakmanov–Saff number, denoted by
an(w). an(w) is a generalization of the number qn(w) defined by G. Freud. Instead
of the definition we show a useful property of an(w) and give an example (cf. [35]).

(5.4)

‖rnw‖ = max
|x|≤an(w)

|rn(x)w(x)|,

‖rnw‖ > |rn(x)w(x)| for |x| > an(w)

if rn ∈ Pn (rn 6≡ 0; ‖·‖ is the supnorm on R) and that asymptotically (as n→∞)
an(w) is the smallest such number. Relation (5.4) may be formulated such that rnw
“lives” on [−an, an].

As an example, let Q(x) = |x|α. Then

qn(w) ∼ n1/α and an(w) = c(α) n1/α, α > 1.

In 1972, P. Erdős defined (as today called) the Erdős weights. The prototype of
w ∈ E (E is the collection of the Erdős weights) is the case when Q(x) = Qk,α =
expk(|x|α) (k ≥ 1, α > 1, expk := exp(exp(. . .)), the kth iterated exponential); for
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other details on E see [36], [37] and [35]. As an interesting and maybe surprising fact
that generalizing the method and ideas of our common paper with Erdős, one can
prove a statement on the weighted Lebesgue function λn(w,X, x) (see P. Vértesi
[38]).

Theorem M. Let w ∈ E. If ε > 0 is an arbitrary fixed number, then for any
interpolatory matrix X ⊂ R there exist sets Hn = Hn(w, ε,X) with |Hn| ≤
2an(w)ε such that

λn(w,X, x) ≥ ε

3840
log n

if x ∈ [−an(w), an(w)] \Hn, n ≥ n1(ε).

This statement is a complete analogue of Theorem 2.4. Roughly speaking, it says
that the weighted Lebesgue function is at least c log n on a “big part” of [−an, an]
for arbitrary fixed X ⊂ (−∞,∞) and w ∈ E .

Without going into the details we remark that the previous consideration and state-
ment can be developed for other weights (cf. [38]).

To finish this survey we quote another theorem on weighted approximation which
corresponds to the result of Erdős from 1943 (see Theorem 4.1). Namely we have
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Theorem N. Let w ∈ E. If |tkn(w,X, x)| ≤ A uniformly in x ∈ R, k and n,
then for every ε > 0 and to every f ∈ C(w1+ε,R), there exists a sequence of
polynomials ϕ∆(x) = ϕ∆(f, ε, x) ∈ P∆ such that

(i) ∆ ≤ n(1 + ε + c εn−2/3),

(ii) ϕ∆(xkn) = f (xkn), 1 ≤ k ≤ n, n ∈ N,

(iii) ‖w1+ε(f − ϕ∆)‖ ≤ cE∆(f, w1+ε).

The proof and similar results using other exponents Q(x) are in L. Szili and P.
Vértesi [39] and [40].
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[14] P. Erdős and P. Vértesi, Correction of some misprints in our paper: “On the almost everywhere divergence of Lagrange interpolation

polynomials for arbitrary systems of nodes” [Acta Math. Acad. Sci. Hungar., 36, no. 1–2 (1980), 71–89], Acta Math. Acad. Sci. Hungar.
38 (1981), 263.
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[34] P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Th., 48 (1986), 3–167.
[35] A.L. Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
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