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A covering problem
(not very young)



Packing / Covering of trianglesPacking / Covering of triangles

ν∆(G) :  max # of edge-disjoint triangles in  G
τ∆(G) :  min # of edges meeting all triangles of  G

ν∆ = 6 τ∆ = 7



Packing / Covering of trianglesPacking / Covering of triangles

ν∆(G) :  max # of edge-disjoint triangles in  G
τ∆(G) :  min # of edges meeting all triangles of  G

For every  G ,   
ν∆(G)  ≤ τ∆(G)  ≤ 3ν∆(G) 

(any non-extendable packing meets all ∆s)



Packing / Covering of trianglesPacking / Covering of triangles

ν∆(G) :  max # of edge-disjoint triangles in  G
τ∆(G) :  min # of edges meeting all triangles of  G

Conjecture. For every  G ,   τ∆(G)  ≤ 2ν∆(G) 
[ZsT, Colloq. Math. Soc. J. Bolyai 1981]

would be tight:
K4 – ν∆ =  1 τ∆ =  2

K5 – ν∆ =  2 τ∆ =  4



Packing / Covering of trianglesPacking / Covering of triangles

ν∆(G) :  max # of edge-disjoint triangles in  G
τ∆(G) :  min # of edges meeting all triangles of  G

Conjecture. For every  G ,   τ∆(G)  ≤ 2ν∆(G) 
[ZsT, Colloq. Math. Soc. J. Bolyai 1981]

Observation. It’s a nice problem.
[Uncle Paul, 1981]



Packing / Covering of trianglesPacking / Covering of triangles

ν∆(G) :  max # of edge-disjoint triangles in  G
τ∆(G) :  min # of edges meeting all triangles of  G

Conjecture. For every  G ,   τ∆(G)  ≤ 2ν∆(G) 
[ZsT, Colloq. Math. Soc. J. Bolyai 1981]

digraphs, oriented graphs:
transitive triangles harder
cyclic triangles easier (?) (2 – c)ν∆(G)



Some works by…Some works by…

• Aparna, Bujtás & ZsT
• Bacsó & ZsT
• Chapuy, DeVos, McDonald, Mohar, Scheide
• Cui, Haxell, Ma
• Haxell & Kohayakawa
• Haxell, Kostochka, Thomassé
• Krivelevich
• ZsT



More on triangles
(Erdős, Gallai & ZsT, Discr Math 1996)



Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

For every  G ,   
α′∆(G) + τ∆(G)  <  |E(G)|

(unless  G is triangle-free)



Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

Theorem. Tight, valid bound for connected  G :
α′∆(G) + τ∆(G)  ≤ |E| – r(|V| – 1)

( r (|V| – 1) :  inverse of Ramsey function:
largest  t s.t. ∀ triangle-free graph of order  |V| – 1  
has independence # at least  t )

[Erdős, Gallai & ZsT, DM’96]



|E| = |V’|+|E’|        α′∆(G) = |E’|       τ∆(G) = |V’|- α(G’)      
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Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

Theorem. Tight, valid bound for connected  G :
α′∆(G) + τ∆(G)  ≤ |E| – r(|V| – 1)

( r (|V| – 1) :  inverse of Ramsey function )

Open: Prove or disprove for disconnected  G .



Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

Theorem. If every edge is in some  ∆ of  G ,
α′∆(G)  ≤ (|V| – 1)2 / 4

[Erdős, Gallai & ZsT, DM’96]



Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

Conjecture. In every  G ,
α′∆(G) + τ∆(G)  ≤ |V|2 / 4

τ∆ = 0 α′∆ = n/2

α′∆ = n2/4 τ∆ = n2/4 – n/2



Covering / Independence in trianglesCovering / Independence in triangles

α′∆(G) :  max # of edges,   ≤ 1  from any triangle 
τ∆(G) :  min # of edges,   ≥ 1  from every triangle

Conjecture. In every  G ,
α′∆(G) + τ∆(G)  ≤ |V|2 / 4

Problem. Determine
lim inf |E| → ∞ ( α′∆(G) + τ∆(G) ) / |E|2/3

( known:   ≥ 6–1/3 and    ≤ 41/3 )



Edge colorings of  Kn – rainbow 
subgraphs

(Erdős & ZsT, Ann Discr Math 1993)



Rainbow Rainbow subgraphssubgraphs
rainbow subgraph F ⊂ G :  each edge of  F has a 

distinct color (i.e.  |E(F)|  colors in a copy of  F )
k(i) :  # of colors at vertex  vi
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Rainbow Rainbow subgraphssubgraphs
rainbow subgraph F ⊂ G :  each edge of  F has a 

distinct color (i.e.  |E(F)|  colors in a copy of  F )
k(i) :  # of colors at vertex  vi

Theorem. In a complete graph, if

Σ i 2–k(i) < 1
then a rainbow  K3 occurs.

[Erdős & ZsT, AnnDM’93]

Problem. Find analogues for other subgraphs.



Rainbow Rainbow subgraphssubgraphs
Problem. If the edges of  Kn are k-colored, how 

large degrees (in each color) imply a rainbow 
copy of  F ?

Theorem. For  K3 and any  k ,  degrees  ~ n/2k–1

suffice.  (e.g. 3 colors – degrees n/4)
Theorem. For  C4 and  4  colors:  n/4 – cn (c > 0).
Problem. For  C5 and  5  colors:  n/5 – cn (c > 0) ?
Problem. For any  F and  k > |E(F)|  colors:  

degrees  n/k – cn (c > 0)  imply rainbow  F ???



Covering the edges
(Erdős & ZsT, Proc Kalamazoo 1993 -

Graph Th Combin & Appl 1995)



Covering the edge setCovering the edge set

G = (V, E)
τ(G)  – transversal number, min # of vertices 

meeting all edges of  G

Proposition. If  G is connected, then
τ(G) ≤ 2/7 (|V|+|E|+1)

[Erdős & ZsT, Proc GTCA’93-95]

( without connectivity:  1/3 (|V|+|E|) )



HypergraphHypergraph coveringcovering

H = (X, E)  – set system  E over  X
τ(H)  – transversal number, min # of vertices 

meeting all edges  E ∈ E
r -uniform:   |E| = r ,   ∀ E ∈ E

General problem. Find tight valid bounds
τ(H)  ≤ a|X| + b|E|

E.g.,   a = b = ¼ for   r = 3
[ZsT, DM’90 – Chvátal & McDiarmid, CCA’92]



HypergraphHypergraph coveringcovering

d -regular:   ∀ x ∈ X in exactly  d edges  E ∈ E

Conjecture. H is 6-uniform and 3-regular  ⇒
τ(H)  ≤ |X| / 4

[ZsT & Vestergaard, DMGT’02]



References for more problems 
and results
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