Graph covering and coloring

Zsolt Tuza

Rényi Institute, Budapest
\&
University of Pannonia, Veszprém

A covering problem
 (not very young)

Packing / Covering of triangles

$v_{\Delta}(G)$: max \#of edge-disjoint triangles in G
$\tau_{\Delta}(G)$: min \# of edges meeting all triangles of G

$$
v_{\Delta}=6
$$

$$
\tau_{\Delta}=7
$$

Packing / Covering of triangles

$v_{\Delta}(G)$: max \#of edge-disjoint triangles in G
$\tau_{\Delta}(G)$: min \#of edges meeting all triangles of G

For every G ,

$$
v_{\Delta}(\mathrm{G}) \leq \tau_{\Delta}(\mathrm{G}) \leq 3 v_{\Delta}(\mathrm{G})
$$

(any non-extendable packing meets all $\Delta \mathrm{s}$)

Packing / Covering of triangles

$v_{\Delta}(G)$: max \#of edge-disjoint triangles in G
$\tau_{\Delta}(G)$: min \#of edges meeting all triangles of G

Conjecture. For every $G, \tau_{\Delta}(G) \leq 2 v_{\Delta}(G)$ [ZsT, Colloq. Math. Soc. J. Bolyai 1981]
would be tight:

$$
\begin{array}{llll}
\mathrm{K}_{4} & - & v_{\Delta}=1 & \tau_{\Delta}=2 \\
\mathrm{~K}_{5} & - & v_{\Delta}=2 & \tau_{\Delta}=4
\end{array}
$$

Packing / Covering of triangles

$v_{\Delta}(G)$: max \#of edge-disjoint triangles in G
$\tau_{\Delta}(G)$: min \#of edges meeting all triangles of G

Conjecture. For every $G, \tau_{\Delta}(G) \leq 2 v_{\Delta}(G)$ [ZsT, Colloq. M ath. Soc. J. Bolyai 1981]

Observation. It's a nice problem.
[Uncle Paul, 1981]

Packing / Covering of triangles

$v_{\Delta}(G)$: max \#of edge-disjoint triangles in G
$\tau_{\Delta}(G)$: min \#of edges meeting all triangles of G

Conjecture. For every $G, \tau_{\Delta}(G) \leq 2 v_{\Delta}(G)$ [ZsT, Colloq. M ath. Soc. J. Bolyai 1981]
digraphs, oriented graphs:
transitive triangles
cyclic triangles
harder
easier (?) $(2-c) v_{\Delta}(G)$

Some works by...

- Aparna, Bujtás \& ZsT
- Bacsó \& ZsT
- Chapuy, DeVos, McDonald, M ohar, Scheide
- Cui, Haxell, M a
- Haxell \& Kohayakawa
- Haxell, Kostochka, Thomassé
- Krivelevich
- ZsT

M ore on triangles

(Erdős, Gallai \& ZsT, Discr M ath 1996)

Covering / Independence in triangles

$\alpha_{\Delta}^{\prime}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(\mathrm{G}):$ min \#of edges, ≥ 1 from every triangle

For every G ,

$$
\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G})<|\mathrm{E}(\mathrm{G})|
$$

(unless G is triangle-free)

Covering / Independence in triangles

$\alpha_{\Delta}^{\prime}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(G):$ min \#of edges, ≥ 1 from every triangle

Theorem. Tight, valid bound for connected G :

$$
\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G}) \leq|\mathrm{E}|-\mathrm{r}(|\mathrm{~V}|-1)
$$

($\mathrm{r}(|\mathrm{V}|-1$) : inverse of Ramsey function: largest t s.t. \forall triangle-free graph of order $|\mathrm{V}|-1$ has independence \#at least t)
[Erdős, Gallai \& ZsT, DM '96]

$$
|E|=\left|\mathrm{V}^{\prime}\right|+\left|\mathrm{E}^{\prime}\right| \quad \alpha_{\Delta}^{\prime}(\mathrm{G})=\left|\mathrm{E}^{\prime}\right| \quad \tau_{\Delta}(\mathrm{G})=\left|\mathrm{V}^{\prime}\right|-\alpha\left(\mathrm{G}^{\prime}\right)
$$

$\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$

$\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G})=|\mathrm{E}|-\alpha\left(\mathrm{G}^{\prime}\right)$

Covering / Independence in triangles

$\alpha_{\Delta}^{\prime}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(\mathrm{G}):$ min \#of edges, ≥ 1 from every triangle

Theorem. Tight, valid bound for connected G:

$$
\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G}) \leq|\mathrm{E}|-\mathrm{r}(|\mathrm{~V}|-1)
$$

($\mathrm{r}(|\mathrm{V}|-1$) : inverse of Ramsey function)

Open: Prove or disprove for disconnected G.

Covering / Independence in triangles

$\alpha^{\prime}{ }_{\Delta}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(G):$ min \#of edges, ≥ 1 from every triangle

Theorem. If every edge is in some Δ of G ,

$$
\alpha_{\Delta}^{\prime}(\mathrm{G}) \leq(|\mathrm{V}|-1)^{2} / 4
$$

[Erdős, Gallai \& ZsT, DM '96]

Covering / Independence in triangles

$\alpha_{\Delta}^{\prime}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(G):$ min \#of edges, ≥ 1 from every triangle

Conjecture. In every G ,

$$
\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G}) \leq|\mathrm{V}|^{2} / 4
$$

$$
\begin{aligned}
& \alpha_{\Delta}^{\prime}=n / 2 \\
& \tau_{\Delta}=n^{2} / 4-n / 2
\end{aligned}
$$

Covering / Independence in triangles

$\alpha_{\Delta}^{\prime}(\mathrm{G})$: max \#of edges, ≤ 1 from any triangle
$\tau_{\Delta}(G)$: min \#of edges, ≥ 1 from every triangle

Conjecture. In every G ,

$$
\alpha_{\Delta}^{\prime}(\mathrm{G})+\tau_{\Delta}(\mathrm{G}) \leq|\mathrm{V}|^{2} / 4
$$

Problem. Determine
$\lim _{\inf }{ }_{|E| \rightarrow \infty}\left(\alpha^{\prime}{ }_{\Delta}(\mathrm{G})+\tau_{\Delta}(\mathrm{G})\right) /|E|^{2 / 3}$
(known: $\geq 6^{-1 / 3}$ and $\leq 4^{1 / 3}$)

Edge colorings of K_{n} - rainbow subgraphs

(Erdős \& ZsT, Ann Discr M ath 1993)

Rainbow subgraphs

rainbow subgraph $F \subset G$: each edge of F has a distinct color (i.e. $|E(F)|$ colors in a copy of F) $\mathrm{k}(\mathrm{i})$: \#of colors at vertex v_{i}

Rainbow subgraphs

rainbow subgraph $F \subset G$: each edge of F has a distinct color (i.e. $|E(F)|$ colors in a copy of F)
$\mathrm{k}(\mathrm{i})$: \#of colors at vertex v_{i}
Theorem. In a complete graph, if

$$
\sum_{i} 2^{-k(i)}<1
$$

then a rainbow K_{3} occurs.
[Erdős \& ZsT, AnnDM '93]
Problem. Find analogues for other subgraphs.

Rainbow subgraphs

Problem. If the edges of K_{n} are k-colored, how large degrees (in each color) imply a rainbow copy of F ?
Theorem. For K_{3} and any k, degrees $\sim n / 2^{k-1}$ suffice. (e.g. 3 colors - degrees n/4)
Theorem. For C_{4} and 4 colors: $\mathrm{n} / 4-\mathrm{cn}(\mathrm{c}>0)$.
Problem. For C_{5} and 5 colors: $\mathrm{n} / 5-\mathrm{cn}(\mathrm{c}>0)$?
Problem. For any F and $k>|E(F)|$ colors: degrees $n / k-c n(c>0)$ imply rainbow F ???

Covering the edges

(Erdős \& ZsT, Proc Kalamazoo 1993Graph Th Combin \& Appl 1995)

Covering the edge set

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$\tau(\mathrm{G})$ - transversal number, min \# of vertices meeting all edges of G

Proposition. If G is connected, then
$\tau(\mathrm{G}) \leq 2 / 7(|\mathrm{~V}|+|\mathrm{E}|+1)$
[Erdős \& ZsT, Proc GTCA'93-95]
(without connectivity: $1 / 3(|\mathrm{~V}|+|\mathrm{E}|$))

Hypergraph covering

$H=(X, E)$ - set system E over X
$\tau(H)$ - transversal number, min \#of vertices meeting all edges $E \in E$
r-uniform: $|E|=r, \quad \forall E \in E$
General problem. Find tight valid bounds

$$
\tau(H) \leq a|X|+b|E|
$$

E.g., $a=b=1 / 4$ for $r=3$
[ZsT, DM '90 - Chvátal \& M cDiarmid, CCA'92]

Hypergraph covering

d-regular: $\forall x \in X$ in exactly d edges $E \in E$
Conjecture. $\quad H \quad$ is 6 -uniform and 3-regular \Rightarrow

$$
\tau(H) \leq|X| / 4
$$

[ZsT \& Vestergaard, DM GT’02]

References for more problems and results

References (1)

- P. Erdős, J. Pach, R. Pollack, Zs. Tuza: Radius, diameter and minimum degree. Journal of Combinatorial Theory, Ser. B 47 (1), 1989, 73-79.
- P. Erdős, Zs. Tuza: Rainbow Hamiltonian paths and canonically colored subgraphs in infinite complete graphs. M athematica Pannonica 1 (1), 1990, 5-13.
- P. Erdős, A. Hajnal, Zs. Tuza: Local constraints ensuring small representing sets. Journal of Combinatorial Theory, Ser. A 58 (1), 1991, 78-84.
- P. Erdős, Z. Füredi, Zs. Tuza: Saturated r-uniform hypergraphs. Discrete M athematics 98 (2), 1991, 95-104.
- P. Erdős, T. Gallai, Zs. Tuza: Covering the cliques of a graph with vertices. Discrete M athematics 108 (1-3), 1992, 279-289.
- P. Erdős, D. Fon-Der-Flaass, A. V. Kostochka, Zs. Tuza: Small transversals in uniform hypergraphs. Siberian Advances in Mathematics 2 (1), 1992, 82-88.

References (2)

- P. Erdős, Zs. Tuza: Rainbow subgraphs in edge-colorings of complete graphs. Annals of Discrete M athematics 55, 1993, 81-88.
- E. Bertram, P. Erdős, P. Horák, J. Širáň, Zs. Tuza: Local and global average degree in graphs and multigraphs. Journal of Graph Theory 18 (7), 1994, 647-661.
- P. Erdős, Zs. Tuza: Vertex coverings of the edge set in a connected graph. "Graph Theory, Combinatorics, and Applications" (Y. Alavi and A. Schwenk, eds.), John Wiley \& Sons 1995, 1179-1187.
- P. Erdős, T. Gallai, Zs. Tuza: Covering and independence in triangle structures. Discrete M athematics 150 (1-3), 1996, 89-101.
- P. Erdős, P. Valtr, Zs. Tuza: Ramsey-remainder. European Journal of Combinatorics 17 (6), 1996, 519-532.

