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Paul Erdős  called all (American) mathematicians by 
their last name … except Tom Trotter, whom he 
called “Bill.” 
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Examples of Partially Ordered Sets (Posets) 

Inclusion              Division             Embedding in  R3 



Order Diagrams and Cover Graphs 

Order Diagram             Cover Graph 



Diagrams and Cover Graphs 

Three different posets with the same cover graph. 



Comparability and Incomparability Graphs 

Poset     Comparability 
Graph 

Incomparability  
Graph 



Planar Posets 

Definition  A poset  P  is 
planar when it has an 
order diagram with no 
edge crossings. 
 
Fact  If  P  is planar, then 
it has an order diagram 
with straight line edges 
and no crossings. 



A Non-planar Poset 

This height 3 non-planar poset has a planar 
cover graph. 



Bipartite Planar Graphs 

Theorem (Moore ‘75;  Di Battista, Liu and Rival ‘90) If   P  
is a poset of height  2  and the cover graph  of  P  is 
planar, then  P  is planar, i.e., the order diagram of  P  is 
planar.  

 

Note  The result is best possible since there exist height  
3 non-planar posets that have planar cover graphs.  



Diagrams of Bipartite Planar Graphs 

Why should it be possible to draw the order diagram 
of this height 2 poset without edge crossings? 



Complexity Issues 

Theorem  (Garg and Tamassia, ‘94)  The question 
“Does  P  have a planar order diagram?”  is  NP-
complete. 

Theorem (Brightwell, ‘93)  The question “Is  G  
a cover graph?”  is  NP-complete. 



Layout Issues 

Fact  When  P  is a planar poset on  n  vertices, it 
may take a super-polynomial size grid to lay out 
the order diagram of  P  so that the cover 
relations are straight lines and there are no 
crossings. 



Realizers of Posets 

L1 = b < e < a < d < g < c < f 

L2 = a < c < b < d < g < e < f 

L3 = a < c < b < e < f < d < g 

L4 = b < e < a < c < f < d < g 

L5 = a < b < d < g < e < c < f  

A family  F  = {L1, L2, …, Lt}  of linear extensions 
of  P  is a realizer of  P  if  P  =   F, i.e., 
whenever  x  is incomparable to  y  in  P, there is 
some  Li  in  F  with  x  >  y  in  Li. 



The Dimension of a Poset 

L1 = b < e < a < d < g < c < f 

L2 = a < c < b < d < g < e < f 

L3 = a < c < b < e < f < d < g 

The dimension of a poset is the minimum size of 
a realizer.   This realizer shows   dim(P)  ≤  3.  
In fact, 

                             dim(P)  =  3 



Alternate Definition of Dimension 

The dimension of a poset  P  is the least integer  
n  for which  P  is a subposet of  Rn.  This 
embedding shows that  dim(P)  ≤  3.  In fact, 

                             dim(P)  =  3 



Dimension is Coloring for Ordered Pairs  

Restatement  Computing the dimension of a poset 
is equivalent to finding the chromatic number of a 
hypergraph whose vertices are the set of all 
ordered pairs  (x, y)  where  x  and  y are 
incomparable in  P.  In this poset, no linear 
extension can put  xi  over  yi  for all  i = 1, 2, 3. 



Complexity Issues for Dimension 

Theorem (Yannakakis, ‘82)  For fixed  t  ≥  3,  the 
question  dim(P)  ≤  t ?  is  NP-complete.  

 

Theorem (Yannakakis, ‘82)  For fixed  t  ≥  4,  the 
question  dim(P)  ≤  t ?  is  NP-complete, even when  
P  has height  2.  

 



Standard Examples 

Fact  For  n  ≥  2,  the standard example  Sn  is a 
poset of dimension  n. 

Sn 

Note  If  L  is a linear extension of  Sn,  there can only 
be one value of  i  for  which  ai  >  bi  in  L. 



3-Critical Graphs 

Fact  If  G  is a graph, the chromatic number of  G  is 
at most  2  unless  G  contains an odd cycle. 



3-Irreducible Posets – Sporadic Examples 

Fact  If  P  is a poset, the dimension of  P  is at most  
2  unless  P  contains one of the posets shown on this 
slide and the next. 



3-Irreducible Posets – Infinite Families 



Gallai, Posets and Dimension 

Remark   If one knows and understands Gallai’s 
forbidden subgraph characterization of comparability 
graphs, then the determination of the full list of 3-
irreducible posets is an immediate corollary.   Also, 
while it is trivial to see that height and width are 
comparability invariants, the fact that (a) dimension 
and (b) the number of linear extensions are 
comparability invariants follows easily from Gallai’s 
work. 



Maximum Degree and Chromatic Number 

Definition  Let  f(k)  denote the maximum chromatic 
number among all graphs  G  with  Δ(G) = k. 

Theorem (Brooks ‘41)  f(k) = k + 1. 

Furthermore, the chromatic number of a graph  G  
with  Δ(G) = k  is  k + 1 only when  G  is an odd cycle or 
a complete graph.  



Maximum Degree and Dimension 

Definition  Let  f(k)  denote the maximum 
dimension among all posets  P  with  Δ(P) = k  (in 
the comparability graph).  Note that it is not 
immediately clear that  f(k)  is well defined! 

Observation  The standard example  Sk+1  has 
maximum degree  k  and has dimension  k + 1, so if  
f(k)  is well defined, we must have  f(k) ≥ k + 1. 



Maximum Degree and Dimension 

Theorem (Erdős, Kierstead, WTT ’91; Füredi and 
Kahn ‘88 )  There are constants  c1  and  c2 so that 

          

             c1  k log k  <  f(k)  <  c2 k log2 k 

 

Observations   The upper bound uses the Lovász 
Local Lemma.  The lower bound results from an 
analysis of random posets of height 2. 



Further Analogies 

Observation  There are posets with large 
dimension, not containing the standard example  
S2.  Such posets must have large height. 

Observation  For every pair  (g, d), there is a 
height 2 poset  P  such that the girth of the 
comparability graph of  P  is at least  g  and the 
dimension of  P  is at least  d.  Such posets contain  
S2  but not  Sn  when  n ≥ 3. 



A General Perception 

Observation  Many invariants of a poset are determined 
entirely by its comparability graph, including height, 
width, dimension, and the number of linear extensions.   

 

Observation  None of these parameters are determined 
by the cover graph. 



Planar Posets with Zero and One 

Theorem   (Baker, 
Fishburn and Roberts, ‘71 
+ Folklore)  

If   P  has both a  0  and a  
1, then  P  is planar if and 
only if it is a lattice and 
has dimension at most 2. 



Explicit Embedding on the Integer Grid 



Dimension of Planar Poset with a Zero 

Theorem  (WTT and Moore, ‘77)  If  P  has a  0  and 
the diagram of  P  is planar, then  dim(P)  ≤  3. 



The Dimension of a Tree 

Corollary (WTT and Moore, ‘77)  If the cover 
graph of  P  is a tree, then  dim(P)  ≤  3. 

Remark   Of course, the corollary follows by 
showing that the poset obtained by adding a zero 
to a tree is planar.  



A Restatement – With Hindsight 

Corollary (WTT and Moore, ‘77)  If the cover 
graph of  P  has tree-width 1, then  dim(P)  ≤  3. 



Paul Erdős:   Is your Brain Open? 



A 4-dimensional planar poset 

Fact  The standard example  S4  is planar! 



Wishful Thinking:  If Frogs Had Wings … 

Question  Could it possibly be true that 
dim(P)  ≤  4 for every planar poset  P? 

We observe that 

dim(P)  ≤  2  when  P  has a zero and a one. 

dim(P)  ≤  3  when  P  has a zero or a one. 

So why not  dim(P) ≤  4  in the general 
case? 



No … by Kelly’s Construction 

Theorem  (Kelly, ‘81)  For every  n ≥ 5 , the 
standard example  Sn  is non-planar but it is a 
subposet of a planar poset. 



Eight Years of Silence 

Kelly’s construction more or less killed the subject, 
at least for the time being. 



The Vertex-Edge Poset of a Graph 

The vertex-edge poset of a graph is also called 
the incidence poset of the graph. 



Schnyder’s Theorem 

 

 
Theorem  (Schnyder, ‘89) A graph is 
planar if and only if the dimension of its 
vertex-edge poset is at most  3. 

 

Note  Testing graph planarity is linear in 
the number of edges while testing for 
dimension at most  3  is  NP-complete!!! 



Planar Multigraphs 



Planar Multigraphs and Dimension 

  Theorem (Brightwell and WTT, ‘96, ‘93):  Let  D  
be a non-crossing drawing of a planar multigraph  
G, and let  P  be the vertex-edge-face poset 
determined by  D.  Then  dim(P) ≤ 4.  
Furthermore, if  G  is a simple 3-connected 
graph, then the subposet of  P  determined by 
the vertices and faces is  4-irreducible.  

 

 

 



Adjacency Posets 

The adjacency poset  P  of a graph  G = (V, E)  is a 
height  2  poset  with minimal elements  {x’:  x V}, 
maximal elements  {x’’: x V},  and ordering:  x’ < y’’  
if and only if  xy E. 



Adjacency Posets 

Observation  Let  P be the adjacency poset of a 
graph  G.  Then  dim(P)  ≥  Χ(G). 

Observation  The standard example  Sn  is the 
adjacency poset of the complete graph  Kn. 

Observation  If  G  is the subdivision of  Kn, then 
Χ(G) = 2  but the dimension of the adjacency poset 
of  G  goes to infinity like  lg lg n.  



Adjacency Posets of Planar Graphs 

Theorem (Felsner, Li, WTT, ‘10)    Let  G  be a graph and 
let  P  be its adjacency poset. 

1. If  G  is planar, then  dim(P) ≤ 8. 

2. If  G  is outerplanar, then  dim(P) ≤ 5. 

 

Observation   The proofs use the machinery from 
Schnyder’s theorem. 



Bipartite Planar Graphs 

Theorem (Felsner, Li, WTT, ‘10)   If  P is the adjacency 
poset of a bipartite planar graph, then  dim (P) ≤ 4. 

 

Corollary  If  P  has height  2  and the cover graph of  P  is 
planar, then  dim(P) ≤ 4. 

 

Fact  Both results are best possible as evidenced by  S4. 



Maximal Elements as Faces 



Kelly’s Construction Revisited 

Observation  For every  h ≥ 3, there is a planar 
poset with height  h  and dimension  h+1. 



A Modest Improvement – Streib and WTT 

Fact  For every  h ≥ 2 , there is a poset of height  h  and 
dimension  h + 2  with a planar cover graph. 



Planar Cover Graphs, Dimension and Height 

Conjecture (Felsner, Li, WTT, ‘10)    For every integer  
h, there exists a constant  ch  so that if   P  is a poset 
of height  h  and the cover graph  of  P  is planar, then  
dim(P) ≤  ch.  

Observation  The conjecture holds trivially for   h = 1  
and  c1 = 2.   Although non-trivial, the conjecture also 
holds for  h = 2, and c2 = 4. 

Fact  The wheel construction shows that  ch  -  if it 
exists - must be at least  h + 2.  



Planar Cover Graph Conjecture Resolved 

Theorem (Streib and WTT, 2012)    For every 
integer  h, there exists a constant  ch  so that if   P  
is a poset of height  h  and the cover graph  of  P  is 
planar, then  dim(P) ≤  ch.  

 

Observation  The proof uses Ramsey theory at 
several key places and the bound we obtain is very 
large in terms of  h. 



A Key Detail 

Observation  The cover graph of a poset can be 
planar and have arbitrarily large tree-width, even 
when the poset has small height, e.g., consider an  
n × n  grid. 

However  The argument used by Streib and WTT 
used a reduction to the case where the diameter 
of the cover graph is bounded as a function of the 
height. 

Fact  The tree-width of a planar graph of bounded 
diameter is bounded. 



Planar Cover/Comparability Graphs  

Theorem (Felsner, WTT, Wiechert, 2011)  Let  P  be 
a poset.    

1. If the cover graph of  P  is outerplanar, then 
dim(P) ≤ 4. 

2. If the cover graph of  P  is outerplanar and  P  
has height  2, then dim(P) ≤ 3. 

3. If the comparability graph of  P  is outerplanar, 
then dim(P) ≤ 4. 

Observation  Outerplanar graphs have tree-width at 
most 2. 



Summary of the Evidence 

Observations   Let  P  be a poset and let  G  be the 
cover graph of  P.  Then  dim(P)  is bounded if any of 
the following statements hold: 

1. The tree-width of  G is 1. 

2. G  is outerplanar (and therefore has tree-width 
at most 2). 

3. G is planar and has diameter bounded in terms of 
its height (and therefore bounded tree-width). 

Observation   If the tree-width of  G  is bounded 
and  dim(P)  is large, then it seems the height of  P  
must also be large. 



Joret’s Conjecture 

Conjecture  The dimension of a poset is bounded in 
terms of its height and the tree-width of its cover 
graph.  Formally, for every pair  (t, h), there is a 
constant  d = d(t, h)  so that if  P  is a poset of 
height at most  h  and the tree-width of the cover 
graph of  P  is at most  t, then  dim(P) ≤ d. 



A Momentary Hiccup 

Observation  The cover graphs in the wheel construction 
have large tree-width, as they contain large grids. 



Kelly’s Construction and Tree-width 

Observation  The cover graphs in Kelly’s 
construction have tree-width  3.  In fact, they have 
path-width  3. 



The Resolution of Joret’s Conjecture 

Theorem (Joret, Micek, Milans, WTT, Walczak, 
Wang, 2012)  The dimension of a poset is bounded in 
terms of its height and the tree-width of its cover 
graph.  Formally, for every pair  (t, h), there is a 
constant  d = d(t, h)  so that if  P  is a poset of 
height at most  h  and the tree-width of the cover 
graph of  P  is at most  t, then  dim(P) ≤ d. 



Open Problems 

Is the dimension of a poset bounded when the tree-width 
of its cover graph is  2?    
 
Remark  Biró, Keller and Young (2013+) have just proved 
that the answer is yes when the path-width of the cover 
graph is  2.   
 



More Open Problems 

 

1. Must planar posets of large dimension contain large 
standard examples? 

2. If the tree-width of the cover graph is bounded and the 
dimension is large, must the poset contain a large 
standard example? 

3. For what other minor closed classes is there a bound on 
the dimension of a poset (perhaps as a function of 
height) when the cover graph does not contain a graph 
from the class as a minor? 



WTT on Erdős (1998) 

Paul Erdős was one of those very special geniuses, 
the kind who comes along only once in a very long 
while, yet he chose, quite consciously I am sure, to 
share mathematics with mere mortals--like me. And 
for this, I will always be grateful to him. I will miss 
the times he prowled my hallways at 4:00 A.M. and 
came to my bed to ask whether my "brain is open." 
I will miss the problems and conjectures and the 
stimulating conversations about anything and 
everything. But most of all, I will just miss Paul, the 
human. I loved him dearly. 


