Erdős on polynomials

Vilmos Totik
University of Szeged and University of South Florida totik@mail.usf.edu

Erdős on polynomials

Erdős on polynomials

- Interpolation

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials
- Geometric problems for lemniscates

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials
- Geometric problems for lemniscates
- Orthogonal polynomials

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials
- Geometric problems for lemniscates
- Orthogonal polynomials
- Spacing of zeros

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials
- Geometric problems for lemniscates
- Orthogonal polynomials
- Spacing of zeros
- Geometry of zeros of derivatives

Erdős on polynomials

- Interpolation
- Discrepancy theorems for zeros
- Inequalities
- Growth of polynomials
- Geometric problems for lemniscates
- Orthogonal polynomials
- Spacing of zeros
- Geometry of zeros of derivatives
- Polynomials with integer coefficients

Erdős on polynomials

- Interpolation (Lubinsky's and Vértesi's surveys)
- Discrepancy theorems for zeros
- Inequalities (Erdélyi's survey)
- Growth of polynomials
- Geometric problems for lemniscates (Eremenko-Hayman's and Borwein's surveys)
- Orthogonal polynomials
- Spacing of zeros
- Geometry of zeros of derivatives
- Polynomials with integer coefficients (Borwein's and Erdélyi's surveys)

Chebyshev polynomials

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers Approximate x^{n} by linear combination of smaller powers

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers Approximate x^{n} by linear combination of smaller powers

$$
t_{n}=\inf _{P_{n}(x)=x^{n}+\ldots}\left\|P_{n}\right\|_{[-1,1]}
$$

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers Approximate x^{n} by linear combination of smaller powers

$$
t_{n}=\inf _{P_{n}(x)=x^{n}+\cdots}\left\|P_{n}\right\|_{[-1,1]}
$$

$$
\left\|P_{n}\right\|_{K}=\sup _{z \in K}\left|P_{n}(z)\right|
$$

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers Approximate x^{n} by linear combination of smaller powers

$$
t_{n}=\inf _{P_{n}(x)=x^{n}+\ldots}\left\|P_{n}\right\|_{[-1,1]}
$$

$$
\left\|P_{n}\right\|_{K}=\sup _{z \in K}\left|P_{n}(z)\right|
$$

$$
t_{n}=\frac{2}{2^{n}}
$$

Chebyshev polynomials

P. L. Chebyshev: replace x^{4} in $[-1,1]$ by combination of smaller powers Approximate x^{n} by linear combination of smaller powers

$$
\begin{gathered}
t_{n}=\inf _{P_{n}(x)=x^{n}+\ldots}\left\|P_{n}\right\|_{[-1,1]} \\
\left\|P_{n}\right\|_{K}=\sup _{z \in K}\left|P_{n}(z)\right| \\
t_{n}=\frac{2}{2^{n}} \\
T_{n}(z)=\frac{1}{2^{n-1}} \cos (n \arccos x)
\end{gathered}
$$

Zeros of the Chebyshev polynomials

Uniform spacing of zeros

The Erdős-Turán discrepancy theorem

The Erdős-Turán discrepancy theorem

Suppose $P_{n}(x)=x^{n}+\cdots$ has all its zeros in $[-1,1]$

The Erdős-Turán discrepancy theorem

Suppose $P_{n}(x)=x^{n}+\cdots$ has all its zeros in $[-1,1]$
Let x_{j} be the zeros

The Erdős-Turán discrepancy theorem

Suppose $P_{n}(x)=x^{n}+\cdots$ has all its zeros in $[-1,1]$
Let x_{j} be the zeros

$$
\left\|P_{n}\right\|_{[-1,1]} \leq \frac{A_{n}}{2^{n}}
$$

The Erdős-Turán discrepancy theorem

Suppose $P_{n}(x)=x^{n}+\cdots$ has all its zeros in $[-1,1]$
Let x_{j} be the zeros

$$
\left\|P_{n}\right\|_{[-1,1]} \leq \frac{A_{n}}{2^{n}}
$$

Th. (Erdős-Turán, 1940) For any $-1 \leq a<b \leq 1$

$$
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\frac{\arcsin b-\arcsin a}{\pi}\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}}
$$

Equilibrium measures

Equilibrium measures

$E \subset \mathbf{C}$ compact

Equilibrium measures

$E \subset \mathbf{C}$ compact μ unit Borel-measure on E,

Equilibrium measures

$E \subset \mathbf{C}$ compact
μ unit Borel-measure on E, its logarithmic energy is

$$
I(\mu)=\iint \log \frac{1}{|z-t|} d \mu(z) d \mu(t)
$$

Equilibrium measures

$E \subset \mathbf{C}$ compact
μ unit Borel-measure on E, its logarithmic energy is

$$
I(\mu)=\iint \log \frac{1}{|z-t|} d \mu(z) d \mu(t)
$$

If this is finite for some μ, then there is a unique minimizing measure μ_{E}, called equilibrium measure of E

Equilibrium measures

$E \subset \mathbf{C}$ compact
μ unit Borel-measure on E, its logarithmic energy is

$$
I(\mu)=\iint \log \frac{1}{|z-t|} d \mu(z) d \mu(t)
$$

If this is finite for some μ, then there is a unique minimizing measure μ_{E}, called equilibrium measure of E
Examples:

$$
d \mu_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}} d t
$$

Equilibrium measures

$E \subset \mathbf{C}$ compact
μ unit Borel-measure on E, its logarithmic energy is

$$
I(\mu)=\iint \log \frac{1}{|z-t|} d \mu(z) d \mu(t)
$$

If this is finite for some μ, then there is a unique minimizing measure μ_{E}, called equilibrium measure of E
Examples:

$$
d \mu_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}} d t
$$

- If C_{1} is the unit circle, then

$$
d \mu_{C_{1}}\left(e^{i t}\right)=\frac{1}{2 \pi} d t
$$

is the normalized arc measure

Logarithmic capacity

With the minimal energy $I(K)=\inf _{\mu} I(\mu)$

Logarithmic capacity

With the minimal energy $I(K)=\inf _{\mu} I(\mu)$ define the logarithmic capacity as

$$
\operatorname{cap}(K)=e^{-l(K)}
$$

Logarithmic capacity

With the minimal energy $I(K)=\inf _{\mu} I(\mu)$ define the logarithmic capacity as

$$
\operatorname{cap}(K)=e^{-l(K)}
$$

Examples:

- If K is a disk/circle of radius r then $c(K)=r$

Logarithmic capacity

With the minimal energy $I(K)=\inf _{\mu} I(\mu)$ define the logarithmic capacity as

$$
\operatorname{cap}(K)=e^{-l(K)}
$$

Examples:

- If K is a disk/circle of radius r then $c(K)=r$
- $\operatorname{cap}([-1,1])=1 / 2$

Logarithmic capacity

With the minimal energy $I(K)=\inf _{\mu} I(\mu)$ define the logarithmic capacity as

$$
\operatorname{cap}(K)=e^{-l(K)}
$$

Examples:

- If K is a disk/circle of radius r then $c(K)=r$
- $\operatorname{cap}([-1,1])=1 / 2$

If $P_{n}(z)=z^{n}+\cdots$, then

$$
\left\|P_{n}\right\|_{K} \geq \operatorname{cap}(K)^{n}
$$

Transfinite diameter, Chebyshev constants

$K \subset \mathbf{C}$ compact

$$
\delta_{n}=\sup _{z_{1}, \ldots, z_{n} \in K} \prod_{i \neq j}\left|z_{i}-z_{j}\right|
$$

Transfinite diameter, Chebyshev constants

$K \subset \mathbf{C}$ compact

$$
\delta_{n}=\sup _{z_{1}, \ldots, z_{n} \in K} \prod_{i \neq j}\left|z_{i}-z_{j}\right|
$$

Transfinite diameter:

$$
\delta_{n}^{1 / n(n-1)} \rightarrow \delta(K)
$$

Transfinite diameter, Chebyshev constants

$K \subset \mathbf{C}$ compact

$$
\delta_{n}=\sup _{z_{1}, \ldots, z_{n} \in K} \prod_{i \neq j}\left|z_{i}-z_{j}\right|
$$

Transfinite diameter:

$$
\delta_{n}^{1 / n(n-1)} \rightarrow \delta(K)
$$

$$
t_{n}=\inf \left\|z^{n}+\cdots\right\|_{K}
$$

Transfinite diameter, Chebyshev constants

$K \subset \mathbf{C}$ compact

$$
\delta_{n}=\sup _{z_{1}, \ldots, z_{n} \in K} \prod_{i \neq j}\left|z_{i}-z_{j}\right|
$$

Transfinite diameter:

$$
\delta_{n}^{1 / n(n-1)} \rightarrow \delta(K)
$$

$$
t_{n}=\inf \left\|z^{n}+\cdots\right\|_{\kappa}
$$

Chebyshev constant

$$
t_{n}^{1 / n} \rightarrow t(K)
$$

Transfinite diameter, Chebyshev constants

$K \subset \mathbf{C}$ compact

$$
\delta_{n}=\sup _{z_{1}, \ldots, z_{n} \in K} \prod_{i \neq j}\left|z_{i}-z_{j}\right|
$$

Transfinite diameter:

$$
\delta_{n}^{1 / n(n-1)} \rightarrow \delta(K)
$$

$$
t_{n}=\inf \left\|z^{n}+\cdots\right\|_{K}
$$

Chebyshev constant

$$
t_{n}^{1 / n} \rightarrow t(K)
$$

Fekete, Zygmund, Szegő:

$$
\operatorname{cap}(K)=\delta(K)=t(K)
$$

The Erdős-Turán discrepancy theorem

The Erdős-Turán discrepancy theorem

$$
P_{n}(x)=x^{n}+\cdots,
$$

The Erdős-Turán discrepancy theorem

$$
P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}
$$

The Erdős-Turán discrepancy theorem

$$
P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}
$$

The Erdős-Turán theorem: For any $-1 \leq a<b \leq 1$

$$
\begin{equation*}
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\int_{a}^{b} \frac{1}{\pi \sqrt{1-x^{2}}} d x\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}} \tag{1}
\end{equation*}
$$

The Erdős-Turán discrepancy theorem

$$
P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}
$$

The Erdős-Turán theorem: For any $-1 \leq a<b \leq 1$

$$
\begin{equation*}
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\int_{a}^{b} \frac{1}{\pi \sqrt{1-x^{2}}} d x\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}} \tag{1}
\end{equation*}
$$

Normalized zero distribution $\nu_{n}=\frac{1}{n} \sum_{j} \delta_{x_{j}}$

The Erdős-Turán discrepancy theorem

$P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}$
The Erdős-Turán theorem: For any $-1 \leq a<b \leq 1$

$$
\begin{equation*}
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\int_{a}^{b} \frac{1}{\pi \sqrt{1-x^{2}}} d x\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}} \tag{1}
\end{equation*}
$$

Normalized zero distribution $\nu_{n}=\frac{1}{n} \sum_{j} \delta_{x_{j}}$
Equivalent form of (1): with the Chebyshev distribution

$$
d \mu_{[-1,1]}(x)=\frac{1}{\pi \sqrt{1-x^{2}}} d x
$$

The Erdős-Turán discrepancy theorem

$P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}$
The Erdős-Turán theorem: For any $-1 \leq a<b \leq 1$

$$
\begin{equation*}
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\int_{a}^{b} \frac{1}{\pi \sqrt{1-x^{2}}} d x\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}} \tag{1}
\end{equation*}
$$

Normalized zero distribution $\nu_{n}=\frac{1}{n} \sum_{j} \delta_{x_{j}}$
Equivalent form of (1): with the Chebyshev distribution

$$
d \mu_{[-1,1]}(x)=\frac{1}{\pi \sqrt{1-x^{2}}} d x
$$

for any $I \subset[-1,1]$

$$
\left|\nu_{n}(I)-\mu_{[-1,1]}(I)\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}}
$$

The Erdős-Turán discrepancy theorem

$P_{n}(x)=x^{n}+\cdots, \quad\left\|P_{n}\right\|_{[-1,1]} \leq A_{n} / 2^{n}$
The Erdős-Turán theorem: For any $-1 \leq a<b \leq 1$

$$
\begin{equation*}
\left|\frac{\#\left\{x_{j} \in(a, b)\right\}}{n}-\int_{a}^{b} \frac{1}{\pi \sqrt{1-x^{2}}} d x\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}} \tag{1}
\end{equation*}
$$

Normalized zero distribution $\nu_{n}=\frac{1}{n} \sum_{j} \delta_{x_{j}}$
Equivalent form of (1): with the Chebyshev distribution

$$
d \mu_{[-1,1]}(x)=\frac{1}{\pi \sqrt{1-x^{2}}} d x
$$

for any $I \subset[-1,1]$

$$
\left|\nu_{n}(I)-\mu_{[-1,1]}(I)\right| \leq 8 \sqrt{\frac{\log A_{n}}{n}}
$$

A general discrepancy theorem

Let K be a finite union of smooth Jordan arcs

A general discrepancy theorem

Let K be a finite union of smooth Jordan arcs

A general discrepancy theorem

Let K be a finite union of smooth Jordan arcs

A general discrepancy theorem

Let K be a finite union of smooth Jordan arcs

A general discrepancy theorem

Let K be a finite union of smooth Jordan arcs

Recall: if $P_{n}(z)=z^{n}+\cdots$, then $\left\|P_{n}\right\|_{K} \geq \operatorname{cap}(K)^{n}$

A general discrepancy theorem

K finite union of smooth Jordan arcs

A general discrepancy theorem

K finite union of smooth Jordan arcs

$$
P_{n}(z)=z^{n}+\cdots
$$

A general discrepancy theorem

K finite union of smooth Jordan arcs

$$
\begin{aligned}
& P_{n}(z)=z^{n}+\cdots \\
& \left\|P_{n}\right\|_{K} \leq A_{n} \operatorname{cap}(K)^{n}
\end{aligned}
$$

A general discrepancy theorem

K finite union of smooth Jordan arcs
$P_{n}(z)=z^{n}+\cdots$
$\left\|P_{n}\right\|_{K} \leq A_{n} \operatorname{cap}(K)^{n}$
ν_{n} normalized zero distribution

A general discrepancy theorem

K finite union of smooth Jordan arcs
$P_{n}(z)=z^{n}+\cdots$
$\left\|P_{n}\right\|_{K} \leq A_{n} \operatorname{cap}(K)^{n}$
ν_{n} normalized zero distribution
Th. (Andrievskii-Blatt, 1995-2000) For any $J \subset K$

$$
\left|\nu_{n}\left(J^{*}\right)-\mu_{K}\left(J^{*}\right)\right| \leq C \sqrt{\frac{\log A_{n}}{n}}
$$

A general discrepancy theorem

K finite union of smooth Jordan arcs
$P_{n}(z)=z^{n}+\cdots$
$\left\|P_{n}\right\|_{K} \leq A_{n} \operatorname{cap}(K)^{n}$
ν_{n} normalized zero distribution
Th. (Andrievskii-Blatt, 1995-2000) For any $J \subset K$

$$
\left|\nu_{n}\left(J^{*}\right)-\mu_{K}\left(J^{*}\right)\right| \leq C \sqrt{\frac{\log A_{n}}{n}}
$$

In particular, if $\left\|P_{n}\right\|_{K}^{1 / n} \rightarrow \operatorname{cap}(K)$, then $\nu_{n} \rightarrow \mu_{K}$

The Jentzsch-Szegő theorem

The Jentzsch-Szegő theorem

No such results are true for Jordan curves:

The Jentzsch-Szegő theorem

No such results are true for Jordan curves: z^{n} on the unit circle

The Jentzsch-Szegő theorem

No such results are true for Jordan curves: z^{n} on the unit circle Jentsch, 1918: If the radius of convergence of $\sum_{j=0}^{\infty} a_{j} z^{j}$ is 1 , then the zeros of the partial sums $\sum_{0}^{n} a_{j} z^{j}, n=1,2, \ldots$ are dense at the unit circle

The Jentzsch-Szegő theorem

No such results are true for Jordan curves: z^{n} on the unit circle Jentsch, 1918: If the radius of convergence of $\sum_{j=0}^{\infty} a_{j} z^{j}$ is 1 , then the zeros of the partial sums $\sum_{0}^{n} a_{j} z^{j}, n=1,2, \ldots$ are dense at the unit circle

Szegő, 1922: There is a sequence $n_{1}<n_{2}<\cdots$ such that if
 asymptotically uniformly distributed (and $r_{j, n_{k}} \approx 1$ for most j)

The second discrepancy theorem

$$
P_{n}(z)=a_{n} z^{n}+\cdots+a_{0}, \quad C_{1}=\{|z|=1\}
$$

The second discrepancy theorem

$$
P_{n}(z)=a_{n} z^{n}+\cdots+a_{0}, \quad C_{1}=\{|z|=1\}
$$

$z_{j}=r_{j} e^{i \theta_{j}}$ are the zeros

The second discrepancy theorem

$$
P_{n}(z)=a_{n} z^{n}+\cdots+a_{0}, \quad C_{1}=\{|z|=1\}
$$

$z_{j}=r_{j} e^{i \theta_{j}}$ are the zeros
Th. (Erdős-Turán, 1950) For any $J \subset[0,2 \pi]$

The second discrepancy theorem

$$
P_{n}(z)=a_{n} z^{n}+\cdots+a_{0}, \quad C_{1}=\{|z|=1\}
$$

$z_{j}=r_{j} e^{i \theta_{j}}$ are the zeros
Th. (Erdös-Turán, 1950) For any $J \subset[0,2 \pi]$

$$
\left|\frac{\#\left\{\theta_{j} \in J\right\}}{n}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\frac{\log \left\|P_{n}\right\|_{C_{1}} / \sqrt{\left|a_{0} a_{n}\right|}}{n}}
$$

The second discrepancy theorem

$P_{n}(z)=a_{n} z^{n}+\cdots+a_{0}, \quad C_{1}=\{|z|=1\}$
$z_{j}=r_{j} e^{i \theta_{j}}$ are the zeros
Th. (Erdős-Turán, 1950) For any $J \subset[0,2 \pi]$

$$
\left|\frac{\#\left\{\theta_{j} \in J\right\}}{n}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\frac{\log \left\|P_{n}\right\|_{C_{1}} / \sqrt{\left|a_{0} a_{n}\right|}}{n}}
$$

Note

$$
\left\|P_{n}\right\|_{c_{1}} \leq \sum_{j}\left|a_{j}\right|
$$

Number of real zeros of a polynomial

Number of real zeros of a polynomial

$$
\left|\frac{\#\left\{\theta_{j} \in J\right\}}{n}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\frac{\log \left(\sum_{j}\left|a_{j}\right| / \sqrt{\left|a_{0} a_{n}\right|}\right)}{n}},
$$

Number of real zeros of a polynomial

$$
\left|\frac{\#\left\{\theta_{j} \in J\right\}}{n}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\frac{\log \left(\sum_{j}\left|a_{j}\right| / \sqrt{\left|a_{0} a_{n}\right|}\right)}{n}},
$$

Consequence: there are at most

$$
32 \cdot \sqrt{n \log \left(\sum_{j}\left|a_{j}\right| / \sqrt{\left|a_{0} a_{n}\right|}\right)}
$$

real zeros of P_{n}

Number of real zeros of a polynomial

$$
\left|\frac{\#\left\{\theta_{j} \in J\right\}}{n}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\frac{\log \left(\sum_{j}\left|a_{j}\right| / \sqrt{\left|a_{0} a_{n}\right|}\right)}{n}},
$$

Consequence: there are at most

$$
32 \cdot \sqrt{n \log \left(\sum_{j}\left|a_{j}\right| / \sqrt{\left|a_{0} a_{n}\right|}\right)}
$$

real zeros of P_{n}
Better than previous estimates of Bloch, Pólya, Schmidt, basically a theorem of Schur, Szegő

The Szegő theorem

The Szegő theorem

$\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{0} \neq 0$

The Szegő theorem

$\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{0} \neq 0$
Radius of convergence $1 \longleftrightarrow \lim \sup _{n}\left|a_{n}\right|^{1 / n}=1$

The Szegő theorem

$$
\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{0} \neq 0
$$

Radius of convergence $1 \longleftrightarrow \lim \sup _{n}\left|a_{n}\right|^{1 / n}=1$
There is a subsequence $\left\{n_{k}\right\}$ with

$$
C_{n_{k}}:=\left(\frac{\sum_{j=0}^{n_{k}}\left|a_{j}\right|}{\sqrt{\left|a_{0} a_{n}\right|}}\right)^{1 / n_{k}} \rightarrow 1
$$

The Szegő theorem

$\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{0} \neq 0$
Radius of convergence $1 \longleftrightarrow \lim \sup _{n}\left|a_{n}\right|^{1 / n}=1$
There is a subsequence $\left\{n_{k}\right\}$ with

$$
C_{n_{k}}:=\left(\frac{\sum_{j=0}^{n_{k}}\left|a_{j}\right|}{\sqrt{\left|a_{0} a_{n}\right|}}\right)^{1 / n_{k}} \rightarrow 1
$$

$z_{j, n}=r_{j, n} e^{i \theta_{j}, n}$ are the zeros of $\sum_{j=0}^{n} a_{j} z^{j}$

The Szegő theorem

$\sum_{j=0}^{\infty} a_{j} z^{j}, \quad a_{0} \neq 0$
Radius of convergence $1 \longleftrightarrow \lim \sup _{n}\left|a_{n}\right|^{1 / n}=1$
There is a subsequence $\left\{n_{k}\right\}$ with

$$
C_{n_{k}}:=\left(\frac{\sum_{j=0}^{n_{k}}\left|a_{j}\right|}{\sqrt{\left|a_{0} a_{n}\right|}}\right)^{1 / n_{k}} \rightarrow 1
$$

$z_{j, n}=r_{j, n} e^{i \theta_{j}, n}$ are the zeros of $\sum_{j=0}^{n} a_{j} z^{j}$

$$
\left|\frac{\#\left\{\theta_{j, n_{k}} \in J\right\}}{n_{k}}-\frac{|J|}{2 \pi}\right| \leq 16 \sqrt{\log C_{n_{k}}} \rightarrow 0
$$

General discrepancy theorems

General discrepancy theorems

General discrepancy theorems

Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z_{0} a fixed point inside, $P_{n}(z)=z^{n}+\cdots+a_{n}$, and

General discrepancy theorems

Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z_{0} a fixed point inside, $P_{n}(z)=z^{n}+\cdots+a_{n}$, and $B_{n}=\left\|P_{n}\right\|_{\Gamma} / \sqrt{\operatorname{cap}(\Gamma)^{n}\left|P_{n}\left(z_{0}\right)\right|}$, then for all $J \subset \Gamma$

General discrepancy theorems

Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z_{0} a fixed point inside, $P_{n}(z)=z^{n}+\cdots+a_{n}$, and $B_{n}=\left\|P_{n}\right\|_{\Gamma} / \sqrt{\operatorname{cap}(\Gamma)^{n}\left|P_{n}\left(z_{0}\right)\right|}$, then for all $J \subset \Gamma$

$$
\left|\frac{\#\left\{z_{j} \in J^{*}\right\}}{n}-\mu_{\Gamma}(J)\right| \leq C_{0} \sqrt{\frac{\log B_{n}}{n}}
$$

General discrepancy theorems

Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z_{0} a fixed point inside, $P_{n}(z)=z^{n}+\cdots+a_{n}$, and $B_{n}=\left\|P_{n}\right\|_{\Gamma} / \sqrt{\operatorname{cap}(\Gamma)^{n}\left|P_{n}\left(z_{0}\right)\right|}$, then for all $J \subset \Gamma$

$$
\left|\frac{\#\left\{z_{j} \in J^{*}\right\}}{n}-\mu_{\Gamma}(J)\right| \leq C_{0} \sqrt{\frac{\log B_{n}}{n}}
$$

It is true for a family of Jordan curves

Orthogonal polynomials

ρ a measure with compact support

Orthogonal polynomials

ρ a measure with compact support
$p_{n}(z)=\gamma_{n} z^{n}+\cdots$ orthonormal polynomials with respect to ρ :

$$
\int p_{n} \overline{p_{m}} d \rho= \begin{cases}0 & \text { if } n \neq m \\ 1 & \text { if } n=m\end{cases}
$$

Orthogonal polynomials

ρ a measure with compact support
$p_{n}(z)=\gamma_{n} z^{n}+\cdots$ orthonormal polynomials with respect to ρ :

$$
\int p_{n} \overline{p_{m}} d \rho= \begin{cases}0 & \text { if } n \neq m \\ 1 & \text { if } n=m\end{cases}
$$

Erdős-Turán were among the first to get results for general weights

Orthogonal polynomials

ρ a measure with compact support
$p_{n}(z)=\gamma_{n} z^{n}+\cdots$ orthonormal polynomials with respect to ρ :

$$
\int p_{n} \overline{p_{m}} d \rho= \begin{cases}0 & \text { if } n \neq m \\ 1 & \text { if } n=m\end{cases}
$$

Erdős-Turán were among the first to get results for general weights
Th. (Erdős-Turán, 1940) If the support of ρ is $[-1,1], d \rho(x)=w(x) d x$ and $w>0$ almost everywhere,

Orthogonal polynomials

ρ a measure with compact support
$p_{n}(z)=\gamma_{n} z^{n}+\cdots$ orthonormal polynomials with respect to ρ :

$$
\int p_{n} \overline{p_{m}} d \rho= \begin{cases}0 & \text { if } n \neq m \\ 1 & \text { if } n=m\end{cases}
$$

Erdős-Turán were among the first to get results for general weights
Th. (Erdős-Turán, 1940) If the support of ρ is $[-1,1], d \rho(x)=w(x) d x$ and $w>0$ almost everywhere, then

- the asymptotic zero distribution of p_{n} is the Chebyshev distribution

Orthogonal polynomials

ρ a measure with compact support
$p_{n}(z)=\gamma_{n} z^{n}+\cdots$ orthonormal polynomials with respect to ρ :

$$
\int p_{n} \overline{p_{m}} d \rho= \begin{cases}0 & \text { if } n \neq m \\ 1 & \text { if } n=m\end{cases}
$$

Erdős-Turán were among the first to get results for general weights
Th. (Erdős-Turán, 1940) If the support of ρ is $[-1,1], d \rho(x)=w(x) d x$ and $w>0$ almost everywhere, then

- the asymptotic zero distribution of p_{n} is the Chebyshev distribution

$$
\left|p_{n}(z)\right|^{1 / n} \rightarrow\left|z+\sqrt{z^{2}-1}\right|, \quad z \notin[-1,1]
$$

Orthogonal polynomials

$w>0$ almost everywhere on $[-1,1]$ implies classical behavior

Orthogonal polynomials

$w>0$ almost everywhere on $[-1,1]$ implies classical behavior Rakhmanov, 1982: actually

$$
\frac{p_{n+1}(z)}{p_{n}(z)} \rightarrow z+\sqrt{z^{2}-1}
$$

Orthogonal polynomials

$w>0$ almost everywhere on $[-1,1]$ implies classical behavior Rakhmanov, 1982: actually

$$
\frac{p_{n+1}(z)}{p_{n}(z)} \rightarrow z+\sqrt{z^{2}-1}
$$

Widom, 1967: If the support is not connected, then such external behavior is not possible

Orthogonal polynomials

$w>0$ almost everywhere on $[-1,1]$ implies classical behavior Rakhmanov, 1982: actually

$$
\frac{p_{n+1}(z)}{p_{n}(z)} \rightarrow z+\sqrt{z^{2}-1}
$$

Widom, 1967: If the support is not connected, then such external behavior is not possible

Assume $S=\operatorname{supp}(\rho)$ has connected complement and empty interior (e.g. $S \subset \mathbf{R})$

Orthogonal polynomials

$w>0$ almost everywhere on $[-1,1]$ implies classical behavior Rakhmanov, 1982: actually

$$
\frac{p_{n+1}(z)}{p_{n}(z)} \rightarrow z+\sqrt{z^{2}-1}
$$

Widom, 1967: If the support is not connected, then such external behavior is not possible

Assume $S=\operatorname{supp}(\rho)$ has connected complement and empty interior (e.g. $S \subset \mathbf{R})$

Always

$$
\frac{1}{\operatorname{cap}(S)} \leq \liminf \gamma_{n}^{1 / n}
$$

Regular behavior

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

- The asymptotic zero distribution of p_{n} is the equilibrium distribution μ_{S} of the support S

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

- The asymptotic zero distribution of p_{n} is the equilibrium distribution μ_{S} of the support S

$$
\left|p_{n}(z)\right|^{1 / n} \rightarrow G_{S}(z) \quad z \notin S
$$

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

- The asymptotic zero distribution of p_{n} is the equilibrium distribution μ_{S} of the support S

$$
\begin{gathered}
\left|p_{n}(z)\right|^{1 / n} \rightarrow G_{S}(z) \quad z \notin S \\
\gamma_{n}^{1 / n} \rightarrow 1 / \operatorname{cap}(S)
\end{gathered}
$$

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

- The asymptotic zero distribution of p_{n} is the equilibrium distribution μ_{S} of the support S

$$
\begin{gathered}
\left|p_{n}(z)\right|^{1 / n} \rightarrow G_{S}(z) \quad z \notin S \\
\gamma_{n}^{1 / n} \rightarrow 1 / \operatorname{cap}(S) \\
\sup _{P_{n}} \frac{\left\|P_{n}\right\|_{S}^{1 / n}}{\left\|P_{n}\right\|_{L^{q}(\rho)}^{1 / n}} \rightarrow 1, \quad q>0
\end{gathered}
$$

Regular behavior

The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...):

- The asymptotic zero distribution of p_{n} is the equilibrium distribution μ_{S} of the support S

$$
\begin{gathered}
\left|p_{n}(z)\right|^{1 / n} \rightarrow G_{S}(z) \quad z \notin S \\
\gamma_{n}^{1 / n} \rightarrow 1 / \operatorname{cap}(S) \\
\sup _{P_{n}} \frac{\left\|P_{n}\right\|_{S}^{1 / n}}{\left\|P_{n}\right\|_{L^{q}(\rho)}^{1 / n}} \rightarrow 1, \quad q>0
\end{gathered}
$$

In this case we say $\rho \in \mathbf{R e g}$

Regular behavior

Regular behavior

$\rho \in \boldsymbol{R e g} \Longleftrightarrow$ the measure is not too thin on any part of its support

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.
Many weaker criteria exist

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.
Many weaker criteria exist
No necessary and sufficient condition is known

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.
Many weaker criteria exist
No necessary and sufficient condition is known
Erdős conjectured: if $S=[-1,1]$ and $d \rho(x)=w(x) d x$ with a bounded w, then $\rho \in \mathbf{R e g}$

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.

Many weaker criteria exist
No necessary and sufficient condition is known
Erdős conjectured: if $S=[-1,1]$ and $d \rho(x)=w(x) d x$ with a bounded w, then $\rho \in \boldsymbol{\operatorname { R e g }}$ if and only if $\operatorname{cap}\left(E_{\epsilon}\right) \rightarrow 1 / 2$ as $\epsilon \rightarrow 0$ where E_{ϵ} is any set obtained from $\{x \mid w(x)>0\}$ by removing a subset of measure $<\epsilon$.

Regular behavior

$\rho \in \operatorname{Reg} \Longleftrightarrow$ the measure is not too thin on any part of its support \Longleftrightarrow orthogonal polynomials behave non-pathologically
$\rho \in \mathbf{R e g}$ is a very weak assumption on the measure
Erdős-Turán criterion for regularity on $[-1,1]: d \rho(z)=w(z) d z$ with $w(z)>0$ a.e.
General Erdős-Turán criterion for regularity: $d \rho(z)=w(z) d \mu_{S}(z)$ with $w(z)>0 \mu_{S}$-a.e.
Many weaker criteria exist
No necessary and sufficient condition is known
Erdős conjectured: if $S=[-1,1]$ and $d \rho(x)=w(x) d x$ with a bounded w, then $\rho \in \mathbf{R e g}$ if and only if $\operatorname{cap}\left(E_{\epsilon}\right) \rightarrow 1 / 2$ as $\epsilon \rightarrow 0$ where E_{ϵ} is any set obtained from $\{x \mid w(x)>0\}$ by removing a subset of measure $<\epsilon$.
Sufficiency follows from some strong regularity criteria

Spacing of zeros

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1]$,

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials,

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials, $x_{j, n}=\cos \theta_{j, n}$ are the zeros

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials, $x_{j, n}=\cos \theta_{j, n}$ are the zeros
Rough spacing:

$$
\theta_{j-1}-\theta_{j} \sim \frac{1}{n}, \quad \text { i.e. } \quad \frac{c_{1}}{n} \leq \theta_{j-1}-\theta_{j} \leq \frac{c_{2}}{n}
$$

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials, $x_{j, n}=\cos \theta_{j, n}$ are the zeros
Rough spacing:

$$
\theta_{j-1}-\theta_{j} \sim \frac{1}{n}, \quad \text { i.e. } \quad \frac{c_{1}}{n} \leq \theta_{j-1}-\theta_{j} \leq \frac{c_{2}}{n}
$$

Fine spacing:

$$
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n}, \quad \text { i.e. } \quad n\left(\theta_{j-1}-\theta_{j}\right) \rightarrow \frac{\pi}{n}
$$

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials, $x_{j, n}=\cos \theta_{j, n}$ are the zeros
Rough spacing:

$$
\theta_{j-1}-\theta_{j} \sim \frac{1}{n}, \quad \text { i.e. } \quad \frac{c_{1}}{n} \leq \theta_{j-1}-\theta_{j} \leq \frac{c_{2}}{n}
$$

Fine spacing:

$$
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n}, \quad \text { i.e. } \quad n\left(\theta_{j-1}-\theta_{j}\right) \rightarrow \frac{\pi}{n}
$$

Classical (Jacobi) polynomials obey fine spacing inside the interval of orthogonality

Spacing of zeros

$d \rho(x)=w(x) d x$ a measure on $[-1,1], p_{n}$ orthogonal polynomials, $x_{j, n}=\cos \theta_{j, n}$ are the zeros
Rough spacing:

$$
\theta_{j-1}-\theta_{j} \sim \frac{1}{n}, \quad \text { i.e. } \quad \frac{c_{1}}{n} \leq \theta_{j-1}-\theta_{j} \leq \frac{c_{2}}{n}
$$

Fine spacing:

$$
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n}, \quad \text { i.e. } \quad n\left(\theta_{j-1}-\theta_{j}\right) \rightarrow \frac{\pi}{n}
$$

Classical (Jacobi) polynomials obey fine spacing inside the interval of orthogonality

Rough spacing of zeros

Erdős and Turán had many results in $1930-40$'s on rough spacing

Rough spacing of zeros

Erdős and Turán had many results in $1930-40$'s on rough spacing
Mastroianni-T., 2005: rough spacing " $\longleftrightarrow " \rho$ doubling

Rough spacing of zeros

Erdős and Turán had many results in $1930-40$'s on rough spacing
Mastroianni-T., 2005: rough spacing " $\longleftrightarrow " \rho$ doubling ρ is doubling if $\rho(2 I) \leq C \rho(I)$ for $I \subset[-1,1]$

Fine zero spacing

Fine zero spacing

Th. (Erdős-Turán, 1940) If $w>0$ continuous on $[-1,1]$, then

$$
\begin{equation*}
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n} \quad \theta_{j} \in[\epsilon, \pi-\epsilon] \tag{2}
\end{equation*}
$$

Fine zero spacing

Th. (Erdős-Turán, 1940) If $w>0$ continuous on $[-1,1]$, then

$$
\begin{equation*}
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n} \quad \theta_{j} \in[\epsilon, \pi-\epsilon] \tag{2}
\end{equation*}
$$

No longer true if w can vanish!

Fine zero spacing

Th. (Erdős-Turán, 1940) If $w>0$ continuous on $[-1,1]$, then

$$
\begin{equation*}
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n} \quad \theta_{j} \in[\epsilon, \pi-\epsilon] \tag{2}
\end{equation*}
$$

No longer true if w can vanish!
A form of universality in random matrix theory \longleftrightarrow asymptotics for the kernel

$$
\sum_{k=0}^{n} p_{k}(z+a / n) p_{k}(z+b / n) \quad a, b \in \mathbf{C}
$$

Fine zero spacing

Th. (Erdős-Turán, 1940) If $w>0$ continuous on $[-1,1]$, then

$$
\begin{equation*}
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n} \quad \theta_{j} \in[\epsilon, \pi-\epsilon] \tag{2}
\end{equation*}
$$

No longer true if w can vanish!
A form of universality in random matrix theory \longleftrightarrow asymptotics for the kernel

$$
\sum_{k=0}^{n} p_{k}(z+a / n) p_{k}(z+b / n) \quad a, b \in \mathbf{C}
$$

Lubinsky, 2009: universality is true under the $\rho \in \mathbf{R e g}$ global condition and under local continuity and positivity condition

Fine zero spacing

Th. (Erdős-Turán, 1940) If $w>0$ continuous on $[-1,1]$, then

$$
\begin{equation*}
\theta_{j-1}-\theta_{j} \approx \frac{\pi}{n} \quad \theta_{j} \in[\epsilon, \pi-\epsilon] \tag{2}
\end{equation*}
$$

No longer true if w can vanish!
A form of universality in random matrix theory \longleftrightarrow asymptotics for the kernel

$$
\sum_{k=0}^{n} p_{k}(z+a / n) p_{k}(z+b / n) \quad a, b \in \mathbf{C}
$$

Lubinsky, 2009: universality is true under the $\rho \in \mathbf{R e g}$ global condition and under local continuity and positivity condition

Levin-Lubinsky: under these conditions (2) is true

Universality \longleftrightarrow fine zero spacing

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S
If $I \subset S$ is an interval, then $d \mu_{S}(t)=\omega_{S}(t) d t$

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S
If $I \subset S$ is an interval, then $d \mu_{S}(t)=\omega_{S}(t) d t$
Example:

$$
\omega_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}}
$$

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S
If $I \subset S$ is an interval, then $d \mu_{S}(t)=\omega_{S}(t) d t$
Example:

$$
\omega_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}}
$$

Simon, T., 2010: $\rho \in \mathbf{R e g}$ and continuity and positivity of $w(t):=d \rho(t) / d t$ at an $x \in \operatorname{Int}(S)$ imply

$$
\begin{equation*}
n \omega_{S}(x)\left(x_{j+1}-x_{j}\right) \rightarrow 1, \quad x_{j} \approx x \tag{3}
\end{equation*}
$$

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S
If $I \subset S$ is an interval, then $d \mu_{S}(t)=\omega_{S}(t) d t$
Example:

$$
\omega_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}}
$$

Simon, T., 2010: $\rho \in$ Reg and continuity and positivity of $w(t):=d \rho(t) / d t$ at an $x \in \operatorname{Int}(S)$ imply

$$
\begin{equation*}
n \omega_{S}(x)\left(x_{j+1}-x_{j}\right) \rightarrow 1, \quad x_{j} \approx x \tag{3}
\end{equation*}
$$

If $\log 1 / w \in L^{1}(I)$, then (3) is true at almost all $x \in I$.

Universality \longleftrightarrow fine zero spacing
S the support of ρ, μ_{S} the equilibrium measures of S
If $I \subset S$ is an interval, then $d \mu_{S}(t)=\omega_{S}(t) d t$
Example:

$$
\omega_{[-1,1]}(t)=\frac{1}{\pi \sqrt{1-t^{2}}}
$$

Simon, T., 2010: $\rho \in$ Reg and continuity and positivity of $w(t):=d \rho(t) / d t$ at an $x \in \operatorname{Int}(S)$ imply

$$
\begin{equation*}
n \omega_{S}(x)\left(x_{j+1}-x_{j}\right) \rightarrow 1, \quad x_{j} \approx x \tag{3}
\end{equation*}
$$

If $\log 1 / w \in L^{1}(I)$, then (3) is true at almost all $x \in I$.
Is (3)/universality true (say on $[-1,1]$) a.e. solely under the Erdős-Turán condition $w>0$ a.e.?

Critical points of polynomials

Critical points of polynomials

P_{n} polynomial of degree n

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}
Gauss-Lucas, 1800's: every ξ_{j} is in the convex hull of $\left\{z_{1}, \ldots, z_{n}\right\}$

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}
Gauss-Lucas, 1800's: every ξ_{j} is in the convex hull of $\left\{z_{1}, \ldots, z_{n}\right\}$ Erdős-Niven, 1948:

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}
Gauss-Lucas, 1800's: every ξ_{j} is in the convex hull of $\left\{z_{1}, \ldots, z_{n}\right\}$ Erdős-Niven, 1948:

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Im \xi_{j}\right| \leq \frac{1}{n} \sum_{1}^{n}\left|\Im z_{k}\right|
$$

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}
Gauss-Lucas, 1800's: every ξ_{j} is in the convex hull of $\left\{z_{1}, \ldots, z_{n}\right\}$ Erdős-Niven, 1948:

$$
\begin{aligned}
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Im \xi_{j}\right| & \leq \frac{1}{n} \sum_{1}^{n}\left|\Im z_{k}\right| \\
\frac{1}{n-1} \sum_{1}^{n-1}\left|\xi_{j}\right| & \leq \frac{1}{n} \sum_{1}^{n}\left|z_{k}\right|
\end{aligned}
$$

Critical points of polynomials

P_{n} polynomial of degree n
z_{1}, \ldots, z_{n} zeros of $P_{n}, \quad \xi_{1}, \ldots, \xi_{n-1}$ zeros of P_{n}^{\prime}
Gauss-Lucas, 1800's: every ξ_{j} is in the convex hull of $\left\{z_{1}, \ldots, z_{n}\right\}$ Erdős-Niven, 1948:

$$
\begin{aligned}
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Im \xi_{j}\right| & \leq \frac{1}{n} \sum_{1}^{n}\left|\Im z_{k}\right| \\
\frac{1}{n-1} \sum_{1}^{n-1}\left|\xi_{j}\right| & \leq \frac{1}{n} \sum_{1}^{n}\left|z_{k}\right|
\end{aligned}
$$

de Bruijn-Springer:

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\xi_{j}\right|^{m} \leq \frac{1}{n} \sum_{1}^{n}\left|z_{k}\right|^{m}
$$

Conjectures on majorization

Conjectures on majorization

de Bruijn-Springer conjecture (1948): if $\varphi: \mathbf{C} \rightarrow \mathbf{R}_{+}$is convex, then

$$
\frac{1}{n-1} \sum_{1}^{n-1} \varphi\left(\xi_{j}\right) \leq \frac{1}{n} \sum_{1}^{n} \varphi\left(z_{k}\right)
$$

Conjectures on majorization

de Bruijn-Springer conjecture (1948): if $\varphi: \mathbf{C} \rightarrow \mathbf{R}_{+}$is convex, then

$$
\frac{1}{n-1} \sum_{1}^{n-1} \varphi\left(\xi_{j}\right) \leq \frac{1}{n} \sum_{1}^{n} \varphi\left(z_{k}\right)
$$

Very strong property, ("theory of majorization"; Weyl, Birkhoff, Hardy-Littlewood-Pólya)

Conjectures on majorization

de Bruijn-Springer conjecture (1948): if $\varphi: \mathbf{C} \rightarrow \mathbf{R}_{+}$is convex, then

$$
\frac{1}{n-1} \sum_{1}^{n-1} \varphi\left(\xi_{j}\right) \leq \frac{1}{n} \sum_{1}^{n} \varphi\left(z_{k}\right)
$$

Very strong property, ("theory of majorization"; Weyl, Birkhoff, Hardy-Littlewood-Pólya)

Many other conjectures (by Schoenberg, Katroprinakis, ...) on the relation of the z_{k} 's and ξ_{j} 's

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if - $a_{i j} \geq 0$,

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if

- $a_{i j} \geq 0$,
- each row-sum equals 1

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if

- $a_{i j} \geq 0$,
- each row-sum equals 1
- each column-sum equals $(n-1) / n$

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if

- $a_{i j} \geq 0$,
- each row-sum equals 1
- each column-sum equals $(n-1) / n$

Let

$$
\mathbf{Z}=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) \quad \equiv=\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n-1}
\end{array}\right)
$$

The Malamud-Pereira theorem

An $(n-1) \times n \quad \mathbf{A}=\left(a_{i j}\right)$ matrix is doubly stochastic if

- $a_{i j} \geq 0$,
- each row-sum equals 1
- each column-sum equals $(n-1) / n$

Let

$$
\mathbf{Z}=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) \quad \equiv=\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n-1}
\end{array}\right)
$$

Th. (Malamud, Pereira, 2003) There is a doubly stochastic matrix \mathbf{A} such that $\overline{=}=\mathbf{A Z}$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right)
$$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\begin{aligned}
& \frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right) \\
& =\frac{1}{n-1} \sum_{k} \varphi\left(z_{k}\right) \sum_{j} a_{j k}=\frac{1}{n} \sum_{k} \varphi\left(z_{k}\right)
\end{aligned}
$$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\begin{aligned}
& \frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right) \\
& =\frac{1}{n-1} \sum_{k} \varphi\left(z_{k}\right) \sum_{j} a_{j k}=\frac{1}{n} \sum_{k} \varphi\left(z_{k}\right)
\end{aligned}
$$

Examples: 1)

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Re \xi_{j}\right|^{m} \leq \frac{1}{n} \sum_{1}^{n}\left|\Re z_{k}\right|^{m}
$$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\begin{aligned}
& \frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right) \\
& =\frac{1}{n-1} \sum_{k} \varphi\left(z_{k}\right) \sum_{j} a_{j k}=\frac{1}{n} \sum_{k} \varphi\left(z_{k}\right)
\end{aligned}
$$

Examples: 1)

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Re \xi_{j}\right|^{m} \leq \frac{1}{n} \sum_{1}^{n}\left|\Re z_{k}\right|^{m}
$$

2) If all zeros lie in the upper-half plane, then

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\begin{aligned}
& \frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right) \\
& =\frac{1}{n-1} \sum_{k} \varphi\left(z_{k}\right) \sum_{j} a_{j k}=\frac{1}{n} \sum_{k} \varphi\left(z_{k}\right)
\end{aligned}
$$

Examples: 1)

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Re \xi_{j}\right|^{m} \leq \frac{1}{n} \sum_{1}^{n}\left|\Re z_{k}\right|^{m}
$$

2) If all zeros lie in the upper-half plane, then

$$
\left(\prod_{1}^{n} \Im z_{k}\right)^{1 / n} \leq\left(\prod_{1}^{n-1} \Im \xi_{j}\right)^{1 /(n-1)}
$$

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences:
$\xi_{j}=\sum_{k} a_{j k} z_{k}$

$$
\begin{aligned}
& \frac{1}{n-1} \sum_{j} \varphi\left(\xi_{j}\right) \leq \frac{1}{n-1} \sum_{j} \sum_{k} a_{j k} \varphi\left(z_{k}\right) \\
& =\frac{1}{n-1} \sum_{k} \varphi\left(z_{k}\right) \sum_{j} a_{j k}=\frac{1}{n} \sum_{k} \varphi\left(z_{k}\right)
\end{aligned}
$$

Examples: 1)

$$
\frac{1}{n-1} \sum_{1}^{n-1}\left|\Re \xi_{j}\right|^{m} \leq \frac{1}{n} \sum_{1}^{n}\left|\Re z_{k}\right|^{m}
$$

2) If all zeros lie in the upper-half plane, then

$$
\left(\prod_{1}^{n} \Im z_{k}\right)^{1 / n} \leq\left(\prod_{1}^{n-1} \Im \xi_{j}\right)^{1 /(n-1)}
$$

