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(TU Budapest and U of Bristol)

ER + FF = SOC
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Erdős-Rényi random graph, dynamical formulation:

ΩN := {0,1}(
N
2), ω{i,j} switches from 0 to 1 with rate N−1

• 0 ≤ t < 1 subcritical phase: small clusters

P
(

size of the cluster of a randomly chosen site > k
)
< e−γ(t)k,

Largest cluster ∼ logN .

• 1 < t <∞ supercritical phase:
one giant of size ∼ θ(t)N + small clusters.

• t = 1 critical point:

P
(

size of the cluster of a randomly chosen site > k
)
� k−1/2,

+ some large clusters ∼ N2/3
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Forest Fires:

Mechanism of instantaneous destruction of ”large” clusters. (More
precise definition soon.)

Self-Organized Criticality:

Dynamical phenomenon when by some competing mechanisms
(e.g. coagulation + fragmentation) a large system is driven to
a robust, persisting critical state, without fine tuning of param-
eters.

Examples (mostly from physics):

◦ various FF models [Drossel-Schwabl (1992), . . . ];
◦ coagulation/fragmentation models [Smoluchowski (1916), . . . ];
◦ sandpile models [Bak-Tang-Wiesenfeld (1986), . . . ];

Main source of difficulty: lack of monotonicity.
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ER + FF = coagulation + fragmentation

• Edges turn 0(off) 7−→ 1(on) with rate N−1

• ”Lightnings” hit vertices with rate λ(N) (to be specified).
When lightning hits a site edges in its connected cluster turn
instantaneously 1 7−→ 0. I.e. burn down.

• All Poisson flows independent.

V
(N)
k (t) := #{vertices in clusters of size k at time t}

∑
k≥1

V
(N)
k (t) ≡ N

This is a Markov process on its own.
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The empirical cluster size distribution:

v
(N)
k (t) := N−1V

(N)
k (t),

∑
k≥0

v
(N)
k (t) ≡ 1

??? limN→∞ v
(N)
k (t) =: vk(t) ???

Does the limit exist? In what sense? How does it behave quali-
tatively?

∑
k≥1

vk(t) ≤ 1, θ(t) := 1−
∑
k≥1

vk(t), the gel.
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Regimes of the lightning rate:

I: λ(N)� N−1: no lightning observed,
good old ER

II: λ(N) = λN−1: ”collapse of the giant”,
moderately interesting

III: N−1 � λ(N)� 1: this is the interesting regime

IV: λ(N) = λ: subcritical for ever,
moderately interesting
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The limits

I: λ(N)� N−1: (no news)

v
(N)
k (t) → vk(t) uniformly in t ∈ [0, T ], k ∈ [0,K], as N → ∞,

where vk(t) is the unique solution of Smoluchowski’s coag. eq.

v̇k(t) =
k

2

k−1∑
l=1

vl(t)vk−l(t)− kvk(t) for k ≥ 1,

vk(0) = δk,0

Actually, decoupled and explicitly solved, one-by-one for k =
1,2, . . . :

vk(t) =
kk−1

k!
e−kttk−1,

∑
k≥1

vk(t)

= 1 if t ≤ 1

< 1 if t > 1
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Remarks: (1) Let

V (t, x) :=
∑
k≥1

e−xkvk(t)− 1, x ≥ 0

Then V (t, x) is the solution of Burgers’ equation in x ≥ 0, t > 0:

∂tV (t, x) +
1

2
∂xV (t, x)2 = 0, t > 0, x ≥ 0,

V (0, x) = e−x − 1

,,, The phase transition in ER is actually a ,,,
,,, shock wave appearing in a hyperbolic PDE. ,,,

(2) Other initial conditions with
∑
k≥1 k

3vk(0) are equally good.

tc =

∑
k≥1

kvk(0)

−1
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II: λ(N) = λN−1: (moderately interesting)

very similar: limit exists, same differential equations (solvable
one-by-one) + ”collapse of the giant”:

v1(t) 7−→ v1(t) + θ(t), and θ(t) 7−→ 0 with rate λθ(t).

IV: λ(N) = λ: (moderately interesting)

The limit exists. The system of differential equations is slightly
different

v̇k(t) =
k

2

k−1∑
l=1

vl(t)vk−l(t)− (1 + λ)kvk(t) + λδk,0
∑
l≥1

lvl(t), k ≥ 1,

vk(0) = δk,0

No explicit solution, but qualitative analysis not very difficult:
Unique sln, with exponential decay in k. Subcritical forever.

12



III: N−1 � λ(N)� 1: the interesting case

The system:

v̇k(t) =
k

2

k−1∑
l=1

vl(t)vk−l(t)− kvk(t) for k ≥ 2,
∑
k≥1

vk(t) = 1,

vk(0) = δk,0

No decoupling: infinite system with constraint.

The PDE: V (t, x) :=
∑
k≥1 e

−xkvk(t), x ≥ 0

∂tV (t, x) +
1

2
∂xV (t, x)2 = e−xϕ(t), V (t,0) = 0,

V (0, x) = e−x − 1

Burgers control problem. (Looks like overdetermined . . . )
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Theorem. [B. Ráth, B. Tóth (2009)]

(i) The Burgers control problem has got unique solution, with
t 7→ ϕ(t) Lipschitz-continuous, and 0 < c1 ≤ ϕ(t) ≤ c2 < ∞ for
t ≥ tc.

(ii) v(N)
k (t) → vk(t) uniformly in t ∈ [0, T ], k ∈ [0,K], as N → ∞,

where vk(t) is the unique solution of the Burgers control problem.

(iii) For t ≥ tc, ∑
l≥k

vl(t) �

√
2ϕ(t)

π
k−1/2.

(iv)

lim
t→∞

vk(t) =
2

n4n

(2n− 2

n− 1

)
≈

1√
4π
k−3/2 =: v̄k.
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Outlook: in progress with Ed Crane and Nic Freeman (Bristol)

All in the stationary regime.

Choose a site at random (uniformly) and follow the time-evolution
of its connected cluster (Benjamini-Schramm limit): This is a
random process t 7→ γ(N)(t) with values in the space of finite
rooted graphs.

??? γ(N)(·)⇒ γ(·) ???
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• Description of the limit process t 7→ |γ(t) | in plain words:

◦ |γ(t) | 7−→ |γ(t) |+ v̄k with rate |γ(t) | v̄k.

◦ At τ := sup{t : |γ(t) | <∞}, |γ(t) | jumps form ∞ to 1.

◦ Go on like this . . . .

The Markov process t 7→ |γ(t) | is well defined on N, in terms of
the infinitesimal generator.

• Description of the limit process t 7→ γ(t) in plain words: . . .

Convergence (to be) proved using Trotter-Kurtz approach (cvg
of the infin. gen. / resolvents)
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