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Erdos-Rényi random graph, dynamical formulation:

N
Qpn =40, 1}(2), wy; ;1 Switches from 0 to 1 with rate N1

e O <t < 1 subcritical phase: small clusters

P(size of the cluster of a randomly chosen site > k) < 6_7(’5)"“,

LLargest cluster ~ log V.

e 1 <t < oo supercritical phase:
one giant of size ~ 6(¢t)N 4+ small clusters.

e t = 1 critical point:

P(size of the cluster of a randomly chosen site > k) = k‘l/z,

+ some large clusters ~ N2/3



Forest Fires:

Mechanism of instantaneous destruction of " large” clusters. (More
precise definition soon.)

Self-Organized Criticality:

Dynamical phenomenon when by some competing mechanisms
(e.g. coagulation 4+ fragmentation) a large system is driven to
a robust, persisting critical state, without fine tuning of param-
eters.

Examples (mostly from physics):

o various FF models [Drossel-Schwabl (1992), ...];
o coagulation/fragmentation models [Smoluchowski (1916), ... ];
o sandpile models [Bak-Tang-Wiesenfeld (1986), ...];

Main source of difficulty: lack of monotonicity.



ER 4+ FF = coagulation 4+ fragmentation
e Edges turn 0(off) — 1(on) with rate N1

e "Lightnings” hit vertices with rate A(IN) (to be specified).
When lightning hits a site edges in its connected cluster turn
instantaneously 1 —— 0. I.e. burn down.

e All Poisson flows independent.

Vk(N)(t) .= #{vertices in clusters of size k at time ¢}

S vV =N
k>1

This is a Markov process on its own.
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The empirical cluster size distribution:

vV (1) .= NIy (1), S oMy =1
k>0
777 My o0 vV (1) =1 vg (1) 777

Does the limit exist? In what sense? How does it behave quali-
tatively?

> u(t) <1, 0(t) :==1— ) wvi(t), the gel.

E>1 E>1



II:

III:

I1V:

Regimes
: AM(NV) <« N~ L
AMN) = AN

N1 <« X(N) <« 1:

AMN) = X\

of the lightning rate:

no lightning observed,
good old ER

""collapse of the giant”,
moderately interesting

this is the interesting regime

subcritical for ever,
moderately interesting



T he limits

I: \(N) < N~ 1 (no news)

v,gN)(t) — vi(t) uniformly in t € [0,T], k € [0,K], as N — oo,
where v, (t) is the unique solution of Smoluchowski's coag. eq.

L k—1
op(t) = 5 2 wi(®)vp () — kop(t) for k> 1,
=1
v(0) = 6.0

Actually, decoupled and explicitly solved, one-by-one for k =
1,2,...:

k‘k_l kt. k—1 :1 |f t<1
vi.(t) = e "t T, v (1 -
k() ==, k; O e
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Remarks: (1) Let

V(t,z) =) e FyL(t) — 1, x>0
k>1

Then V(t,z) is the solution of Burgers' equation in x > 0, t > 0O:
1
oV (¢, z) + anV(t,x)Q =0, t>0, x>0,

V(O0,z) =e * -1

®©®O® The phase transition in ER is actually a OOO
OO appearing in a hyperbolic PDE. ©©®©®

(2) Other initial conditions with 3 ;>4 k3v,.(0) are equally good.

1
te = (Z kvk(0)>

k>1
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II: A\(N) = AN—1: (moderately interesting)

very similar: limit exists, same differential equations (solvable
one-by-one) + " collapse of the giant”:

v1(t) — v1(t) + 0(¢), and 0(t) — O with rate \6(¢).

IV: A\(N) = X\: (moderately interesting)

The limit exists. The system of differential equations is slightly
different

. e

vE(t) = 5 > (W) (t) — (1 + Nkvg(t) + Adg.0 D lu(t), k> 1,
=1 I>1

v(0) = dk. 0

No explicit solution, but qualitative analysis not very difficult:
Unique sln, with exponential decay in k. Subcritical forever.
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III: N~! < A\(IN) <« 1: the interesting case

The system:
k=1
0p(t) = = > v(vp_(t) — kv (t) for k > 2, > v(t) =1,
23 k>1
v(0) = 0

No decoupling: infinite system with constraint.
The PDE: V(t,z) := Yp>1 e “Pog(t), 2> 0

OV (1,2) + S0V (h,0)> = Tp(t),  V(10) =0,

V(O0,z) =e ¥ -1
Burgers control problem. (Looks like overdetermined . ..)
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Theorem. [B. Rath, B. Toth (2009)]

(i) The Burgers control problem has got unique solution, with

t — o(t) Lipschitz-continuous, and 0 < ¢1 < ¢o(t) < ¢» < o for
t > te.

(i) v () — vp(t) uniformly in t € [0,T], k € [0, K], as N — oo,
where vi.(t) is the unique solution of the Burgers control problem.

(i) For t > te,

Zvl(t) — 290(t)k—1/2
1>k @

(iv)

. 2 27’2,—2 1 —3/2 _
hm v.(t) = —— ~ —k / = V.
t—00 k() n4n<n—1) VAT K

14



Outlook: in progress with Ed Crane and Nic Freeman (Bristol)

All in the stationary regime.

Choose a site at random (uniformly) and follow the time-evolution
of its connected cluster (Benjamini-Schramm limit): This is a
random process t — vV)(¢) with values in the space of finite
rooted graphs.

777 YN = 4() [
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e Description of the limit process t — |y(t) | in plain words:
o |y(t) | — v(8) | + T}, with rate |(t) | Ty
o At 7 :=sup{t: |v(t)| < oo}, |7¥(t) | jJumps form oo to 1.

o Go on like this . ...

The Markov process t — |y(t) | is well defined on N, in terms of
the infinitesimal generator.

e Description of the limit process t — ~(t) in plain words: ...

Convergence (to be) proved using Trotter-Kurtz approach (cvg
of the infin. gen. / resolvents)
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