Sums of products of fixed primes

Rob Tijdeman

Leiden University, The Netherlands

On the influence of Paul Erdös on my work A result from each decade 2 July 2013, Budapest, Hungary

Rob Tijdeman (Leiden)

Sums of products of fixed primes

Budapest, Hungary 1 / 24

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

My first paper: On a conjecture of Turán and Erdös, 1966 Conjecture of Erdös: If for a system of *n* distinct nonzero complex numbers $z_1, \ldots, z_n, n \ge 2$, equality

$$\max_{\nu=m+1,...,m+n-1} |\sum_{j=1}^{n} z_{j}^{\nu}| = 0$$

holds for *two* different values of *m*, then $z_1, z_2, ..., z_n$ are the solutions of the equation

 $z^{n} + a = 0$

for a certain complex number a.

My first paper: On a conjecture of Turán and Erdös, 1966

Is it true that if $\max_{\nu=m+1,...,m+n-1} |\sum_{j=1}^{n} z_{j}^{\nu}| = 0$ holds for *two* different values of *m*, then $z^{n} + a = 0$ for a certain complex number *a*?

Statements are true for odd *n*, but false for even *n*. All examples with even *n* can be explicitly given: Two full sets of (n/2)th roots of unity, each multiplied by a complex number in such a way that an extra zero sum arises.

Partially solved by D.G. Cantor, independently of me.

On integers with many small prime factors (1973).

- Wintner communicated the following problem to Erdös orally.
- Erdös published it in a survey paper in 1965.
- Does there exist an infinite sequence of primes $p_1 < p_2 < \ldots$ such that if $n_1 < n_2 < \ldots$ are the integers composed of these primes, then

$$\lim_{j\to\infty}(n_{j+1}-n_j)=\infty?$$

On integers with many small prime factors (1973).

Does there exist an infinite sequence of primes $p_1 < p_2 < ...$ such that if $n_1 < n_2 < ...$ are the integers composed of these primes, then

$$\lim_{i\to\infty}(n_{j+1}-n_j)=\infty?$$

By using Baker's theory on linear forms I proved Let $0 < \theta < 1$. Then there exists an infinite sequence of primes $p_1 < p_2 < \ldots$ such that if $n_1 < n_2 < \ldots$ are the integers composed of these primes, then

$$n_{j+1} - n_j > n_j^{1-\theta}$$
 for all j .

With K. Györy and C.L. Stewart, On prime factors of sums of integers 1 (1986)

Let $\omega(n)$ be the number of distinct prime factors of n. Erdös and Turán (1934) proved: If A is a finite set of positive integers of cardinality kthen, for $k \ge 2$, $\omega\left(\prod_{a,a'\in A}(a+a')\right) >> \log k$.

Erdös conjectured (1976): For every *n* there is an *N* such that if *A* and *B* are finite sets of positive integers with cardinality k > N, then $\omega \left(\prod_{a \in A, b \in B} (a + b)\right) > n$.

With K. Györy and C.L. Stewart, On prime factors of sums of integers 1 (1986)

Is there for every *n* an *N* such that if *A* and *B* are finite sets of positive integers with cardinality k > N, then $\omega \left(\prod_{a \in A, b \in B} (a + b) \right) > n$?

We proved, by Evertse: Let *A* and *B* satisfy $|k| = A \ge B \ge 2$. Then

$$\omega\left(\prod_{a\in A,b\in B}(a+b)\right) >> \log k.$$

With Erdös and C.L. Stewart, Some diophantine equations with many solutions (1988)

Let
$$|k| = A \ge B \ge 2$$
. Then $P\left(\prod_{a \in A, b \in B} (a+b)\right) >> \log k \log \log k.$

Let $0 < \varepsilon < 1$. Let $k > k_0(\varepsilon), 2 \le l \le \sqrt{\log k}$. Let $P(n) = \{\max_p : p | n\}$. Then there are A with |A| = k and B with |B| = l s.t.

$$P\left(\prod_{i=1}^{k}\prod_{j=1}^{l}(a_{j}+b_{j})\right) < \left(\left(\frac{1}{2}+\varepsilon\right)\frac{\log k}{l}\log\log k\right)^{l}.$$

With Erdös and C.L. Stewart, Some diophantine equations with many solutions (1988)

$$P\left(\prod_{i=1}^{k}\prod_{j=1}^{l}(a_{i}+b_{j})
ight) < \left((rac{1}{2}+arepsilon)rac{\log k}{l}\log\log k
ight)^{l}$$

Evertse (1984). Let $S = \{p_1, \ldots, p_s\}$ be a set of prime numbers. Then the equation (1) x + y = z in coprime integers which are all composed of primes from *S* has at most $3 \times 7^{2s+3}$ solutions.

We proved: The number of coprime solutions of (1) can be as large as $\exp\left((4-\epsilon)\sqrt{\frac{s}{\log s}}\right)$.

With T.N. Shorey, Some methods of Erdös applied to finite arithmetic progressions (1996)

Erdös and Selfridge (1976). The equation

$$x(x+1)(x+2)...(x+k-1) = y'$$

has no solutions in integers x > 0, k > 1, l > 1, y > 1. Erdös conjectured: The equation

$$x(x+d)(x+2d)\ldots(x+(k-1)d)=y'$$

has no solutions in integers x > 0, d > 0, k > 3, l > 1, y > 1 subject to (x, d) = 1.

イロト イ押ト イヨト イヨト

With T.N. Shorey, Some methods of Erdös applied to finite arithmetic progressions (1996)

Does the equation

$$x(x+d)(x+2d)\dots(x+(k-1)d)=y^{l}$$

have no solutions in x > 0, d > 0, k > 3, l > 1, y > 1 with (x, d) = 1?

We (and others) obtained several partial results. E.g. Let *I* be prime and d_1 the maximal divisor of *d* such that all the prime factors of d_1 are $\equiv 1 \pmod{l}$. Then, for *k* large,

$$d_1 >> k^{l-2}$$

With J. Hancl, On the irrationality of Cantor series (2004)

Erdös mentioned more than once (1958,1974) that he could not prove:

Let $p_1, p_2, ...$ be the sequence of primes in increasing order. Then

 $\sum_{n=1}^{\infty} \frac{p_n}{2^n}$

is irrational.

With J. Hancl, On the irrationality of Cantor series (2004)

Is $\sum_{n=1}^{\infty} \frac{p_n}{2^n}$ irrational?

We proved:

Suppose $\{a_n\}_{n=1}^{\infty}$ is a monotonic sequence of positive integers such that $\lim_{n\to\infty} \frac{a_n}{\log n} \to \infty$. Then $\sum_{n=1}^{\infty} \frac{p_n}{a_1...a_n}$ is rational if and only if $\frac{p_n}{a_n-1}$ is constant for $n > n_0$.

Erdös' problem is still open.

At the Erdös conference Schlage-Puchta told me that he has improved the bound log *n* to the order $\exp(\sqrt{\log \log n})$.

イロト イ押ト イヨト イヨト

With L. Hajdu, Representations as sums of power products (2012) We use the theorem of Erdös, Pomerance and Schmutz (1991): Let $\lambda(m)$ be the least positive integer for which $b^{\lambda(m)} \equiv 1 \pmod{m}$ for all $b \in \mathbb{Z}$ with gcd(b, m) = 1. Then for any increasing sequence $(n_i)_{i=1}^{\infty}$ of positive integers, and any constant $0 < C_1 < 1/\log 2$,

 $\lambda(n_i) > (\log n_i)^{C_1 \log \log \log n_i}.$

But, there exist a strictly increasing sequence $(n_i)_{i=1}^{\infty}$ and a constant $C_2 > 0$, such that, for every *i*,

 $\lambda(n_i) < (\log n_i)^{C_2 \log \log \log n_i}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Nathanson's theorem

Let $P = \{p_1, ..., p_t\}$ be a nonempty finite set of at least two prime numbers.

Let *A* be the set of positive integers that are products of powers of primes from *P*. Put $A_{\pm} = A \cup (-A)$.

Nathanson (2011) proved as a refinement of earlier results:

For every positive integer k there exist infinitely many integers n such that k is the smallest value of l for which n can be written as

 $n = a_1 + a_2 + \cdots + a_l \ (a_1, a_2, \ldots, a_l \in A_{\pm}).$

Nathanson's problems

Let F(k) be the smallest positive integer which cannot be represented as a sum of less than *k* terms of *A*. Let $F_{\pm}(k)$ the smallest positive integer which cannot be presented as a sum of less than *k* terms of A_{\pm} .

 $F_{\pm}(k) \rightarrow \infty$ as $k \rightarrow \infty$.

Nathanson posed as problems:

Give estimations for F(k) and for $F_{\pm}(k)$.

Our results

1. There exist computable numbers c = c(P) and $C = C(\varepsilon)$ such that

$$k^{ck} < F(k) < C(kt)^{(1+\varepsilon)kt}$$

2. There exist computable numbers c = c(P) and C_{\pm} such that

$$k^{ck} < F_{\pm}(k) < \exp((kt)^{C_{\pm}}).$$

3. For some numbers $c^* = c^*(P, k)$ and ε , we have

$$F_{\pm}(k) \leq (kt)^{(1+\varepsilon)kt}$$
 for $k > c^*$.

Used methods for result 1: $k^{ck} < F(k) < C(kt)^{(1+\varepsilon)kt}$.

For the **lower bound** we used the greedy algorithm. By an application of Baker's linear form estimates (T, 1974) we know that *A* has no big gaps. Hence each time a substantial part is subtracted and the number of subtractions is as expected.

For the **upper bound** we count the number of integers at most n that can be represented as sum of less than k elements from A. As soon as this number is less than n we know that there is an integer at most n which requires at least kterms of A to be represented.

.

Used method for upper bound of result 2: $F_{\pm}(k) < \exp((kt)^{C_{\pm}})$.

We used the following localized form of the result of Erdös, Pomerance and Schmutz.

There exist positive constants C_1 , C_2 such that for every large integer *i* there is an integer *m* with

 $\log m \in [\log i, (\log i)^{C_1}]$ and $\lambda(m) < (\log m)^{C_2 \log \log \log m}$.

Used method for upper bound of result 2: $F_{\pm}(k) < \exp((kt)^{C_{\pm}})$.

 $\log m \in [\log i, (\log i)^{C_1}] \text{ and } \lambda(m) < (\log m)^{C_2 \log \log \log m}.$

We used this to derive the following refinement of a result of Ádám, Hajdu and Luca:

Put $H_{P,k} = \{n \in \mathbb{Z} : n = \sum_{i=1}^{l} a_i \text{ with } l \leq k\}$ where $a_i \in A$ (i = 1, 2, ..., k). For $m \in \mathbb{Z}, m \geq 2$, we write $H_{P,k} \pmod{m} = \{i : 0 \leq i < m, h \equiv i \pmod{m} \text{ for some } h \in H_{P,k}\}$. There is a constant C_3 such that for every large *i*

there is an *m* with log $m \in [\log i, (\log i)^{C_1}]$ and

 $\mid H_{P,k} \pmod{m} \mid < (\log m)^{C_3kt \log \log \log m}.$

Method for result 3: $F_{\pm}(k) \leq (kt)^{(1+\varepsilon)kt}$ for $k > c^*$.

We applied the following result of Evertse (1984). (*p*-adic value $|x|_p$ is defined as $|x|p^{-r}$ where $p^r||x$.) Let *c*, *d* be constants with $c > 0, 0 \le d < 1$. Let S_0 be a finite set of primes and let *l* be a positive integer. Then there are only finitely many coprime tuples (x_0, x_1, \ldots, x_l) of rational integers such that

$$x_0 + x_1 + \cdots + x_l = 0; x_{i_0} + x_{i_1} + \ldots x_{i_s} \neq 0$$

for each nontrivial subset $\{i_0, i_1, \ldots, i_s\}$ of $\{0, 1, \ldots, I\}$;

$$\prod_{j=0}^l \left(|x_j| \prod_{
ho \in \mathcal{S}_0} |x_j|_{
ho}
ight) \leq c \left(\max_{0 \leq j \leq l} |x_j|
ight)^d$$

Used method for result 3: $F_{\pm}(k) \leq (kt)^{(1+\varepsilon)kt}$ for $k > c^*$.

Let *n* be an integer not divisible by any prime from *P*. Suppose $n = a_1 + a_2 + \cdots + a_l$ with $a_j \in A_{\pm}$ and $l \leq k$. We may assume that *l* is minimal. Moreover, we know that $gcd(a_1, a_2, \ldots, a_l) = 1$. We apply Evertse with $c = 1, d = 1/2, S_0 = P$ to $a_0 + a_1 + \cdots + a_l = 0$ with $a_0 = -n$. Thus there are only finitely many tuples with

 $n \leq \sqrt{\max_{1 \leq j \leq l} |a_j|}.$

Let N_0 be the maximum of |n| for all such tuples.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Used method for result 3: $F_{\pm}(k) \leq (kt)^{(1+\varepsilon)kt}$ for $k > c^*$. Apart from finitely many tuples we have $n > \sqrt{\max_{1 \leq j \leq l} |a_j|}$.

Next consider positive integers $n > N_0$ which are not divisible by any prime from P. Then, for any representation $n = a_1 + a_2 + \cdots + a_l$ we have $|a_j| < n^2$ for $j = 1, 2, \ldots, l$. Now we can apply the argument used for the upper bound of result 2.

Thank you for your attention

My papers up to 2011 can be found at www.math.leidenuniv.nl/ ~ tijdeman/ , from 2011 on they can be found in the arXiv.