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Vertex colouring

A vertex colouring of a graph G is a map
c: V(G) = N such that c¢(u) # c(v) whenever uv is an edge

Here N is the palette of available colours.

The chromatic number of G is

X(G) = min{k : there is a colouring c: V(G) — {1,...,k}}



List colouring

Suppose now we assign a list of colours to each vertex, ie
L:V(G)— P(N)
We say G is L-choosable if there is a colouring

c:V(G) - N with ¢(v) € L(v) forall v



List colouring

Suppose now we assign a list of colours to each vertex, ie
L:V(G)— P(N)
We say G is L-choosable if there is a colouring

c:V(G) - N with ¢(v) € L(v) forall v

In ordinary colouring, the lists are the same for every v



«Or» «Fr «=>»

«E»

Q>



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| > k for every v



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| > k for every v

The list chromatic number of G is

X¢(G) = min{k : G is k-choosable}



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| > k for every v

The list chromatic number of G is

X¢(G) = min{k : G is k-choosable}

Introduced by Vizing (1976) and by Erdds, Rubin, Taylor (1979)



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| > k for every v

The list chromatic number of G is

X¢(G) = min{k : G is k-choosable}

Introduced by Vizing (1976) and by Erdds, Rubin, Taylor (1979)
Clearly x(G) < x¢(G)



X¢ can be bigger than y
{1,2} {1,3} {2,3}

K33 not 2-choosable: x =2, x¢ > 3
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X¢ can be bigger than x
{1,2} {1,3} {2,3}

K33 not 2-choosable: x =2, x¢ > 3

{1,2} {1,3} {2,3}

More generally, K, m is not k-choosable if m > (Zkk_l)
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Property B

F C P(X) has Property B if the hypergraph (X, F) is bipartite ie

ISCX: VFeF 0#SNF#F
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Property B

F C P(X) has Property B if the hypergraph (X, F) is bipartite ie
ISCX: VFEF D#ASNF#F

Miller '37, Erdés+Hajnal '61, Erdés '63, Schmidt '64, Erd6s '69
m(k)= min{ |F| : VF € F |F| = k, F does not have property B}

Theorem (Erdés-Rubin-Taylor)

m(k) < min{|G[: x(G) =2, x/(G) > k} < 2m(k)
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¢ and property B

Theorem (Erdés-Rubin-Taylor)
m(k) < min{|G|: x(6) =2, xi(G) > k} < 2m(k)

Proof: (lower bound)

let G =K,p a+b< m(k), L: V(G) — P(N), |L(v)| = k.

Let F = {L(v) : v € G}. Then F has property B.

Hence 35 such that Vv 0 £ SN L(v) # L(v). Likewise S =N —S.

Colour one side of G with colours from S, other side from S.
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X¢ and property B

Theorem (Erdés-Rubin-Taylor)
m(k) < min{|G|: X(G) =2, xe(G) > k} < 2m(k)

Proof: (upper bound)

Let |F| = m(k), F does not have property B.

Let G = Kink),m(k)- Let L assign lists from F to each side of G.
If G is L-choosable, let S be colours used on one side, S other side,
and VF € F both ) # SN F and ) # SN F, so F has property B.



X¢ and average degree
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X¢ and average degree

Clearly m(k) < (2kk_1) < 4k,
Hence 3 G with x,(G) > 2 log,d  (d = average degree of G)
Erdés: 2k71 < m(k) < k22k+1

Hence 3 G with x¢(G) = (14 o(1)) log, d

Theorem (Alon '00)
Every G of average degree d satisfies x¢(G) > (3 + o(1)) log, d.

(This is tight to within a factor of 2.)
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¢ and average degree for hypergraphs

G = (V,E) is an r-uniform hypergraphife € E = e C V, le|=r

c: V(G) — Nis a colouring if no edge e is monochromatic
Question: must x¢(G) grow with average degree d?
No:eg V={1,....n} E={ecV:1lce} xi(G)=2

We require G to be simple: i.e., |[eN f| <1 for distinct edges e, f



x¢ for simple hypergraphs

There are easy examples of simple G with x¢(G) = O(log, d)
r=3

e Haxell+Pei '09: x/(G) = Q(log’ﬁ)gd) for Steiner systems

o Haxell+Verstraéte '10: x¢(G) = Q( Iolg"ﬁ)‘g]d) for regular
general r
1

o Alon+Kostochka '10: x/(G) = Q((log d)™1)

Theorem (Saxton+T '12)
If G is r-uniform, simple, d-regular then x,(G) = Q(log d).



X¢ and average degree

Theorem (Saxton+T '13+)
If G is r-unif, simple, average degree d then x,(G) > ﬁ log, d



X¢ and average degree

Theorem (Saxton+T '13+)
If G is r-unif, simple, average degree d then x,(G) > (r_11)2 log, d

Remark: method handles non-simple too
Remark: closes gap of 1/2 for graphs (r = 2)
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A sketch of a proof of something

Let Z be all the independent sets in G
Let max{|/| : 1 €Z} <(1—~)n (eg~y=1/r for regular G)
L assigns lists size k randomly from palette of t colours

G L-choosable = 3 h,...,l; €Z: Vv, v el someje L(v)
we say L fits l,... I

“on average" v € [j for < (1 — )t sets /;
so Pr(L fits h,..., k) <[, (1 —~%) < e ™"

If|Z| < e"/9 then Pr(L fits some h, ..., I;) < e™/de=mM" = o(1)
provided k < clogd — thatis, x¢(G) > clogd

Replace Z and I1,..., It € Z by C and Cy,..., C; € C — containers
where [C| < e"?, VCeC|C|<(1—7)n, VIeT3ICeClcCC



Bullet points

Want [C| < e"9 VCeC|C|<(1—7)n VIeZT3CeClcCC

e Sapozhenko did it for regular graphs (Cameron-Erdés)

e simple regular hypergraphs

* Kdn—d

o degree measure: for S C V, pu(S) =L > o d(v)
then u(l) <1—1/r; we get u(C) <1—1/r!

simple hypergraphs

all hypergraphs

other simple expectation arguments



Sapozhenko's method

Let G be a d-regular graph. V(G) ={1,...,n}.
Let € > 0.

INPUT  independent set [/
put T =10
forv=1.nifveland|[(TU{v})>|[(T) +ed addvtoT

Afterwards, observe T C [ and |T| < n/ed.

INPUT set T C V(G)

put C=V(G)—T(T)

forv=1,.,nifv¢g T but [[(TU{v})| >|I(T)|+ ed, take v from C

Afterwards, note if T came from first algorithm then | C C.
Also, A(G[C]) < ed and G is d-regular so |C| < n/(2 —¢€).



An algorithm (or two)

INPUT  an r-graph G on vertex set [n]
an (s + 1)-multigraph Ps;; on vertex set [n]
parameters 7,( > 0
a subset / C [n]
a subset T C [n]

OUTPUT an s-multigraph Ps on vertex set [n]
a subset T C [n]
a subset Cs C [n]

put E(Ps) =0 and s =0

put Ts =
put Cs = [n]
for v=1,2,...,n do:

let F={fev+1,n® :{v}Ufe€EPss1), andVoelsogf}
if |F| > CTr_s_ld(v) and v €/, add v to T

if |F| > (T'_S_ld(v), remove v from Cg

if v € Ts then

add F to E(Ps)
for each v € [v+1,n], if ds(u) > 777 °d(u), add {u} to s

for each o € [v+1,n>V if ds(o) > 2°7ds11(0), add o to T



