List colouring of graphs and hypergraphs

Andrew Thomason (with David Saxton)

Erdős Centennial 3rd July 2013

Vertex colouring

A vertex colouring of a graph G is a map
$c: V(G) \rightarrow \mathbb{N}$ such that $c(u) \neq c(v)$ whenever $u v$ is an edge Here \mathbb{N} is the palette of available colours.

The chromatic number of G is
$\chi(G)=\min \{k:$ there is a colouring $c: V(G) \rightarrow\{1, \ldots, k\}\}$

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$
L: V(G) \rightarrow \mathcal{P}(\mathbb{N})
$$

We say G is L-choosable if there is a colouring

$$
c: V(G) \rightarrow \mathbb{N} \quad \text { with } \quad c(v) \in L(v) \text { for all } v
$$

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$
L: V(G) \rightarrow \mathcal{P}(\mathbb{N})
$$

We say G is L-choosable if there is a colouring

$$
c: V(G) \rightarrow \mathbb{N} \quad \text { with } \quad c(v) \in L(v) \text { for all } v
$$

In ordinary colouring, the lists are the same for every v

List colouring

List colouring

G is k-choosable if
G is L-choosable whenever $|L(v)| \geq k$ for every v

List colouring

G is k-choosable if

$$
G \text { is } L \text {-choosable whenever }|L(v)| \geq k \text { for every } v
$$

The list chromatic number of G is

$$
\chi_{\ell}(G)=\min \{k: G \text { is } k \text {-choosable }\}
$$

List colouring

G is k-choosable if

$$
G \text { is } L \text {-choosable whenever }|L(v)| \geq k \text { for every } v
$$

The list chromatic number of G is

$$
\chi_{\ell}(G)=\min \{k: \quad G \text { is } k \text {-choosable }\}
$$

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

List colouring

G is k-choosable if

$$
G \text { is } L \text {-choosable whenever }|L(v)| \geq k \text { for every } v
$$

The list chromatic number of G is

$$
\chi_{\ell}(G)=\min \{k: \quad G \text { is } k \text {-choosable }\}
$$

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979) Clearly $\chi(G) \leq \chi_{\ell}(G)$

χ_{ℓ} can be bigger than χ

$K_{3,3}$ not 2-choosable: $\chi=2, \chi_{\ell} \geq 3$

χ_{ℓ} can be bigger than χ

$K_{3,3}$ not 2-choosable: $\chi=2, \chi_{\ell} \geq 3$

More generally, $K_{m, m}$ is not k-choosable if $m \geq\binom{ 2 k-1}{k}$

Property B

$\mathcal{F} \subset \mathcal{P}(X)$ has Property B if the hypergraph (X, \mathcal{F}) is bipartite ie

$$
\exists S \subset X: \quad \forall F \in \mathcal{F} \emptyset \neq S \cap F \neq F
$$

Property B

$\mathcal{F} \subset \mathcal{P}(X)$ has Property B if the hypergraph (X, \mathcal{F}) is bipartite ie

$$
\exists S \subset X: \forall F \in \mathcal{F} \emptyset \neq S \cap F \neq F
$$

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69

Property B

$\mathcal{F} \subset \mathcal{P}(X)$ has Property B if the hypergraph (X, \mathcal{F}) is bipartite ie

$$
\exists S \subset X: \quad \forall F \in \mathcal{F} \emptyset \neq S \cap F \neq F
$$

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69 $m(k)=\min \{|\mathcal{F}|: \forall F \in \mathcal{F}|F|=k, \mathcal{F}$ does not have property $B\}$

Property B

$\mathcal{F} \subset \mathcal{P}(X)$ has Property B if the hypergraph (X, \mathcal{F}) is bipartite ie

$$
\exists S \subset X: \quad \forall F \in \mathcal{F} \emptyset \neq S \cap F \neq F
$$

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69 $m(k)=\min \{|\mathcal{F}|: \forall F \in \mathcal{F}|F|=k, \mathcal{F}$ does not have property $B\}$

Theorem (Erdős-Rubin-Taylor)

$$
m(k) \leq \min \left\{|G|: \chi(G)=2, \chi_{\ell}(G)>k\right\} \leq 2 m(k)
$$

χ_{ℓ} and property B

Theorem (Erdős-Rubin-Taylor)

$$
m(k) \leq \min \left\{|G|: \chi(G)=2, \chi_{\ell}(G)>k\right\} \leq 2 m(k)
$$

Proof: (lower bound)

χ_{ℓ} and property B

Theorem (Erdős-Rubin-Taylor)

$$
m(k) \leq \min \left\{|G|: \chi(G)=2, \chi_{\ell}(G)>k\right\} \leq 2 m(k)
$$

Proof: (lower bound)
let $G=K_{a, b}, a+b<m(k), L: V(G) \rightarrow \mathcal{P}(\mathbb{N}),|L(v)|=k$.
Let $\mathcal{F}=\{L(v): v \in G\}$. Then \mathcal{F} has property B.
Hence $\exists S$ such that $\forall v \emptyset \neq S \cap L(v) \neq L(v)$. Likewise $\bar{S}=\mathbf{N}-S$.
Colour one side of G with colours from S, other side from \bar{S}.

χ_{ℓ} and property B

Theorem (Erdős-Rubin-Taylor)

$$
m(k) \leq \min \left\{|G|: \chi(G)=2, \chi_{\ell}(G)>k\right\} \leq 2 m(k)
$$

Proof: (upper bound)

χ_{ℓ} and property B

Theorem (Erdős-Rubin-Taylor)

$$
m(k) \leq \min \left\{|G|: \chi(G)=2, \chi_{\ell}(G)>k\right\} \leq 2 m(k)
$$

Proof: (upper bound)
Let $|\mathcal{F}|=m(k), \mathcal{F}$ does not have property B.
Let $G=K_{m(k), m(k)}$. Let L assign lists from \mathcal{F} to each side of G.
If G is L-choosable, let S be colours used on one side, \bar{S} other side, and $\forall F \in \mathcal{F}$ both $\emptyset \neq S \cap F$ and $\emptyset \neq \bar{S} \cap F$, so \mathcal{F} has property B.

χ_{ℓ} and average degree

Clearly $m(k) \leq\binom{ 2 k-1}{k}<4^{k}$.
Hence $\exists G$ with $\chi_{\ell}(G)>\frac{1}{2} \log _{2} d \quad(d=$ average degree of $G)$

χ_{ℓ} and average degree

Clearly $m(k) \leq\binom{ 2 k-1}{k}<4^{k}$.
Hence $\exists G$ with $\chi_{\ell}(G)>\frac{1}{2} \log _{2} d \quad(d=$ average degree of $G)$
Erdős: $\quad 2^{k-1} \leq m(k) \leq k^{2} 2^{k+1}$
Hence $\exists G$ with $\chi_{\ell}(G)=(1+o(1)) \log _{2} d$

χ_{ℓ} and average degree

Clearly $m(k) \leq\binom{ 2 k-1}{k}<4^{k}$.
Hence $\exists G$ with $\chi_{\ell}(G)>\frac{1}{2} \log _{2} d \quad(d=$ average degree of $G)$
Erdős: $\quad 2^{k-1} \leq m(k) \leq k^{2} 2^{k+1}$
Hence $\exists G$ with $\chi_{\ell}(G)=(1+o(1)) \log _{2} d$

Theorem (Alon '00)
Every G of average degree d satisfies $\chi_{\ell}(G) \geq\left(\frac{1}{2}+o(1)\right) \log _{2} d$.
(This is tight to within a factor of 2.)

χ_{ℓ} and average degree for hypergraphs

$G=(V, E)$ is an r-uniform hypergraph if $e \in E \Rightarrow e \subset V,|e|=r$ $c: V(G) \rightarrow \mathbb{N}$ is a colouring if no edge e is monochromatic

χ_{ℓ} and average degree for hypergraphs

$G=(V, E)$ is an r-uniform hypergraph if $e \in E \Rightarrow e \subset V,|e|=r$ $c: V(G) \rightarrow \mathbb{N}$ is a colouring if no edge e is monochromatic

Question: must $\chi_{\ell}(G)$ grow with average degree d ?

χ_{ℓ} and average degree for hypergraphs

$G=(V, E)$ is an r-uniform hypergraph if $e \in E \Rightarrow e \subset V,|e|=r$ $c: V(G) \rightarrow \mathbb{N}$ is a colouring if no edge e is monochromatic

Question: must $\chi_{\ell}(G)$ grow with average degree d ?
No: eg $\quad V=\{1, \ldots, n\} \quad E=\{e \subset V: 1 \in e\} \quad \chi_{\ell}(G)=2$

χ_{ℓ} and average degree for hypergraphs

$G=(V, E)$ is an r-uniform hypergraph if $e \in E \Rightarrow e \subset V,|e|=r$ $c: V(G) \rightarrow \mathbb{N}$ is a colouring if no edge e is monochromatic

Question: must $\chi_{\ell}(G)$ grow with average degree d ?
No: eg $\quad V=\{1, \ldots, n\} \quad E=\{e \subset V: 1 \in e\} \quad \chi_{\ell}(G)=2$
We require G to be simple: i.e., $|e \cap f| \leq 1$ for distinct edges e, f

χ_{ℓ} for simple hypergraphs

There are easy examples of simple G with $\chi_{\ell}(G)=O\left(\log _{r} d\right)$
$r=3$

- Haxell+Pei '09: $\chi_{\ell}(G)=\Omega\left(\frac{\log d}{\log \log d}\right)$ for Steiner systems
- Haxell+Verstraëte '10: $\chi_{\ell}(G)=\Omega\left(\sqrt{\frac{\log d}{\log \log d}}\right)$ for regular general r
- Alon+Kostochka '10: $\chi_{\ell}(G)=\Omega\left((\log d)^{\frac{1}{r-1}}\right)$

Theorem (Saxton+T '12)
If G is r-uniform, simple, d-regular then $\chi_{\ell}(G)=\Omega(\log d)$.

χ_{ℓ} and average degree

Theorem (Saxton+T '13+)
If G is r-unif, simple, average degree d then $\chi_{\ell}(G) \geq \frac{1}{(r-1)^{2}} \log _{r} d$

χ_{ℓ} and average degree

Theorem (Saxton+T '13+)
If G is r-unif, simple, average degree d then $\chi_{\ell}(G) \geq \frac{1}{(r-1)^{2}} \log _{r} d$
Remark: method handles non-simple too
Remark: closes gap of $1 / 2$ for graphs $(r=2)$

A sketch of a proof of something

Let \mathcal{I} be all the independent sets in G
Let $\max \{|I|: I \in \mathcal{I}\} \leq(1-\gamma) n \quad($ eg $\gamma=1 / r$ for regular $G)$

A sketch of a proof of something

Let \mathcal{I} be all the independent sets in G
Let $\max \{|I|: I \in \mathcal{I}\} \leq(1-\gamma) n \quad($ eg $\gamma=1 / r$ for regular $G)$
L assigns lists size k randomly from palette of t colours
$G L$-choosable $\Rightarrow \exists I_{1}, \ldots, I_{t} \in \mathcal{I}: \forall v, v \in I_{j}$ some $j \in L(v)$ we say L fits I_{1}, \ldots, I_{t}

A sketch of a proof of something

Let \mathcal{I} be all the independent sets in G
Let $\max \{|I|: I \in \mathcal{I}\} \leq(1-\gamma) n \quad($ eg $\gamma=1 / r$ for regular $G)$
L assigns lists size k randomly from palette of t colours
$G L$-choosable $\Rightarrow \exists I_{1}, \ldots, I_{t} \in \mathcal{I}: \forall v, v \in I_{j}$ some $j \in L(v)$ we say L fits I_{1}, \ldots, I_{t}
"on average" $v \in I_{j}$ for $\leq(1-\gamma) t$ sets l_{j}
so $\operatorname{Pr}\left(L\right.$ fits $\left.I_{1}, \ldots, I_{t}\right) \leq \prod_{v}\left(1-\gamma^{k}\right) \leq e^{-n \gamma^{k}}$

A sketch of a proof of something

Let \mathcal{I} be all the independent sets in G
Let $\max \{|I|: I \in \mathcal{I}\} \leq(1-\gamma) n \quad($ eg $\gamma=1 / r$ for regular $G)$
L assigns lists size k randomly from palette of t colours
$G L$-choosable $\Rightarrow \exists I_{1}, \ldots, I_{t} \in \mathcal{I}: \forall v, v \in I_{j}$ some $j \in L(v)$ we say L fits I_{1}, \ldots, I_{t}
"on average" $v \in I_{j}$ for $\leq(1-\gamma) t$ sets I_{j}
so $\operatorname{Pr}\left(L\right.$ fits $\left.I_{1}, \ldots, I_{t}\right) \leq \prod_{v}\left(1-\gamma^{k}\right) \leq e^{-n \gamma^{k}}$
If $|\mathcal{I}| \leq e^{n / d}$ then $\operatorname{Pr}\left(L\right.$ fits some $\left.I_{1}, \ldots, I_{t}\right) \leq e^{n t / d} e^{-n \gamma^{k}}=o(1)$ provided $k<c \log d \quad-\quad$ that is, $\chi_{\ell}(G) \geq c \log d$

A sketch of a proof of something

Let \mathcal{I} be all the independent sets in G
Let $\max \{|I|: I \in \mathcal{I}\} \leq(1-\gamma) n \quad($ eg $\gamma=1 / r$ for regular $G)$
L assigns lists size k randomly from palette of t colours
$G L$-choosable $\Rightarrow \exists I_{1}, \ldots, I_{t} \in \mathcal{I}: \forall v, v \in I_{j}$ some $j \in L(v)$ we say L fits I_{1}, \ldots, I_{t}
"on average" $v \in I_{j}$ for $\leq(1-\gamma) t$ sets I_{j}
so $\operatorname{Pr}\left(L\right.$ fits $\left.I_{1}, \ldots, I_{t}\right) \leq \prod_{v}\left(1-\gamma^{k}\right) \leq e^{-n \gamma^{k}}$
If $|\mathcal{I}| \leq e^{n / d}$ then $\operatorname{Pr}\left(L\right.$ fits some $\left.I_{1}, \ldots, I_{t}\right) \leq e^{n t / d} e^{-n \gamma^{k}}=o(1)$ provided $k<c \log d \quad-\quad$ that is, $\chi_{\ell}(G) \geq c \log d$

Replace \mathcal{I} and $I_{1}, \ldots, I_{t} \in \mathcal{I}$ by \mathcal{C} and $C_{1}, \ldots, C_{t} \in \mathcal{C}$ - containers where $|\mathcal{C}| \leq e^{n / d}, \quad \forall C \in \mathcal{C}|C| \leq(1-\gamma) n, \quad \forall I \in \mathcal{I} \exists C \in \mathcal{C} I \subset C$

Bullet points

Want $|\mathcal{C}| \leq e^{n / d}, \forall C \in \mathcal{C}|C| \leq(1-\gamma) n, \quad \forall I \in \mathcal{I} \exists C \in \mathcal{C} I \subset C$

- Sapozhenko did it for regular graphs (Cameron-Erdős)
- simple regular hypergraphs
- $K_{d, n-d}$
- degree measure: for $S \subset V, \mu(S)=\frac{1}{n d} \sum_{v \in S} d(v)$ then $\mu(I) \leq 1-1 / r$; we get $\mu(C) \leq 1-1 / r$!
- simple hypergraphs
- all hypergraphs
- other simple expectation arguments

Sapozhenko's method

Let G be a d-regular graph. $V(G)=\{1, \ldots, n\}$.
Let $\epsilon>0$.

INPUT independent set /
put $T=\emptyset$
for $v=1, ., n$: if $v \in I$ and $|\Gamma(T \cup\{v\})| \geq|\Gamma(T)|+\epsilon d$, add v to T
Afterwards, observe $T \subset I$ and $|T| \leq n / \epsilon d$.
InPUT \quad set $T \subset V(G)$
put $C=V(G)-\Gamma(T)$
for $v=1, ., n$: if $v \notin T$ but $|\Gamma(T \cup\{v\})| \geq|\Gamma(T)|+\epsilon d$, take v from C
Afterwards, note if T came from first algorithm then $I \subset C$. Also, $\Delta(G[C]) \leq \epsilon d$ and G is d-regular so $|C| \leq n /(2-\epsilon)$.

An algorithm (or two)

```
INPUT an r-graph G on vertex set [ }n\mathrm{ ]
    an (s+1)-multigraph }\mp@subsup{P}{s+1}{}\mathrm{ on vertex set [ }n\mathrm{ ]
    parameters }\tau,\zeta>
    a subset I\subset [n]
    a subset }\mp@subsup{T}{s}{}\subset[n
OUTPUT an s-multigraph }\mp@subsup{P}{s}{}\mathrm{ on vertex set [ }n\mathrm{ ]
    a subset }\mp@subsup{T}{s}{}\subset[n
    a subset C}\mp@subsup{C}{s}{}\subset[n
```

```
put \(E\left(P_{s}\right)=\emptyset\) and \(\Gamma_{s}=\emptyset\)
```

put $E\left(P_{s}\right)=\emptyset$ and $\Gamma_{s}=\emptyset$
put $T_{s}=\emptyset$
put $T_{s}=\emptyset$
put $C_{s}=[n]$
put $C_{s}=[n]$
for $v=1,2, \ldots, n$ do:
for $v=1,2, \ldots, n$ do:
let $F=\left\{f \in[v+1, n]^{(s)}:\{v\} \cup f \in E\left(P_{s+1}\right)\right.$, and $\left.\forall \sigma \in \Gamma_{s} \sigma \not \subset f\right\}$
let $F=\left\{f \in[v+1, n]^{(s)}:\{v\} \cup f \in E\left(P_{s+1}\right)\right.$, and $\left.\forall \sigma \in \Gamma_{s} \sigma \not \subset f\right\}$
if $|F| \geq \zeta \tau^{r-s-1} d(v)$ and $v \in I$, add v to T_{s}
if $|F| \geq \zeta \tau^{r-s-1} d(v)$ and $v \in I$, add v to T_{s}
if $|F| \geq \zeta \tau^{r-s-1} d(v)$, remove v from C_{s}
if $|F| \geq \zeta \tau^{r-s-1} d(v)$, remove v from C_{s}
if $v \in T_{s}$ then
if $v \in T_{s}$ then
add F to $E\left(P_{s}\right)$
add F to $E\left(P_{s}\right)$
for each $u \in[v+1, n]$, if $d_{s}(u)>\tau^{r-s} d(u)$, add $\{u\}$ to Γ_{s}
for each $u \in[v+1, n]$, if $d_{s}(u)>\tau^{r-s} d(u)$, add $\{u\}$ to Γ_{s}
for each $\sigma \in[v+1, n]^{(>1)}$, if $d_{s}(\sigma)>2^{s} \tau d_{s+1}(\sigma)$, add σ to Γ_{s}

```
        for each \(\sigma \in[v+1, n]^{(>1)}\), if \(d_{s}(\sigma)>2^{s} \tau d_{s+1}(\sigma)\), add \(\sigma\) to \(\Gamma_{s}\)
```

