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Vertex colouring

A vertex colouring of a graph G is a map

c : V (G )→ N such that c(u) 6= c(v) whenever uv is an edge

Here N is the palette of available colours.

The chromatic number of G is

χ(G ) = min{k : there is a colouring c : V (G )→ {1, . . . , k}}



List colouring

Suppose now we assign a list of colours to each vertex, ie

L : V (G )→ P(N)

We say G is L-choosable if there is a colouring

c : V (G )→ N with c(v) ∈ L(v) for all v

In ordinary colouring, the lists are the same for every v
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List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| ≥ k for every v

The list chromatic number of G is

χ`(G ) = min{k : G is k-choosable}

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

Clearly χ(G ) ≤ χ`(G )
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Clearly χ(G ) ≤ χ`(G )



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| ≥ k for every v

The list chromatic number of G is

χ`(G ) = min{k : G is k-choosable}

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

Clearly χ(G ) ≤ χ`(G )



List colouring

G is k-choosable if

G is L-choosable whenever |L(v)| ≥ k for every v

The list chromatic number of G is

χ`(G ) = min{k : G is k-choosable}

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)
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χ` can be bigger than χ

K3,3 not 2-choosable: χ = 2, χ` ≥ 3
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Property B

F ⊂ P(X ) has Property B if the hypergraph (X ,F) is bipartite ie

∃ S ⊂ X : ∀F ∈ F ∅ 6= S ∩ F 6= F

Miller ’37, Erdős+Hajnal ’61, Erdős ’63, Schmidt ’64, Erdős ’69

m(k)= min{ |F| : ∀F ∈ F |F | = k, F does not have property B}

Theorem (Erdős-Rubin-Taylor)

m(k) ≤ min{|G | : χ(G ) = 2, χ`(G ) > k} ≤ 2m(k)
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χ` and property B

Theorem (Erdős-Rubin-Taylor)

m(k) ≤ min{|G | : χ(G ) = 2, χ`(G ) > k} ≤ 2m(k)

Proof: (lower bound)

let G = Ka,b, a + b < m(k), L : V (G )→ P(N), |L(v)| = k .

Let F = {L(v) : v ∈ G}. Then F has property B.

Hence ∃S such that ∀v ∅ 6= S ∩ L(v) 6= L(v). Likewise S = N− S .

Colour one side of G with colours from S , other side from S .



χ` and property B
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χ` and property B

Theorem (Erdős-Rubin-Taylor)

m(k) ≤ min{|G | : χ(G ) = 2, χ`(G ) > k} ≤ 2m(k)

Proof: (upper bound)

Let |F| = m(k), F does not have property B.

Let G = Km(k),m(k). Let L assign lists from F to each side of G .

If G is L-choosable, let S be colours used on one side, S other side,

and ∀F ∈ F both ∅ 6= S ∩ F and ∅ 6= S ∩ F , so F has property B.
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χ` and average degree

Clearly m(k) ≤
(2k−1

k

)
< 4k .

Hence ∃ G with χ`(G ) > 1
2 log2 d (d = average degree of G )

Erdős: 2k−1 ≤ m(k) ≤ k22k+1

Hence ∃ G with χ`(G ) = (1 + o(1)) log2 d

Theorem (Alon ’00)

Every G of average degree d satisfies χ`(G ) ≥ ( 1
2 + o(1)) log2 d.

(This is tight to within a factor of 2.)
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χ` and average degree for hypergraphs

G = (V ,E ) is an r -uniform hypergraph if e ∈ E ⇒ e ⊂ V , |e| = r

c : V (G )→ N is a colouring if no edge e is monochromatic

Question: must χ`(G ) grow with average degree d?

No: eg V = {1, . . . , n} E = {e ⊂ V : 1 ∈ e} χ`(G ) = 2

We require G to be simple: i.e., |e ∩ f | ≤ 1 for distinct edges e, f
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χ` for simple hypergraphs

There are easy examples of simple G with χ`(G ) = O(logr d)

r = 3

• Haxell+Pei ’09: χ`(G ) = Ω( log d
log log d ) for Steiner systems

• Haxell+Verstraëte ’10: χ`(G ) = Ω(
√

log d
log log d ) for regular

general r

• Alon+Kostochka ’10: χ`(G ) = Ω((log d)
1

r−1 )

Theorem (Saxton+T ’12)

If G is r -uniform, simple, d-regular then χ`(G ) = Ω(log d).



χ` and average degree

Theorem (Saxton+T ’13+)

If G is r -unif, simple, average degree d then χ`(G ) ≥ 1
(r−1)2 logr d

Remark: method handles non-simple too
Remark: closes gap of 1/2 for graphs (r = 2)
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A sketch of a proof of something

Let I be all the independent sets in G
Let max{|I | : I ∈ I} ≤ (1− γ)n (eg γ = 1/r for regular G )

L assigns lists size k randomly from palette of t colours
G L-choosable ⇒ ∃ I1, . . . , It ∈ I : ∀v , v ∈ Ij some j ∈ L(v)

we say L fits I1, . . . , It

“on average” v ∈ Ij for ≤ (1− γ)t sets Ij
so Pr(L fits I1, . . . , It) ≤

∏
v (1− γk) ≤ e−nγ

k

If |I| ≤ en/d then Pr(L fits some I1, . . . , It) ≤ ent/de−nγ
k

= o(1)
provided k < c log d — that is, χ`(G ) ≥ c log d

Replace I and I1, . . . , It ∈ I by C and C1, . . . ,Ct ∈ C — containers
where |C| ≤ en/d , ∀C ∈ C |C | ≤ (1− γ)n, ∀I ∈ I ∃C ∈ C I ⊂ C
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Bullet points

Want |C| ≤ en/d , ∀C ∈ C |C | ≤ (1− γ)n, ∀I ∈ I ∃C ∈ C I ⊂ C

• Sapozhenko did it for regular graphs (Cameron-Erdős)

• simple regular hypergraphs

• Kd ,n−d

• degree measure: for S ⊂ V , µ(S) = 1
nd

∑
v∈S d(v)

then µ(I ) ≤ 1− 1/r ; we get µ(C ) ≤ 1− 1/r !

• simple hypergraphs

• all hypergraphs

• other simple expectation arguments



Sapozhenko’s method

Let G be a d-regular graph. V (G ) = {1, . . . , n}.
Let ε > 0.

input independent set I
put T = ∅
for v = 1, ., n: if v ∈ I and |Γ(T ∪ {v})| ≥ |Γ(T )|+ εd , add v to T

Afterwards, observe T ⊂ I and |T | ≤ n/εd .

input set T ⊂ V (G )
put C = V (G )− Γ(T )
for v = 1, ., n: if v /∈ T but |Γ(T ∪ {v})| ≥ |Γ(T )|+ εd , take v from C

Afterwards, note if T came from first algorithm then I ⊂ C .
Also, ∆(G [C ]) ≤ εd and G is d-regular so |C | ≤ n/(2− ε).



An algorithm (or two)

input an r-graph G on vertex set [n]
an (s + 1)-multigraph Ps+1 on vertex set [n]
parameters τ, ζ > 0
a subset I ⊂ [n]
a subset Ts ⊂ [n]

output an s-multigraph Ps on vertex set [n]
a subset Ts ⊂ [n]
a subset Cs ⊂ [n]

put E(Ps ) = ∅ and Γs = ∅
put Ts = ∅
put Cs = [n]

for v = 1, 2, . . . , n do:

let F = {f ∈ [v + 1, n](s) : {v} ∪ f ∈ E(Ps+1), and ∀σ ∈ Γs σ 6⊂ f }
if |F | ≥ ζτ r−s−1d(v) and v ∈ I, add v to Ts

if |F | ≥ ζτ r−s−1d(v), remove v from Cs
if v ∈ Ts then

add F to E(Ps )

for each u ∈ [v + 1, n], if ds (u) > τ r−sd(u), add {u} to Γs
for each σ ∈ [v + 1, n](>1),if ds (σ) > 2sτds+1(σ), add σ to Γs


