List colouring of graphs and hypergraphs

Andrew Thomason (with David Saxton)

Erdős Centennial 3rd July 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex colouring

A vertex colouring of a graph G is a map

 $c: V(G)
ightarrow \mathbb{N}$ such that $c(u) \neq c(v)$ whenever uv is an edge

Here \mathbb{N} is the palette of available colours.

The *chromatic number* of G is

 $\chi(G) = \min\{k : \text{ there is a colouring } c : V(G) \rightarrow \{1, \dots, k\}\}$

Suppose now we assign a *list* of colours to each vertex, ie

 $L: V(G) \to \mathcal{P}(\mathbb{N})$

We say G is L-choosable if there is a colouring

 $c: V(G) \rightarrow \mathbb{N}$ with $c(v) \in L(v)$ for all v

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose now we assign a *list* of colours to each vertex, ie

 $L: V(G) \to \mathcal{P}(\mathbb{N})$

We say G is L-choosable if there is a colouring

 $c: V(G) \rightarrow \mathbb{N}$ with $c(v) \in L(v)$ for all v

In ordinary colouring, the lists are the same for every v

G is k-choosable if

G is *L*-choosable whenever $|L(v)| \ge k$ for every *v*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

G is k-choosable if

G is *L*-choosable whenever $|L(v)| \ge k$ for every *v*

The *list chromatic number* of *G* is

 $\chi_{\ell}(G) = \min\{k : G \text{ is } k \text{-choosable}\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G is k-choosable if

G is *L*-choosable whenever $|L(v)| \ge k$ for every *v*

The *list chromatic number* of *G* is

 $\chi_{\ell}(G) = \min\{k : G \text{ is } k \text{-choosable}\}$

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

G is k-choosable if

G is *L*-choosable whenever $|L(v)| \ge k$ for every *v*

The *list chromatic number* of *G* is

 $\chi_{\ell}(G) = \min\{k : G \text{ is } k \text{-choosable}\}$

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979) Clearly $\chi(G) \le \chi_{\ell}(G)$

χ_ℓ can be bigger than χ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $K_{3,3}$ not 2-choosable: $\chi=$ 2, $\chi_\ell\geq$ 3

χ_ℓ can be bigger than χ

More generally, $K_{m,m}$ is not k-choosable if $m \ge \binom{2k-1}{k}$ {1,...,k} {...} {...} {...} {k,...,2k-1} {1,...,k} {...} {...} {k,...,2k-1}

 $\mathcal{F} \subset \mathcal{P}(X)$ has *Property B* if the hypergraph (X, \mathcal{F}) is bipartite ie

 $\exists S \subset X : \forall F \in \mathcal{F} \ \emptyset \neq S \cap F \neq F$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathcal{F} \subset \mathcal{P}(X)$ has *Property B* if the hypergraph (X, \mathcal{F}) is bipartite ie

 $\exists S \subset X : \forall F \in \mathcal{F} \ \emptyset \neq S \cap F \neq F$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69

 $\mathcal{F} \subset \mathcal{P}(X)$ has *Property B* if the hypergraph (X, \mathcal{F}) is bipartite ie

 $\exists S \subset X : \forall F \in \mathcal{F} \ \emptyset \neq S \cap F \neq F$

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69 $m(k) = \min\{ |\mathcal{F}| : \forall F \in \mathcal{F} |F| = k, \mathcal{F} \text{ does } not \text{ have property } B \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{F} \subset \mathcal{P}(X)$ has *Property B* if the hypergraph (X, \mathcal{F}) is bipartite ie

 $\exists S \subset X : \forall F \in \mathcal{F} \ \emptyset \neq S \cap F \neq F$

Miller '37, Erdős+Hajnal '61, Erdős '63, Schmidt '64, Erdős '69 $m(k) = \min\{ |\mathcal{F}| : \forall F \in \mathcal{F} |F| = k, \mathcal{F} \text{ does } not \text{ have property } B \}$ Theorem (Erdős-Rubin-Taylor)

 $m(k) \leq \min\{|G|: \chi(G) = 2, \chi_{\ell}(G) > k\} \leq 2m(k)$

Theorem (Erdős-Rubin-Taylor)

$$m(k) \leq \min\{|G|: \chi(G) = 2, \chi_{\ell}(G) > k\} \leq 2m(k)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: (lower bound)

Theorem (Erdős-Rubin-Taylor)

$$m(k) \leq \min\{|G|: \chi(G) = 2, \chi_{\ell}(G) > k\} \leq 2m(k)$$

Proof: (lower bound) let $G = K_{a,b}$, a + b < m(k), $L : V(G) \to \mathcal{P}(\mathbb{N})$, |L(v)| = k. Let $\mathcal{F} = \{L(v) : v \in G\}$. Then \mathcal{F} has property B. Hence $\exists S$ such that $\forall v \ \emptyset \neq S \cap L(v) \neq L(v)$. Likewise $\overline{S} = \mathbb{N} - S$. Colour one side of G with colours from S, other side from \overline{S} .

Theorem (Erdős-Rubin-Taylor)

$$m(k) \leq \min\{|G|: \chi(G) = 2, \chi_{\ell}(G) > k\} \leq 2m(k)$$

Proof: (upper bound)

Theorem (Erdős-Rubin-Taylor)

$$m(k) \leq \min\{|G|: \chi(G) = 2, \chi_{\ell}(G) > k\} \leq 2m(k)$$

Proof: (upper bound) Let $|\mathcal{F}| = m(k)$, \mathcal{F} does not have property B. Let $G = K_{m(k),m(k)}$. Let L assign lists from \mathcal{F} to each side of G. If G is L-choosable, let S be colours used on one side, \overline{S} other side, and $\forall F \in \mathcal{F}$ both $\emptyset \neq S \cap F$ and $\emptyset \neq \overline{S} \cap F$, so \mathcal{F} has property B.

Clearly $m(k) \le {\binom{2k-1}{k}} < 4^k$. Hence $\exists G$ with $\chi_{\ell}(G) > \frac{1}{2}\log_2 d$ (d = average degree of G)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Clearly $m(k) \le {\binom{2k-1}{k}} < 4^k$. Hence $\exists G$ with $\chi_{\ell}(G) > \frac{1}{2}\log_2 d$ (d = average degree of G)Erdős: $2^{k-1} \le m(k) \le k^2 2^{k+1}$ Hence $\exists G$ with $\chi_{\ell}(G) = (1 + o(1))\log_2 d$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Clearly $m(k) \leq {\binom{2k-1}{k}} < 4^k$. Hence $\exists G$ with $\chi_{\ell}(G) > \frac{1}{2}\log_2 d$ (d = average degree of G)Erdős: $2^{k-1} \leq m(k) \leq k^2 2^{k+1}$ Hence $\exists G$ with $\chi_{\ell}(G) = (1 + o(1))\log_2 d$

Theorem (Alon '00) Every G of average degree d satisfies $\chi_{\ell}(G) \ge (\frac{1}{2} + o(1)) \log_2 d$. (This is tight to within a factor of 2.)

G = (V, E) is an *r*-uniform hypergraph if $e \in E \Rightarrow e \subset V$, |e| = r $c : V(G) \rightarrow \mathbb{N}$ is a colouring if no edge *e* is monochromatic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G = (V, E) is an *r*-uniform hypergraph if $e \in E \Rightarrow e \subset V$, |e| = r $c : V(G) \rightarrow \mathbb{N}$ is a colouring if no edge *e* is monochromatic

Question: must $\chi_{\ell}(G)$ grow with average degree d?

G = (V, E) is an *r*-uniform hypergraph if $e \in E \Rightarrow e \subset V$, |e| = r $c : V(G) \rightarrow \mathbb{N}$ is a colouring if no edge *e* is monochromatic *Question:* must $\chi_{\ell}(G)$ grow with average degree *d*?

No: eg
$$V = \{1, ..., n\}$$
 $E = \{e \subset V : 1 \in e\}$ $\chi_{\ell}(G) = 2$

G = (V, E) is an *r*-uniform hypergraph if $e \in E \Rightarrow e \subset V$, |e| = r $c : V(G) \rightarrow \mathbb{N}$ is a colouring if no edge *e* is monochromatic *Question:* must $\chi_{\ell}(G)$ grow with average degree *d*? No: eg $V = \{1, ..., n\}$ $E = \{e \subset V : 1 \in e\}$ $\chi_{\ell}(G) = 2$

We require G to be simple: i.e., $|e \cap f| \le 1$ for distinct edges e, f

χ_ℓ for simple hypergraphs

There are easy examples of simple G with $\chi_{\ell}(G) = O(\log_r d)$

- *r* = 3
 - Haxell+Pei '09: $\chi_{\ell}(G) = \Omega(\frac{\log d}{\log \log d})$ for Steiner systems
 - Haxell+Verstraëte '10: $\chi_{\ell}(G) = \Omega(\sqrt{\frac{\log d}{\log \log d}})$ for regular

general r

• Alon+Kostochka '10: $\chi_\ell(G) = \Omega((\log d)^{rac{1}{r-1}})$

Theorem (Saxton+T '12)

If G is r-uniform, simple, d-regular then $\chi_{\ell}(G) = \Omega(\log d)$.

Theorem (Saxton+T '13+) If G is r-unif, simple, average degree d then $\chi_{\ell}(G) \ge \frac{1}{(r-1)^2} \log_r d$

Theorem (Saxton+T '13+)

If G is r-unif, simple, average degree d then $\chi_{\ell}(G) \geq \frac{1}{(r-1)^2} \log_r d$

Remark: method handles non-simple too Remark: closes gap of 1/2 for graphs (r = 2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{I} be all the independent sets in GLet $\max\{|I| : I \in \mathcal{I}\} \le (1 - \gamma)n$ (eg $\gamma = 1/r$ for regular G)

Let \mathcal{I} be all the independent sets in GLet $\max\{|I| : I \in \mathcal{I}\} \leq (1 - \gamma)n$ (eg $\gamma = 1/r$ for regular G) L assigns lists size k randomly from palette of t colours G L-choosable $\Rightarrow \exists I_1, \ldots, I_t \in \mathcal{I} : \forall v, v \in I_j$ some $j \in L(v)$ we say L fits I_1, \ldots, I_t

Let \mathcal{I} be all the independent sets in GLet $\max\{|I| : I \in \mathcal{I}\} \leq (1 - \gamma)n$ (eg $\gamma = 1/r$ for regular G) L assigns lists size k randomly from palette of t colours G L-choosable $\Rightarrow \exists I_1, \ldots, I_t \in \mathcal{I} : \forall v, v \in I_j$ some $j \in L(v)$ we say L fits I_1, \ldots, I_t

"on average" $v \in I_j$ for $\leq (1 - \gamma)t$ sets I_j so $\Pr(L \text{ fits } I_1, \dots, I_t) \leq \prod_v (1 - \gamma^k) \leq e^{-n\gamma^k}$

Let \mathcal{I} be all the independent sets in GLet $\max\{|I| : I \in \mathcal{I}\} \leq (1 - \gamma)n$ (eg $\gamma = 1/r$ for regular G) L assigns lists size k randomly from palette of t colours G L-choosable $\Rightarrow \exists I_1, \ldots, I_t \in \mathcal{I} : \forall v, v \in I_j$ some $j \in L(v)$ we say L fits I_1, \ldots, I_t

"on average" $v \in I_j$ for $\leq (1 - \gamma)t$ sets I_j so $\Pr(L$ fits $I_1, \ldots, I_t) \leq \prod_v (1 - \gamma^k) \leq e^{-n\gamma^k}$

 $\begin{array}{l} |\mathcal{I}| \leq e^{n/d} \text{ then } \Pr(L \text{ fits some } I_1, \ldots, I_t) \leq e^{nt/d} e^{-n\gamma^k} = o(1) \\ \text{provided } k < c \log d \quad - \quad \text{that is, } \chi_{\ell}(G) \geq c \log d \end{array}$

Let \mathcal{I} be all the independent sets in GLet $\max\{|I| : I \in \mathcal{I}\} \leq (1 - \gamma)n$ (eg $\gamma = 1/r$ for regular G) L assigns lists size k randomly from palette of t colours G L-choosable $\Rightarrow \exists I_1, \ldots, I_t \in \mathcal{I} : \forall v, v \in I_j$ some $j \in L(v)$ we say L fits I_1, \ldots, I_t

"on average" $v \in I_j$ for $\leq (1 - \gamma)t$ sets I_j so $\Pr(L$ fits $I_1, \ldots, I_t) \leq \prod_v (1 - \gamma^k) \leq e^{-n\gamma^k}$

 $\begin{array}{l} |\mathcal{I}| \leq e^{n/d} \text{ then } \Pr(L \text{ fits some } I_1, \ldots, I_t) \leq e^{nt/d} e^{-n\gamma^k} = o(1) \\ \text{provided } k < c \log d \quad - \quad \text{that is, } \chi_{\ell}(G) \geq c \log d \end{array}$

Replace \mathcal{I} and $I_1, \ldots, I_t \in \mathcal{I}$ by \mathcal{C} and $C_1, \ldots, C_t \in \mathcal{C}$ — containers where $|\mathcal{C}| \leq e^{n/d}$, $\forall \mathcal{C} \in \mathcal{C} |\mathcal{C}| \leq (1 - \gamma)n$, $\forall I \in \mathcal{I} \exists \mathcal{C} \in \mathcal{C} |\mathcal{C} \subset \mathcal{C}$

Bullet points

 $\text{Want } |\mathcal{C}| \leq e^{n/d}, \ \forall C \in \mathcal{C} \ |C| \leq (1-\gamma)n, \ \forall I \in \mathcal{I} \ \exists C \in \mathcal{C} \ I \subset C$

- Sapozhenko did it for regular graphs (Cameron-Erdős)
- simple regular hypergraphs
- K_{d,n-d}
- degree measure: for $S \subset V$, $\mu(S) = \frac{1}{nd} \sum_{v \in S} d(v)$ then $\mu(I) \leq 1 - 1/r$; we get $\mu(C) \leq 1 - 1/r!$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- simple hypergraphs
- all hypergraphs
- other simple expectation arguments

Sapozhenko's method

Let G be a d-regular graph. $V(G) = \{1, \ldots, n\}$. Let $\epsilon > 0$.

INPUT independent set Iput $T = \emptyset$ for v = 1, ., n: if $v \in I$ and $|\Gamma(T \cup \{v\})| \ge |\Gamma(T)| + \epsilon d$, add v to T

Afterwards, observe $T \subset I$ and $|T| \leq n/\epsilon d$.

INPUT set $T \subset V(G)$ put $C = V(G) - \Gamma(T)$ for v = 1, ., n: if $v \notin T$ but $|\Gamma(T \cup \{v\})| \ge |\Gamma(T)| + \epsilon d$, take v from C

Afterwards, note if T came from first algorithm then $I \subset C$. Also, $\Delta(G[C]) \leq \epsilon d$ and G is d-regular so $|C| \leq n/(2-\epsilon)$.

An algorithm (or two)

```
an r-graph G on vertex set [n]
INPUT
          an (s+1)-multigraph P_{s+1} on vertex set [n]
          parameters \tau, \zeta > 0
           a subset I \subset [n]
           a subset T_s \subset [n]
OUTPUT an s-multigraph P_s on vertex set [n]
          a subset T_s \subset [n]
           a subset C_{\epsilon} \subset [n]
put E(P_s) = \emptyset and \Gamma_s = \emptyset
put T_c = \emptyset
put C_s = [n]
for v = 1, 2, ..., n do:
  let F = \{f \in [v+1, n]^{(s)} : \{v\} \cup f \in E(P_{s+1}), \text{ and } \forall \sigma \in \Gamma_s \ \sigma \not\subset f\}
  if |F| > \zeta \tau^{r-s-1} d(v) and v \in I, add v to T_s
  if |F| > \zeta \tau^{r-s-1} d(v), remove v from C_s
  if v \in T_s then
     add F to E(P_s)
     for each u \in [v+1, n], if d_s(u) > \tau^{r-s} d(u), add \{u\} to \Gamma_s
     for each \sigma \in [v+1, n]^{(>1)}, if d_s(\sigma) > 2^s \tau d_{s+1}(\sigma), add \sigma to \Gamma_s
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ