
Intro diffusion DSzV-I-II Range LocPertIH Penrose-Lorentz process
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Erdős’start with probability theory and RW’s

1939: P. Erdős, A. Wintner: Additive arithmetical functions
and statistical independence (Prob. Number Theory)

1939: P. Erdős, M. Kac: On the Gaussian law of errors in the
theory of additive functions (Prob. Number Theory)

1942: P. Erdős: On the law of the iterated logarithm
(Random Walks)

1946: P. Erdős, M. Kac: On certain limit theorems of the
theory of probability (Invariance principle)
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Statistical physics

A main goal of statistical physics: macroscopic equations from
microscopic assumptions (i. e. in classical physics: from
Newtonian mechanics)

Diffusion: convergence to Wiener process (or to
Ornstein-Uhlenbeck or else) of a particle in gas or fluid

Understanding heat conduction

Effect of local impurities in a crystal

1905, Einstein: (Physicist’s) Derivation of heat equation
1921, Wiener: mathematical model of Brownian motion
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Role of RW models

Derivation of macro behavior from stochastic models is
’easier’ (from deterministic ones often not done yet!)

Ideas used at stochastic models can be used or are instructive
at deterministic ones

’Simplest’ deterministic models: billiards and Lorentz process

Figure: Sinai-billiard on two-torus
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Periodic Lorentz Process
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Lorentz process - billiard dynamics (uniform motion + specular
reflection) (Ω,T , µ)

Q̂ = Rd \ ∪∞i=1Oi is the configuration space of the Lorentz
flow (the billiard table), where the closed sets Oi are pairwise
disjoint, strictly convex with C3−smooth boundaries

Ω = Q × S+ is the phase space for the discrete time map T
(where Q = ∂Q̂ and S+ is the hemisphere of outgoing unit
velocities)

µ the T -invariant (infinite) Liouville-measure on Ω (actually
Lebesgue ⊗ Lebesgue)
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Periodic Lorentz → Sinai Billiard

If the scatterer configuration {Oi}i is Zd -periodic, then the
corresponding dynamical system is (Ωper = Qper × S+,Tper , µper ).

Then it makes sense to factorize it by Zd to obtain a Sinai
billiard (Ω0 = Q0 × S+,T0, µ0). The natural projection Ω → Q (
for Ωper or for Ω0) is denoted by πq.

Finite horizon (FH) versus infinite horizon (∞H)
Sinai-billiard is a hyperbolic dynamical system (like geodesic on
negative curvature). BUT it is singular!
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Diffusion

Definition

Assume {qn ∈ Rd |n ≥ 0} is a random trajectory. Then its
diffusively scaled variant ∈ C [0, 1] is: for N ∈ Z+

WN( j
N ) =

qj√
N

(j = 1, 2, . . . ,N)

and otherwise WN(t) (t ∈ [0, 1]) is its piecewise linear,
continuous extension.

Bunimovich-Sinai, 1981: WN(t) =⇒ W (t) as N →∞.
(cf. Erdős-Kac, 1946 =⇒ Donsker,1951 & Prokhorov, 1954)
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Sinai’s question, 1981: Locally perturbed periodic
Lorentz process?
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Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, d ≥ 2
Method: d = 2

#(of visits to origin until time t) = O(log n) �
√

n

coupling through excursions outside perturbations
(which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed
Lorentz to Wiener, d = 2

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T
coupling
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Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed
Lorentz to Wiener, d = 2

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T
coupling



Intro diffusion DSzV-I-II Range LocPertIH Penrose-Lorentz process

Dolgopyat-Sz.-Varjú. I. 2008: Recurrence properties
of periodic Lorentz process

Let Sn be the location of the (periodic) Lorentz particle after n
collisions.
Let m(S) = m ∈ Z2 if S ∈ Qm.
The first hitting of 0-th cell

τ = min{n > 0 : m(Sn) = 0} (i . e. τ : Ω → N)

Theorem

There is a constant c such that µ0(τ > n) ∼ c
log n .
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Dolgopyat-Sz.-Varjú. I. 2008, continued

Let Nn(x) = Card(k ≤ n : m(Sk) = 0).

Theorem

Assume x is distributed according to µ0.
Then cNn

log n converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960.
The next one is analogue of that of Darling-Kac, 1957.
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Dolgopyat-Sz.-Varjú. I. 2008, continued

Let tm denote the random variable τ(x) under the condition that x
starts from the cell m (i. e. distributed according to µm).

Theorem

As |m| → ∞, log tm/2 log |m| converges weakly to

ξ = 1/U

where U is a uniform random variable on [0, 1].

Particular case of Mittag-Leffler distribution.
In particular: tm � |m|2
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Range of RW

Ed(n) = E(# sites visited by RW during n steps)

Dvoretzky-Erdős, Some problems on random walk in space, 2nd
Berkeley Symp. (1950)

Theorem

Ed(n) �

{
πn

log n (1 + o(1)), d = 2

nγd(1 + o(1)), d > 2

Question 1(Sz. 2006): E(# cells visited by LP during n steps)
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Range of Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the
planar Lorentz process, DCDS(A), 2009
P. Nándori: Number of distinct sites visited by a RW with internal
states, PTh&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites
visited by a random walk, CPAM. (1979). (This is related to
Wiener sausage.)
Open: Lorentz sausage?
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Self-intersections

Erdős-Taylor: Some intersection properties of random walk paths,
Acta Math. Acad. Sci. Hung. (1960)

F. Pène: Self-intersections of trajectories of Lorentz process, 2013
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∞H

Sz.-Varjú, 2007: As N →∞ WN√
N log N

=⇒ W

Analogous (periodic) RW, d = 1: Prob(Xi = n) ∼ const.
n3

Here E(X 2
i ) = ∞ but E(Xα

i ) < ∞ if α < 2
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∞H

Question: locally perturbed ∞H periodic Lorentz process?

Paulin-Sz. 2010: WN√
N log N

=⇒ W also holds for the locally

perturbed RW of above (i. e. c
n3 ) type.

Nándori, 2011: Recurrence properties of heavy tailed RW.
(Moreover, # of through-crossings of the origin for the RW above
is O(n1/6).)

For locally perturbed ∞H Lorentz process Question is still open.
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Prototiles of Penrose tiling
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Penrose tiling of the plane
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Global deviation from periodicity:
Penrose-Lorentz process

Construct a planar finite horizon Lorentz-process based on the
Penrose tiling: at each vertex of the Penrose tiling one puts
identical circular scatterers. (The tiles with their scatterers inherit
the symmetry of the Penrose tiling.) Call it a Penrose-Lorentz
process.

Conjecture, Sz., 2006: By selecting the initial phase point of the
Penrose-Lorentz process according to a probability measure
absolutely continuous wrt to the Liouville measure, the diffusively
scaled variant WN(t) of the Penrose-Lorentz trajectory converges
weakly to a non-degenerate, rotation-invariant Wiener process.
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Results for Penrose RW

M. Kunz, 2000: under the condition that harmonic coordinates
exist, Sn√

n
is asymptotically normal with zero mean and a rotation

invariant covariance matrix.

General results for RWs on graphs (Delmotte, 1999 and
Hambly-Kumagai, 2004) combined with recent observation of
Solomon, 2008 provide the asymptotic normality unconditionally
(oral communication by A. Telcs).
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