Erdős-type theorems for billiard models.

Domokos Szász
(Budapest University of Technology)

ERDŐS $2^{2} .5^{2}$
Budapest, July 3, 2013

Erdös'start with probability theory and RW's

- 1939: P. Erdős, A. Wintner: Additive arithmetical functions and statistical independence (Prob. Number Theory)
- 1939: P. Erdős, M. Kac: On the Gaussian law of errors in the theory of additive functions (Prob. Number Theory)
- 1942: P. Erdős: On the law of the iterated logarithm (Random Walks)
- 1946: P. Erdős, M. Kac: On certain limit theorems of the theory of probability (Invariance principle)

Statistical physics

A main goal of statistical physics: macroscopic equations from microscopic assumptions (i. e. in classical physics: from Newtonian mechanics)

- Diffusion: convergence to Wiener process (or to Ornstein-Uhlenbeck or else) of a particle in gas or fluid
- Understanding heat conduction
- Effect of local impurities in a crystal

1905, Einstein: (Physicist's) Derivation of heat equation 1921, Wiener: mathematical model of Brownian motion

Role of RW models

- Derivation of macro behavior from stochastic models is 'easier' (from deterministic ones often not done yet!)
- Ideas used at stochastic models can be used or are instructive at deterministic ones
'Simplest' deterministic models: billiards and Lorentz process

Figure: Sinai-billiard on two-torus

Periodic Lorentz Process

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q}=\mathbb{R}^{d} \backslash \cup_{i=1}^{\infty} O_{i}$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_{i} are pairwise disjoint, strictly convex with \mathcal{C}^{3}-smooth boundaries
(where $Q=\partial \hat{Q}$ and S_{+}is the hemisphere of outgoing unit velocities)

Lebesgue \otimes Lebesgue)

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q}=\mathbb{R}^{d} \backslash \cup_{i=1}^{\infty} O_{i}$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_{i} are pairwise disjoint, strictly convex with \mathcal{C}^{3}-smooth boundaries
- $\Omega=Q \times S_{+}$is the phase space for the discrete time map T (where $Q=\partial \hat{Q}$ and S_{+}is the hemisphere of outgoing unit velocities)

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q}=\mathbb{R}^{d} \backslash \cup_{i=1}^{\infty} O_{i}$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_{i} are pairwise disjoint, strictly convex with \mathcal{C}^{3}-smooth boundaries
- $\Omega=Q \times S_{+}$is the phase space for the discrete time map T (where $Q=\partial \hat{Q}$ and S_{+}is the hemisphere of outgoing unit velocities)
- μ the T-invariant (infinite) Liouville-measure on Ω (actually Lebesgue \otimes Lebesgue)

Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\left\{O_{i}\right\}_{i}$ is \mathbb{Z}^{d}-periodic, then the corresponding dynamical system is $\left(\Omega_{p e r}=Q_{p e r} \times S_{+}, T_{p e r}, \mu_{p e r}\right)$.
Then it makes sense to factorize it by \mathbb{Z}^{d} to obtain a Sinai
billiard $\left(\Omega_{0}=Q_{0} \times S_{+}, T_{0}, \mu_{0}\right)$. The natural projection $\Omega \rightarrow Q($
for $\Omega_{p e r}$ or for $\left.\Omega_{0}\right)$ is denoted by π_{q}

Finite horizon (FH) versus infinite horizon ($\infty \mathrm{H}$) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\left\{O_{i}\right\}_{i}$ is \mathbb{Z}^{d}-periodic, then the corresponding dynamical system is $\left(\Omega_{p e r}=Q_{p e r} \times S_{+}, T_{p e r}, \mu_{p e r}\right)$.
Then it makes sense to factorize it by \mathbb{Z}^{d} to obtain a Sinai billiard $\left(\Omega_{0}=Q_{0} \times S_{+}, T_{0}, \mu_{0}\right)$.
for $\Omega_{p e r}$ or for Ω_{0}) is denoted by π_{q}

Finite horizon (FH) versus infinite horizon ($\infty \mathrm{H}$) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\left\{O_{i}\right\}_{i}$ is \mathbb{Z}^{d}-periodic, then the corresponding dynamical system is $\left(\Omega_{p e r}=Q_{p e r} \times S_{+}, T_{p e r}, \mu_{p e r}\right)$. Then it makes sense to factorize it by \mathbb{Z}^{d} to obtain a Sinai billiard $\left(\Omega_{0}=Q_{0} \times S_{+}, T_{0}, \mu_{0}\right)$. The natural projection $\Omega \rightarrow Q($ for $\Omega_{p e r}$ or for $\left.\Omega_{0}\right)$ is denoted by π_{q}.

Finite horizon (FH) versus infinite horizon ($\infty \mathrm{H}$) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\left\{O_{i}\right\}_{i}$ is \mathbb{Z}^{d}-periodic, then the corresponding dynamical system is $\left(\Omega_{p e r}=Q_{p e r} \times S_{+}, T_{p e r}, \mu_{p e r}\right)$. Then it makes sense to factorize it by \mathbb{Z}^{d} to obtain a Sinai billiard $\left(\Omega_{0}=Q_{0} \times S_{+}, T_{0}, \mu_{0}\right)$. The natural projection $\Omega \rightarrow Q($ for $\Omega_{p e r}$ or for $\left.\Omega_{0}\right)$ is denoted by π_{q}.

Finite horizon (FH) versus infinite horizon ($\infty \mathrm{H}$)

Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\left\{O_{i}\right\}_{i}$ is \mathbb{Z}^{d}-periodic, then the corresponding dynamical system is $\left(\Omega_{p e r}=Q_{p e r} \times S_{+}, T_{p e r}, \mu_{p e r}\right)$. Then it makes sense to factorize it by \mathbb{Z}^{d} to obtain a Sinai billiard $\left(\Omega_{0}=Q_{0} \times S_{+}, T_{0}, \mu_{0}\right)$. The natural projection $\Omega \rightarrow Q($ for $\Omega_{p e r}$ or for $\left.\Omega_{0}\right)$ is denoted by π_{q}.

Finite horizon (FH) versus infinite horizon ($\infty \mathrm{H}$) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

Diffusion

Definition

Assume $\left\{q_{n} \in \mathbb{R}^{d} \mid n \geq 0\right\}$ is a random trajectory. Then its diffusively scaled variant $\in C[0,1]$ is: for $N \in \mathbb{Z}_{+}$

- $W_{N}\left(\frac{j}{N}\right)=\frac{q_{j}}{\sqrt{N}} \quad(j=1,2, \ldots, N)$
- and otherwise $W_{N}(t) \quad(t \in[0,1])$ is its piecewise linear, continuous extension.

Diffusion

Definition

Assume $\left\{q_{n} \in \mathbb{R}^{d} \mid n \geq 0\right\}$ is a random trajectory. Then its diffusively scaled variant $\in C[0,1]$ is: for $N \in \mathbb{Z}_{+}$

- $W_{N}\left(\frac{j}{N}\right)=\frac{q_{j}}{\sqrt{N}} \quad(j=1,2, \ldots, N)$
- and otherwise $W_{N}(t) \quad(t \in[0,1])$ is its piecewise linear, continuous extension.

Bunimovich-Sinai, 1981: $W_{N}(t) \Longrightarrow W(t)$ as $N \rightarrow \infty$.
(cf. Erdős-Kac, $1946 \Longrightarrow$ Donsker, 1951 \& Prokhorov, 1954)

Diffusion

Definition

Assume $\left\{q_{n} \in \mathbb{R}^{d} \mid n \geq 0\right\}$ is a random trajectory. Then its diffusively scaled variant $\in C[0,1]$ is: for $N \in \mathbb{Z}_{+}$

- $W_{N}\left(\frac{j}{N}\right)=\frac{q_{j}}{\sqrt{N}} \quad(j=1,2, \ldots, N)$
- and otherwise $W_{N}(t) \quad(t \in[0,1])$ is its piecewise linear, continuous extension.

Bunimovich-Sinai, 1981: $W_{N}(t) \Longrightarrow W(t)$ as $N \rightarrow \infty$. (cf. Erdős-Kac, $1946 \Longrightarrow$ Donsker, 1951 \& Prokhorov, 1954)

Sinai's question, Lorentz process?

Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, $d \geq 2$ Method: $d=2$

- \#(of visits to origin until time $t)=O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, $d=2$

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, $d \geq 2$ Method: $d=2$

- \#(of visits to origin until time $t)=O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, $d \geq 2$ Method: $d=2$

- \#(of visits to origin until time $t)=O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, $d=2$

Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, $d \geq 2$ Method: $d=2$

- \#(of visits to origin until time $t)=O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, $d=2$

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Dolgopyat-Sz.-Varjú. I. 2008: Recurrence properties of periodic Lorentz process

Let S_{n} be the location of the (periodic) Lorentz particle after n collisions.
Let $m(S)=m \in \mathbb{Z}^{2} \quad$ if $S \in Q_{m}$.
The first hitting of 0-th cell

$$
\left.\tau=\min \left\{n>0: m\left(S_{n}\right)=0\right\} \quad \text { (i. e. } \tau: \Omega \rightarrow \mathbb{N}\right)
$$

Theorem

There is a constant \mathbf{c} such that $\mu_{0}(\tau>n) \sim \frac{\mathrm{c}}{\log n}$.

Dolgopyat-Sz.-Varjú. I. 2008, continued

Let $N_{n}(x)=\operatorname{Card}\left(k \leq n: m\left(S_{k}\right)=0\right)$.

Theorem

Assume x is distributed according to μ_{0}.
Then $\frac{\mathrm{c} N_{n}}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960 The next one is analogue of that of Darling-Kac, 1957.

Dolgopyat-Sz.-Varjú. I. 2008, continued

Let $N_{n}(x)=\operatorname{Card}\left(k \leq n: m\left(S_{k}\right)=0\right)$.

Theorem

Assume x is distributed according to μ_{0}.
Then $\frac{c N_{n}}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

Dolgopyat-Sz.-Varjú. I. 2008, continued

$$
\text { Let } N_{n}(x)=\operatorname{Card}\left(k \leq n: m\left(S_{k}\right)=0\right) \text {. }
$$

Theorem

Assume x is distributed according to μ_{0}.
Then $\frac{\mathrm{c} N_{n}}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960.

Dolgopyat-Sz.-Varjú. I. 2008, continued

$$
\text { Let } N_{n}(x)=\operatorname{Card}\left(k \leq n: m\left(S_{k}\right)=0\right) \text {. }
$$

Theorem

Assume x is distributed according to μ_{0}.
Then $\frac{\mathrm{c} N_{n}}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

Dolgopyat-Sz.-Varjú. I. 2008, continued

Let t_{m} denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_{m}).

Theorem
As $|m| \rightarrow \infty, \log t_{m} / 2 \log |m|$ converges weakly to
where U is a uniform random variable on $[0,1]$.
Particular case of Mittag-Leffler distribution
In particular: $t_{m} \asymp|m|^{2}$

Dolgopyat-Sz.-Varjú. I. 2008, continued

Let t_{m} denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_{m}).

Theorem

As $|m| \rightarrow \infty, \log t_{m} / 2 \log |m|$ converges weakly to

$$
\xi=1 / U
$$

where U is a uniform random variable on $[0,1]$.
Particular case of Mittag-Leffler distribution. In particular:

Dolgopyat-Sz.-Varjú. I. 2008, continued

Let t_{m} denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_{m}).

Theorem

As $|m| \rightarrow \infty, \log t_{m} / 2 \log |m|$ converges weakly to

$$
\xi=1 / U
$$

where U is a uniform random variable on $[0,1]$.
Particular case of Mittag-Leffler distribution.
In particular: $t_{m} \asymp|m|^{2}$

Range of RW

$E_{d}(n)=\mathbb{E}(\#$ sites visited by RW during n steps $)$
Dvoretzky-Erdős, Some problems on random walk in space, 2nd Berkeley Symp. (1950)

Theorem

$$
E_{d}(n) \asymp \begin{cases}\frac{\pi n}{\log n}(1+o(1)), & d=2 \\ n \gamma_{d}(1+o(1)), & d>2\end{cases}
$$

Question 1(Sz. 2006): \mathbb{E} (\# cells visited by LP during n steps)

Range of RW

$E_{d}(n)=\mathbb{E}(\#$ sites visited by RW during n steps $)$
Dvoretzky-Erdős, Some problems on random walk in space, 2nd Berkeley Symp. (1950)

Theorem

$$
E_{d}(n) \asymp \begin{cases}\frac{\pi n}{\log n}(1+o(1)), & d=2 \\ n \gamma_{d}(1+o(1)), & d>2\end{cases}
$$

Question 1 (Sz. 2006): \mathbb{E} (\# cells visited by LP during n steps)

Range of Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009
> P. Nándori: Number of distinct sites visited by a RW with internal states, PTh\&RF, 2011

> Question 2: Donsker-Varadhan, On the number of distinct sites visited by a random walk, CPAM. (1979). (This is related to Wiener sausage.)
> Open: Lorentz sausage?

Range of Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009
P. Nándori: Number of distinct sites visited by a RW with internal states, PTh\&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites visited by a random walk, CPAM. (1979). (This is related to Wiener sausage.)
Open: Lorentz sausage?

Range of Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009
P. Nándori: Number of distinct sites visited by a RW with internal states, PTh\&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites visited by a random walk, CPAM. (1979). (This is related to Wiener sausage.)
Open: Lorentz sausage?

Self-intersections

Erdős-Taylor: Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hung. (1960)
F. Pène: Self-intersections of trajectories of Lorentz process, 2013

$\infty \mathrm{H}$

Sz.-Varjú, 2007: As $N \rightarrow \infty \frac{W_{N}}{\sqrt{N \log N}} \Longrightarrow W$
Analogous (periodic) RW, $\mathrm{d}=1: \operatorname{Prob}\left(X_{i}=n\right) \sim \frac{\text { const. }}{n^{3}}$
Here $\mathbb{E}\left(X_{i}^{2}\right)=\infty$ but $\mathbb{E}\left(X_{i}^{\alpha}\right)<\infty$ if $\alpha<2$

$\infty \mathrm{H}$

Question: locally perturbed $\infty \mathrm{H}$ periodic Lorentz process?
Paulin-Sz. 2010: $\frac{W_{N}}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^{3}}$) type.
Nándori, 2011: Recurrence properties of heavy tailed RW (Moreover, \# of through-crossings of the origin for the RW above is $O\left(n^{1 / 6}\right)$.)
For locally perturbed ∞ H Lorentz process Question is still open.

$\infty \mathrm{H}$

Question: locally perturbed $\infty \mathrm{H}$ periodic Lorentz process?
Paulin-Sz. 2010: $\frac{W_{N}}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^{3}}$) type.
Nándori, 2011: Recurrence properties of heavy tailed RW (Moreover, \# of through-crossings of the origin for the RW above is $O\left(n^{1 / 6}\right)$.)
For locally perturbed ∞ H Lorentz process Question is still open.

Question: locally perturbed $\infty \mathrm{H}$ periodic Lorentz process?
Paulin-Sz. 2010: $\frac{W_{N}}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^{3}}$) type.
Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, \# of through-crossings of the origin for the RW above is $O\left(n^{1 / 6}\right)$.)
For locally perturbed ∞ H Lorentz process Question is still open.

$\infty \mathrm{H}$

Question: locally perturbed $\infty \mathrm{H}$ periodic Lorentz process?
Paulin-Sz. 2010: $\frac{W_{N}}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^{3}}$) type.
Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, \# of through-crossings of the origin for the RW above is $O\left(n^{1 / 6}\right)$.)
For locally perturbed $\infty \mathrm{H}$ Lorentz process Question is still open.

Prototiles of Penrose tiling

Penrose tiling of the plane

Global deviation from periodicity: Penrose-Lorentz process

Construct a planar finite horizon Lorentz-process based on the Penrose tiling: at each vertex of the Penrose tiling one puts identical circular scatterers. (The tiles with their scatterers inherit the symmetry of the Penrose tiling.) Call it a Penrose-Lorentz process.

Conjecture, Sz., 2006: By selecting the initial phase point of the Penrose-Lorentz process according to a probability measure absolutely continuous wrt to the Liouville measure, the diffusively scaled variant $W_{N}(t)$ of the Penrose-Lorentz trajectory converges weakly to a non-degenerate, rotation-invariant Wiener process.

Results for Penrose RW

M. Kunz, 2000: under the condition that harmonic coordinates exist, $\frac{S_{n}}{\sqrt{n}}$ is asymptotically normal with zero mean and a rotation invariant covariance matrix.

General results for RWs on graphs (Delmotte, 1999 and Hambly-Kumagai, 2004) combined with recent observation of Solomon, 2008 provide the asymptotic normality unconditionally (oral communication by A. Telcs).

