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Intro
°

Erdos’start with probability theory and RW's

@ 1939: P. Erdos, A. Wintner: Additive arithmetical functions
and statistical independence (Prob. Number Theory)

@ 1939: P. Erdés, M. Kac: On the Gaussian law of errors in the
theory of additive functions (Prob. Number Theory)

@ 1942: P. ErdGs: On the law of the iterated logarithm
(Random Walks)

@ 1946: P. Erdds, M. Kac: On certain limit theorems of the
theory of probability (Invariance principle)



Intro
]

Statistical physics

A main goal of statistical physics: macroscopic equations from
microscopic assumptions (i. e. in classical physics: from
Newtonian mechanics)

e Diffusion: convergence to Wiener process (or to
Ornstein-Uhlenbeck or else) of a particle in gas or fluid
@ Understanding heat conduction

o Effect of local impurities in a crystal

1905, Einstein: (Physicist's) Derivation of heat equation
1921, Wiener: mathematical model of Brownian motion



Intro
°

Role of RW models

@ Derivation of macro behavior from stochastic models is
‘easier’ (from deterministic ones often not done yet!)

@ |deas used at stochastic models can be used or are instructive
at deterministic ones

'Simplest’ deterministic models: billiards and Lorentz process

_________ N

Figure: Sinai-billiard on two-torus
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Lorentz process - billiard dynamics (uniform motion + specular
reflection) (2, T, u)

° Q = R4 \ U2, O is the configuration space of the Lorentz
flow (the billiard table), where the closed sets O; are pairwise
disjoint, strictly convex with C3—smooth boundaries

o Q= Q x S, is the phase space for the discrete time map T
(where Q = 9Q and S, is the hemisphere of outgoing unit
velocities)

@ 4 the T-invariant (infinite) Liouville-measure on Q (actually
Lebesgue @ Lebesgue)
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°

Periodic Lorentz — Sinai Billiard

If the scatterer configuration {O;}; is Z9-periodic, then the
corresponding dynamical system is (Qper = Qper X Sy, Tper, tper)-
Then it makes sense to factorize it by Z? to obtain a Sinai
billiard (Q0 = Qo x Sy, To, 0). The natural projection Q — Q (
for Qper or for Q) is denoted by 4.

Finite horizon (FH) versus infinite horizon (coH)
Sinai-billiard is a hyperbolic dynamical system (like geodesic on
negative curvature). BUT it is singular!
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Diffusion

Assume {q, € R9/n > 0} is a random trajectory. Then its
diffusively scaled variant € C[0,1] is: for N € Z,

o Wn(f)=7k (i=12...,N)
@ and otherwise Wy (t) (t € [0,1]) is its piecewise linear,
continuous extension.
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Diffusion

Definition
Assume {q, € R9/n > 0} is a random trajectory. Then its
diffusively scaled variant € C[0,1] is: for N € Z,

o Wn(f)=7k (i=12...,N)
@ and otherwise Wy (t) (t € [0,1]) is its piecewise linear,
continuous extension.

Bunimovich-Sinai, 1981: Wy(t) = W(t) as N — oc.
(cf. Erdés-Kac, 1946 —> Donsker,1951 & Prokhorov, 1954)
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: Locally perturbed periodic

Lorentz process?
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Sz.-Telcs, 1981: Conv. of locally perturbed RW to Wiener, d > 2
Method: d =2

e #(of visits to origin until time t) = O(log n) < /n

@ coupling through excursions outside perturbations
(which are, of course, overwhelming!)

Dolgopyat-Sz.-Varja. 11. 2009: Convergence of locally perturbed
Lorentz to Wiener, d = 2

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T
coupling
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Dolgopyat-Sz.-Varja. |. 2008: Recurrence properties

of periodic Lorentz process

Let S, be the location of the (periodic) Lorentz particle after n

collisions.
Let m(S)=mecZ? ifS € Qnm.
The first hitting of 0-th cell

7=min{n>0:m(S,) =0} (i.e.7:Q—N)

C

There is a constant ¢ such that pio(T > n) ~ 2.
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Dolgopyat-Sz.-Varja. 1. 2008, continued

Let N,(x) = Card(k < n: m(Sk) =0).
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Assume x is distributed according to .

Then I‘;’g’;’ converges weakly to a mean 1 exponential distribution.
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Let N,(x) = Card(k < n: m(Sk) =0).

Assume x is distributed according to .

Then I‘;’g’;’ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erd6s-Taylor, 1960.
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Dolgopyat-Sz.-Varja. 1. 2008, continued

Let N,(x) = Card(k < n: m(Sk) =0).

Assume x is distributed according to .

Then I‘;g";, converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erd6s-Taylor, 1960.
The next one is analogue of that of Darling-Kac, 1957.
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Dolgopyat-Sz.-Varja. 1. 2008, continued

Let t,, denote the random variable 7(x) under the condition that x
starts from the cell m (i. e. distributed according to tim).
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Dolgopyat-Sz.-Varja. 1. 2008, continued

Let t,, denote the random variable 7(x) under the condition that x
starts from the cell m (i. e. distributed according to tim).

As |m| — oo, log t,/2 log |m| converges weakly to

§=1/U

where U is a uniform random variable on [0, 1].
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Dolgopyat-Sz.-Varja. 1. 2008, continued

Let t,, denote the random variable 7(x) under the condition that x
starts from the cell m (i. e. distributed according to tim).

As |m| — oo, log t,/2 log |m| converges weakly to

§=1/U

where U is a uniform random variable on [0, 1].

Particular case of Mittag-Leffler distribution.
In particular: t,, < |m|?
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Dvoretzky-Erd6s, Some problems on random walk in space, 2nd
Berkeley Symp. (1950)




Range of RW

E4(n) = E(# sites visited by RW during n steps)

Dvoretzky-Erd6s, Some problems on random walk in space, 2nd
Berkeley Symp. (1950)

ma(1+o(1)), d>2

Ea(n) = {Ifg"n(l +o(1)), d=2

Question 1(Sz. 2006): E(# cells visited by LP during n steps)
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°

Range of Lorentz process

F. Pene: Asymptotic of the number of obstacles visited by the
planar Lorentz process, DCDS(A), 2009

P. Nandori: Number of distinct sites visited by a RW with internal
states, PTh&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites
visited by a random walk, CPAM. (1979). (This is related to
Wiener sausage.)

Open: Lorentz sausage?



Self-intersections

Erd6s-Taylor: Some intersection properties of random walk paths,
Acta Math. Acad. Sci. Hung. (1960)

F. Pene: Self-intersections of trajectories of Lorentz process, 2013



Sz.-Varjd, 2007: As N — 0o —A_ — |/
Analogous (periodic) RW, d = 1: Prob(X; = n) ~ <%t

n

Here E(X?) = oo but E(X?) < o0 ifar < 2
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LocPertlH
°

Question: locally perturbed ocoH periodic Lorentz process?

Paulin-Sz. 2010: % =—> W also holds for the locally
perturbed RW of above (i. e. -5) type.

Néndori, 2011: Recurrence properties of heavy tailed RW.
(Moreover, # of through-crossings of the origin for the RW above
is O(n'/).)

For locally perturbed ocoH Lorentz process Question is still open.
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Prototiles of Penrose tiling




Penrose-Lorentz process

o)
c
i
o
)
L=
=)
Gl
o
o0
=
=]
)
(2]
o
b
=
o)
(a

[ EX PRI 2K T L X
D e e ) Yy
4 - N - SegVi - Seg¥ - M - «M&

= O 24
X g < EKNMWKKV

W#ﬂmﬂvjﬂ_%&wﬂ_

2y

<y
A
W

:’. .‘ »‘o o’ 25
A )
T~ ] . .AW.‘\ - W .AW.‘\'!.
Yy a0 Py ol RS
. AR L . .. .
AN, VN, o (AR
SN SN N N
,‘. .‘\ . z& . w- .Q\ . ,‘. .‘\ . ”
- - N < - N < W
8, ity FhaS, il

L XN T LT | S ¢

.. %
s e - Mg, (i, |

m«.w..vru..\»..ﬂw..v)w\.w&

NS N - Ny - =2
< N < XA U < X (a7
I U s



Penrose-Lorentz process
.

Global deviation from periodicity:

Penrose-Lorentz process

Construct a planar finite horizon Lorentz-process based on the
Penrose tiling: at each vertex of the Penrose tiling one puts
identical circular scatterers. (The tiles with their scatterers inherit
the symmetry of the Penrose tiling.) Call it a Penrose-Lorentz
process.

Conjecture, Sz., 2006: By selecting the initial phase point of the
Penrose-Lorentz process according to a probability measure
absolutely continuous wrt to the Liouville measure, the diffusively
scaled variant W)y(t) of the Penrose-Lorentz trajectory converges
weakly to a non-degenerate, rotation-invariant Wiener process.



Penrose-Lorentz process
°

Results for Penrose RW

M. Kunz, 2000: under the condition that harmonic coordinates
exist, % is asymptotically normal with zero mean and a rotation

invariant covariance matrix.

General results for RWs on graphs (Delmotte, 1999 and
Hambly-Kumagai, 2004) combined with recent observation of
Solomon, 2008 provide the asymptotic normality unconditionally
(oral communication by A. Telcs).
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