Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process

Erdős-type theorems for billiard models.

Domokos Szász (Budapest University of Technology)

ERDŐS 2².5² Budapest, July 3, 2013

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1939: P. Erdős, A. Wintner: Additive arithmetical functions and statistical independence (Prob. Number Theory)
- 1939: P. Erdős, M. Kac: On the Gaussian law of errors in the theory of additive functions (Prob. Number Theory)
- 1942: P. Erdős: On the law of the iterated logarithm (Random Walks)
- 1946: P. Erdős, M. Kac: On certain limit theorems of the theory of probability (Invariance principle)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro ○●○○○○	diffusion 00	DSzV-I-II 0000	Range	LocPertIH ○	Penrose-Lorentz process
Statist	ical phys	ics			

A main goal of statistical physics: macroscopic equations from microscopic assumptions (i. e. in classical physics: from Newtonian mechanics)

- Diffusion: convergence to Wiener process (or to Ornstein-Uhlenbeck or else) of a particle in gas or fluid
- Understanding heat conduction
- Effect of local impurities in a crystal

1905, **Einstein**: (Physicist's) Derivation of heat equation 1921, **Wiener**: mathematical model of Brownian motion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Role o	f R\// n	nodels	0000		
Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process

- Derivation of macro behavior from stochastic models is 'easier' (from deterministic ones often not done yet!)
- Ideas used at stochastic models can be used or are instructive at deterministic ones

'Simplest' deterministic models: billiards and Lorentz process

Figure: Sinai-billiard on two-torus

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

 Intro
 diffusion
 DSzV-I-II
 Range
 LocPertIH
 Penrose-Lorentz process

 ○○○●○○
 ○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○

Periodic Lorentz Process

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000					

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with \mathcal{C}^3 -smooth boundaries
- $\Omega = Q \times S_+$ is the phase space for the discrete time map T (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- μ the *T*-invariant (infinite) Liouville-measure on Ω (actually Lebesgue \otimes Lebesgue)

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000					

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with \mathcal{C}^3 -smooth boundaries
- $\Omega = Q \times S_+$ is the phase space for the discrete time map T (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- μ the *T*-invariant (infinite) Liouville-measure on Ω (actually Lebesgue \otimes Lebesgue)

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000					

Lorentz process - billiard dynamics (uniform motion + specular reflection) (Ω, T, μ)

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with \mathcal{C}^3 -smooth boundaries
- $\Omega = Q \times S_+$ is the phase space for the discrete time map T (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- μ the *T*-invariant (infinite) Liouville-measure on Ω (actually Lebesgue ⊗ Lebesgue)

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system is $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai** billiard $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (for Ω_{per} or for Ω_0) is denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$\begin{array}{cccc} {} {\scriptstyle Intro} & {\scriptstyle diffusion} & {\scriptstyle DSzV-I-II} & {\scriptstyle Range} & {\scriptstyle LocPertIH} & {\scriptstyle Penrose-Lorentz\ process} \\ {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} \end{array}$

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -periodic, then the corresponding dynamical system is $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai** billiard $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (for Ω_{per} or for Ω_0) is denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$\begin{array}{cccc} {} {\scriptstyle Intro} & {\scriptstyle diffusion} & {\scriptstyle DSzV-I-II} & {\scriptstyle Range} & {\scriptstyle LocPertIH} & {\scriptstyle Penrose-Lorentz\ process} \\ {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} \end{array} \end{array}$

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system is $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai billiard** $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (for Ω_{per} or for Ω_0) is denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

$\begin{array}{cccc} {} {\scriptstyle Intro} & {\scriptstyle diffusion} & {\scriptstyle DSzV-I-II} & {\scriptstyle Range} & {\scriptstyle LocPertIH} & {\scriptstyle Penrose-Lorentz\ process} \\ {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} \end{array}$

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system is $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai billiard** $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (for Ω_{per} or for Ω_0) is denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H)

Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

$\begin{array}{cccc} {} {\scriptstyle Intro} & {\scriptstyle diffusion} & {\scriptstyle DSzV-I-II} & {\scriptstyle Range} & {\scriptstyle LocPertIH} & {\scriptstyle Penrose-Lorentz\ process} \\ {\scriptstyle oooo} & {\scriptstyle oooo} & {\scriptstyle oooo} \end{array} \end{array}$

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system is $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai billiard** $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (for Ω_{per} or for Ω_0) is denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H) Sinai-billiard is a hyperbolic dynamical system (like geodesic on negative curvature). BUT it is singular!

Intro 000000	diffusion ●○	DSzV-I-II 0000	Range	LocPertIH ○	Penrose-Lorentz process
Diffus	sion				

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its *diffusively scaled variant* $\in C[0,1]$ is: for $N \in \mathbb{Z}_+$

- $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ $(j = 1, 2, \dots, N)$
- and otherwise W_N(t) (t ∈ [0, 1]) is its piecewise linear, continuous extension.

Bunimovich-Sinai, 1981: $W_N(t) \Longrightarrow W(t)$ as $N \to \infty$. (cf. Erdős-Kac, 1946 \Longrightarrow Donsker,1951 & Prokhorov, 1954)

Intro 000000	diffusion ●○	DSzV-I-II 0000	Range	LocPertIH ○	Penrose-Lorentz process
Diffus	sion				

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its *diffusively scaled variant* $\in C[0,1]$ is: for $N \in \mathbb{Z}_+$

- $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ $(j = 1, 2, \dots, N)$
- and otherwise W_N(t) (t ∈ [0, 1]) is its piecewise linear, continuous extension.

Bunimovich-Sinai, 1981: $W_N(t) \Longrightarrow W(t)$ as $N \to \infty$. (cf. Erdős-Kac, 1946 \Longrightarrow Donsker,1951 & Prokhorov, 1954)

Intro 000000	diffusion ●○	DSzV-I-II 0000	Range	LocPertIH ○	Penrose-Lorentz process
Diffus	sion				

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its *diffusively scaled variant* $\in C[0,1]$ is: for $N \in \mathbb{Z}_+$

- $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ $(j = 1, 2, \dots, N)$
- and otherwise W_N(t) (t ∈ [0, 1]) is its piecewise linear, continuous extension.

Bunimovich-Sinai, 1981: $W_N(t) \Longrightarrow W(t)$ as $N \to \infty$. (cf. Erdős-Kac, 1946 \Longrightarrow Donsker, 1951 & Prokhorov, 1954)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ 釣�?

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
		0000			

- $\#(\text{of visits to origin until time } t) = O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, d = 2

Sac

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
		0000			

- $\#(of \ visits \ to \ origin \ until \ time \ t) = O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, d = 2*Method:* Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
		0000			

- $\#(of \ visits \ to \ origin \ until \ time \ t) = O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, d = 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ののぐ

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
		0000			

- $\#(of \ visits \ to \ origin \ until \ time \ t) = O(\log n) \ll \sqrt{n}$
- coupling through excursions outside perturbations (which are, of course, overwhelming!)

Dolgopyat-Sz.-Varjú. II. 2009: Convergence of locally perturbed Lorentz to Wiener, d = 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ののぐ

Method: Chernov-Dolgopyat artillery (2009) adapted to Sz.-T coupling

Intro
000000DiszV-I-II
00000Range
00000LocPertIH
0Penrose-Lorentz process
00000Dolgopyat-Sz.-Varjú. I. 2008: Recurrence properties
of periodic Lorentz process

Let S_n be the location of the (periodic) Lorentz particle after n collisions.

Let $m(S) = m \in \mathbb{Z}^2$ if $S \in Q_m$.

The first hitting of 0-th cell

$$au = \min\{n > 0: m(S_n) = 0\} \ (i. e. \ au : \Omega
ightarrow \mathbb{N})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

There is a constant **c** such that $\mu_0(\tau > n) \sim \frac{\mathbf{c}}{\log n}$.

 Intro
 diffusion
 DSzV-I-II
 Range
 LocPertIH
 Penrose-Lorentz process

 Dolgopyat-Sz.-Varjú.
 I. 2008, continued

Let $N_n(x) = \operatorname{Card}(k \le n : m(S_k) = 0).$

Theorem

Assume x is distributed according to μ_0 . Then $\frac{cN_n}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let
$$N_n(x) = \operatorname{Card}(k \le n : m(S_k) = 0).$$

Theorem

Assume x is distributed according to μ_0 . Then $\frac{cN_n}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Intro
 diffusion
 DSzV-I-II
 Range
 LocPertIH
 Penrose-Lorentz process

 Dolgopyat-Sz.-Varjú.
 I. 2008, continued

Let
$$N_n(x) = \operatorname{Card}(k \le n : m(S_k) = 0).$$

Theorem

Assume x is distributed according to μ_0 . Then $\frac{cN_n}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Let
$$N_n(x) = \operatorname{Card}(k \le n : m(S_k) = 0).$$

Theorem

Assume x is distributed according to μ_0 . Then $\frac{cN_n}{\log n}$ converges weakly to a mean 1 exponential distribution.

The previous two theorems are analogues of Erdős-Taylor, 1960. The next one is analogue of that of Darling-Kac, 1957.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let t_m denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_m).

As $|m|
ightarrow \infty$, $\log t_m/2 \log |m|$ converges weakly to

 $\xi = 1/U$

where U is a uniform random variable on [0, 1].

Particular case of Mittag-Leffler distribution. In particular: $t_m \simeq |m|^2$

Let t_m denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_m).

Theorem As $|m| \to \infty$, $\log t_m/2 \log |m|$ converges weakly to $\xi = 1/U$ where U is a uniform random variable on [0, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Particular case of Mittag-Leffler distribution. In particular: $t_m \simeq |m|^2$

Let t_m denote the random variable $\tau(x)$ under the condition that x starts from the cell m (i. e. distributed according to μ_m).

Theorem $As |m| \to \infty$, $\log t_m/2 \log |m|$ converges weakly to

 $\xi=1/U$

where U is a uniform random variable on [0, 1].

Particular case of Mittag-Leffler distribution. In particular: $t_m \simeq |m|^2$

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000	00	0000	●○○○	○	
Range	of RW				

 $E_d(n) = \mathbb{E}(\# \text{ sites visited by RW during n steps})$

Dvoretzky-Erdős, Some problems on random walk in space, 2nd Berkeley Symp. (1950)

Theorem

$$\mathbf{E}_{d}(n) \asymp \begin{cases} \frac{\pi n}{\log n} (1 + o(1)), & d = 2 \\ n \gamma_{d} (1 + o(1)), & d > 2 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Question 1(Sz. 2006): $\mathbb{E}(\# \text{ cells visited by LP during n steps})$

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000	00	0000	●○○○	○	
Range	of RW				

 $E_d(n) = \mathbb{E}(\# \text{ sites visited by RW during n steps})$

Dvoretzky-Erdős, Some problems on random walk in space, 2nd Berkeley Symp. (1950)

Theorem

$$E_d(n) \asymp \begin{cases} rac{\pi n}{\log n} (1 + o(1)), & d = 2 \\ n \gamma_d (1 + o(1)), & d > 2 \end{cases}$$

Question 1(Sz. 2006): $\mathbb{E}(\# \text{ cells visited by LP during n steps})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Intro diffusion DSzV-I-II Range LocPertIH Penrose-Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009

P. Nándori: Number of distinct sites visited by a RW with internal states, PTh&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites visited by a random walk, CPAM. (1979). (This is related to Wiener sausage.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open: Lorentz sausage?

diffusion LocPertIH Intro DS₇V-I-II Range Penrose-Lorentz process 0000

Range of Lorentz process

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009 P. Nándori: Number of distinct sites visited by a RW with internal states, PTh&RF, 2011.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
			0000		
_					
Rang	e of lor	entz nroc	ess		

F. Pène: Asymptotic of the number of obstacles visited by the planar Lorentz process, DCDS(A), 2009
P. Nándori: Number of distinct sites visited by a RW with internal states, PTh&RF, 2011.

Question 2: Donsker-Varadhan, On the number of distinct sites visited by a random walk, CPAM. (1979). (This is related to Wiener sausage.)

Open: Lorentz sausage?

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
Self-in	tersectio	ns			

Erdős-Taylor: Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hung. (1960)

F. Pène: Self-intersections of trajectories of Lorentz process, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ●

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
000000	00	0000	○○○●	○	
∞H					

Intro 000000	diffusion	DSzV-I-II 0000	Range	LocPertIH ●	Penrose-Lorentz process
∞H					

Question: locally perturbed ∞H periodic Lorentz process?

Paulin-Sz. 2010: $\frac{W_N}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^3}$) type. Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, # of through-crossings of the origin for the RW above is $O(n^{1/6})$.)

For locally perturbed ∞H Lorentz process Question is still open.

Intro 000000	diffusion	DSzV-I-II 0000	Range	LocPertIH ●	Penrose-Lorentz process
∞H					

Question: locally perturbed ∞ H periodic Lorentz process? Paulin-Sz. 2010: $\frac{W_N}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^3}$) type. Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, # of through-crossings of the origin for the RW above is $O(n^{1/6})$.)

For locally perturbed ∞H Lorentz process Question is still open.

Intro 000000	diffusion	DSzV-I-II 0000	Range	LocPertIH ●	Penrose-Lorentz process
∞H					

Question: locally perturbed ∞ H periodic Lorentz process? Paulin-Sz. 2010: $\frac{W_N}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^3}$) type. Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, # of through-crossings of the origin for the RW above is $O(n^{1/6})$.)

For locally perturbed ∞H Lorentz process **Question** is still open.

Intro 000000	diffusion	DSzV-I-II 0000	Range	LocPertIH ●	Penrose-Lorentz process
∞H					

Question: locally perturbed ∞ H periodic Lorentz process? Paulin-Sz. 2010: $\frac{W_N}{\sqrt{N \log N}} \Longrightarrow W$ also holds for the locally perturbed RW of above (i. e. $\frac{c}{n^3}$) type. Nándori, 2011: Recurrence properties of heavy tailed RW. (Moreover, # of through-crossings of the origin for the RW above is $O(n^{1/6})$.)

For locally perturbed ∞H Lorentz process **Question** is still open.

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
					0000
Droto	tilos of	Donroco t	iling		

Prototiles of Penrose tiling

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
					0000
Down		af the m			

Penrose tiling of the plane

Intro diffusion DSzV-I-II Range LocPertIH Penrose-Lorentz process Global deviation from periodicity: Penrose-Lorentz process

Construct a planar finite horizon Lorentz-process based on the Penrose tiling: at each vertex of the Penrose tiling one puts identical circular scatterers. (The tiles with their scatterers inherit the symmetry of the Penrose tiling.) Call it a Penrose-Lorentz process.

Conjecture, Sz., 2006: By selecting the initial phase point of the Penrose-Lorentz process according to a probability measure absolutely continuous wrt to the Liouville measure, the diffusively scaled variant $W_N(t)$ of the Penrose-Lorentz trajectory converges weakly to a non-degenerate, rotation-invariant Wiener process.

Intro	diffusion	DSzV-I-II	Range	LocPertIH	Penrose-Lorentz process
					0000
Result	ts for Pe	enrose R\	N/		

M. Kunz, 2000: under the condition that harmonic coordinates exist, $\frac{S_n}{\sqrt{n}}$ is asymptotically normal with zero mean and a rotation invariant covariance matrix.

General results for RWs on graphs (Delmotte, 1999 and Hambly-Kumagai, 2004) combined with recent observation of Solomon, 2008 provide the asymptotic normality unconditionally (oral communication by A. Telcs).