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In what follows I am dealing with some statistical properties of integer par-
titions which are proved or inspired by Paul Erdős.

Let Π be a generic “unrestricted” partition of the positive integer n, i.e., a
representation of n as the sum of any number of positive integral parts arranged
in descending order of magnitude:

Π : λ1 + λ2 + ... + λm = n, λ1 ≥ λ2 ≥ ... ≥ λm(≥ 1),

λj’s integers, m = m(Π).

Their number p(n) has the following generating function. For z ∈ C, |z| < 1,

1 +

∞∑
n=1

p(n)zn =

∞∏
ν=1

1

1− zν
.

Moreover,

p(n) ∼ 1

4n
√

3
exp

(
2π√

6

√
n

)
according to (the simplest form of) a theorem of Hardy and Ramanujan from
1918.

[G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc.
London Math. Soc. (2) XVII (1918), 75–115.]

By the words of Turán [P. Turán, The fiftieth anniversary of Pál Erdős,
Mat. Lapok 14 (1963), 1–28 (in Hungarian); Collected Papers of Paul Turán,
Akadémiai Kiadó, Budapest, 1990, Vol. 2, 1493–1516],
“Erdős, consequently carrying through his program, here also

gauged the power of “elementary” methods: in a paper published in
the Annals of Math. in 1942 he showed that this formula — except
the factor 1

4
√

3
— lies within the range of “elementary” methods. ...

Erdős added two further interesting contributions to the partition
problem. With J. Lehner in 1941 in the Duke Journal he proved
that — like Hardy and Ramanujan found for the distribution of the
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prime factors of integers — “almost all” additive representations of
a positive integer n contain “approximately”

1
π

√
3
2

√
n log n

def
= A(n) summands.”

[P. Erdős, On an elementary proof of some asymptotic formulas in the theory of partitions,
Ann. of Math. (2) 43 (1942), 437–450; P. Erdős and J. Lehner, The distribution of the
number of summands in the partitions of a positive integer, Duke Math. J. 8 (1941), 335–
345]

Thinking of the associate (or conjugate) partitions, the same holds for the
maximal summand: If ω(n)↗∞ arbitrarily slowly then

m =

√
6

2π

√
n log n+O(

√
nω(n))

and

λ1 =

√
6

2π

√
n log n+O(

√
nω(n))

for almost all unrestricted Π’s, i.e., with the exception of o(p(n)) partitions of
n at most. Erdős and Lehner also proved that, with any real constant c,

λ1 ≤
√

6

2π

√
n log n+

√
6

π

√
n · c

for (
exp

(
−
√

6

π
e−c

)
+ o(1)

)
p(n)

unrestricted Π’s of n. [This is a doubly exponential or extreme-value distribu-
tion.] According to the result of Szekeres from 1987 the λ1-distribution and the
m-distribution are asymptotically independent in the range [0.51A(n), 2A(n)]
but there are correlations in the range [0.5A(n), A(n)1.49].

[G. Szekeres, Asymptotic distribution of partitions by number and size of parts, in: Coll.
Math. Soc. J. Bolyai, 51 (Number Theory, Budapest, 1987), 527–538]

As to the other contribution mentioned by Turán, cite again.
“Let pk(n) be the number of partitions containing exactly k sum-

mands and for a given n define k0(n) by

pk0(n) = max
k
pk(n).
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In 1946 Erdős showed that for n→∞ we have

k0(n) = A(n) +
2

π

√
3

2
log

√
6

π

√
n + o(

√
n).

Later Szekeres proved that this k0(n) is unique, namely for a fixed
(large) n, pk(n) is increasing for k ≤ k0 and decreasing later.”

[P. Erdős, On some asymptotic formulas in the theory of partitions, Bull. Amer. Math.
Soc. 52 (1946), 185–188; G. Szekeres, Some asymptotic formulae in the theory of partitions,
II, Quart. J. Math., Oxford Ser. (2) 4 (1953), 96–111]

Thus, Erdős and Szekeres proved two conjectures of Auluck, Chowla, and
Gupta.

[F. C. Auluck, S. Chowla, and H. Gupta, On the maximum value of the number of parti-
tions of n into k parts, J. Indian Math. Soc. (N. S.) 6 (1942), 105–112]

Let pA(n) be the number of partitions of n into parts taken from
the set A ⊆ N ∗, repetitions being allowed. With Bateman in 1956
in Mathematika Erdős obtained conditions for A which imply that
pA(n) is non-decreasing for large n and in Publ. Math. Debrecen
they proved the monotonicity for n ≥ 1 when A is the set of primes.

[P. T. Bateman and P. Erdős, Monotonicity of partition functions, Mathematika 3 (1956),
1–14; P. T. Bateman and P. Erdős, Partitions into primes, Publ. Math. Debrecen 4 (1956),
198–200]

In 1962 in Acta Arithmetica Erdős investigated the representa-
tion of large integers as sums of distinct summands taken from a
fixed set. The result is weaker than Cassels’s one, but the proof is
elementary.

[P. Erdős, On the representation of large integers as sums of distinct summands taken from
a fixed set, Acta Arith. 7 (1961/1962), 345–354; J.W.S. Cassels, On the representation of
integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged)
21 (1960), 111–124]

We remind to distinct summands taken from a fixed set above. At first,
consider distinct summand from N ∗.

Let Π∗ be a generic “unequal” partition of the positive integer n, i.e., a rep-
resentation of n as the sum of any number of distinct positive integral parts
arranged in descending order of magnitude:

Π∗ : µ1 + µ2 + ... + µm∗ = n, µ1 > µ2 > ... > µm∗(≥ 1),

µj’s integers, m∗ = m∗(Π∗).
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Their number q(n) has the following generating function. For z ∈ C, |z| < 1,

1 +

∞∑
n=1

q(n)zn =

∞∏
ν=1

(1 + zν).

Moreover,

q(n) ∼ 1

4n3/431/4
exp

(
π√
3

√
n

)
[G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc.

London Math. Soc. (2) XVII (1918), 75–115.]

As to the unequal partitions, Erdős and Lehner also proved that, for almost
all unequal Π∗’s, i.e., with the exception of o(q(n)) unequal partitions of n at
most,

m∗ = (1 + o(1))
2
√

3 log 2

π

√
n.

[P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of
a positive integer, Duke Math. J. 8 (1941), 335–345] After this Theorem 3.2 they stated
without proof the followings: By sharper arguments we can obtain

Theorem 3.3. The number of unequal partitions of n in which the number of
summands in a given partitions is less than

2
√

3 log 2

π

√
n + yn1/4

is given by a Gaussian integral. (As to the maximal summand, it is known that

µ1 = (1 + o(1))

√
3

π

√
n log n

for almost all unequal Π∗’s.)
In the 1960s and the early seventies Erdős and Turán developed

a statistical theory of the symmetric group Sn on n letters in a
sequence of papers.

[P. Erdős and P. Turán, On some problems of a statistical group theory,
I, Z. Wahrscheinlichkeitstheorie and verw. Gebiete 4 (1965), 175–186;
II, Acta Math. Acad. Sci. Hungar. 18 (1967), 151–163;
III, Acta Math. Acad. Sci. Hungar. 18 (1967), 309–320;
IV, Acta Math. Acad. Sci. Hungar. 19 (1968), 413–435;
V, Periodica Math. Hungar. 1 (1971), 5–13;
VI, J. Indian Math. Soc. (N. S.) 34 (1970), 175–192;
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VII, Periodica Math. Hungar. 2 (1972), 149–163]

In 1965, they proved in Part I that if ω(n)↗∞ then the group theoretical
order O(P ) of P ∈ Sn satisfies the relation

O(P ) = exp

{
1

2
log2 n + O

(
ω(n) log3/2 n

)}
for almost all elements P of Sn (i.e., with the exception of o(n!)
P ’s at most as n → ∞). The main point of the proof is that
O(P ) is “essentially” the product of the different cycle-lengths in
the canonical decomposition of P for almost all P ’s. The above
factor ω(n) cannot be omitted. Moreover, Erdős and Turán proved
in Part III that O(P ) shows a “logarithmic Gaussian distribution”.
More precisely, for any fixed real x,

lim
n→∞

1

|Sn|

∣∣∣∣{P : P ∈ Sn, logO(P ) ≤ 1

2
log2 n +

x√
3

log3/2 n

}∣∣∣∣ =

1√
2π

∫ x

−∞
exp(−t2/2)dt.

Best in 1970 and Bovey in 1980 gave new proofs for this distribu-
tion theorem. Nicolas refined the distribution theorem by improv-
ing the product approximation.

[M. R. Best, The distribution of some variables on symmetric groups, Proc. Kon. Ned.
Akad. Wetensch. A 73 (1970), 385–402 (Indag. Math. A 32 (1970), 385–402); J. D. Bovey,
An approximate probability distribution for the orders of elements of the symmetric group,
Bull. London Math. Soc. 12 (1980), 41–46; J.-L. Nicolas, Distribution statistique de l’ordre
d’un élément du groupe symétrique, Acta Math. Hungar. 45 (1985), 69–84]

In 1981, Nicolas obtained a similar distribution theorem for the
least common multiple of the degrees of the (different) irreducible
polynomials in the standard factorization of the monic polynomials
of degree n over a finite field. The corresponding product approx-
imation was proved by Mignotte and Nicolas.

[J.-L. Nicolas, A Gaussian law on Fq[X], in: Coll. Math. Soc. J. Bolyai, 34. Top-
ics in Classical Number Theory (Budapest, 1981), 1127–1162, North-Holland/Elsevier; M.
Mignotte and J.-L. Nicolas, Statistique sur Fq[X], Ann. Inst. H. Poincaré Sect. B (N. S.),
19 (1983), 113–121]



6

In 1967, Dénes, Erdős, and Turán obtained a distribution the-
orem for the orders of the elements of the alternating group An
on n letters. In 1973, Harris proved an analogous result for the
symmetric semigroup S∗n on n letters.

[J. Dénes, P. Erdős, and P. Turán, On some statistical properties of the alternating group
of degree n, L’Enseignement mathématique (2) 15 (1969), 89–99; B. Harris, The asymptotic
distribution of the order of elements in symmetric semigroups, J. Combinatorial Theory 15A
(1973), 66–74]

The mentioned sequence of papers by Erdős and Turán contains a number
of statistical results on the arithmetical structure of O(P ) for P ∈ Sn, on
the possible different values of O(P ) for P ∈ Sn, on the cardinalities of the
conjugacy classes of Sn and on the common orders of the elements in a random
conjugacy class of Sn. These results are closely connected with the statistical
theory of partitions of various type and “weightings” (think of the number of
conjugacy classes of Sn which is p(n), the number of unrestricted partitions of
n). E.g., the number of different values of O(P ) in Sn \{1} is equal to the total
number of partitions of the integers 2, 3, ..., n into powers of different primes,
i.e., the number of solution of

n ≥ qβ11 + qβ22 + ..., 2 ≤ q1 < q2 < ... (qj’s primes).

In Part IV Erdős and Turán obtained

exp

{
2π√

6

√
n

log n
+ O

(√
n log log n

log n

)}
for the above number of solutions and proved that the number of summands is

2
√

6

π
log 2

√
n

log n
+ O

(√
n log−0.73 n

)
in almost all solutions. This implies that almost all of the possible different
O(P )-values are of the form

exp

{
(1 + o(1))

√
6 log 2

π

√
n log n

}
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which is very large in comparison with the value

exp

{
1

2
log2 n+O

(
ω(n) log3/2 n

)}
and is roughly square root of Landau’s maximum exp{(1 + o(1))

√
n log n}.

[E. Landau, Über die Maximalordnung der Permutationen gegebenen Grades, Arch. Math.
Phys. (3) 5 (1903), 92–103]
Consequently, most of the different O(P )-values are “almost” as large as pos-

sible, but these values belong to “few” P ’s.
For other details and related results we refer to [P. Erdős and M. Szalay, Note to Turán’s

papers on the statistical theory of groups and partitions, in: Collected Papers of Paul Turán,
Akadémiai Kiadó, Budapest, 1990, Vol. 3, 2583–2603; E. Schmutz, Proof of a conjecture
of Erdős and Turán, J. Number Theory 31 (1989), 260–271; P. Erdős and M. Szalay, On
some problems of the statistical theory of partitions, in: Coll. Math. Soc. J. Bolyai, 51
(Number Theory, Budapest, 1987), 93–110; W. M. Y. Goh and E. Schmutz, The expected
order of a random permutation, Bull. London Math. Soc. 23 (1991), 34–42; H.-K. Hwang,
Limit theorems for the number of summands in integer partitions, J. Combin. Theory Ser.
A 96 (2001), 89–126; E. Manstavičius, The Berry–Esseen bound in the theory of random
permutations, Ramanujan J. 2 (1998), 185–199; E. Manstavičius, On random permutations
without cycles of some lengths, Periodica Math. Hungar. 42 (2001), 37–44; A. I. Pavlov,
On the Erdős–Turán theorem on the logarithm of an order for a random permutation, Dokl.
Akad. Nauk 350 (1996), 170–173 (in Russian); V. Zakharovas, Distribution of the logarithm
of the order of a random permutation, Lithuanian Math. J. 44 (2004), 296–327]

The problem

n ≥ qβ11 + qβ22 + ..., 2 ≤ q1 < q2 < ... (qj’s primes)

led to a general result when the summands are taken from a given sequence

A : 0 < a1 < a2 < ...

of integers. In 1969, Erdős and Turán proved the following general theorem by
supposing only an asymptotic requirement on the counting function

ΦA(x) =
∑
aν≤x

1.

If α and β are real constants, 0 < α ≤ 1 and

lim
x→+∞

ΦA(x)x−α logβ x = B

then in almost all solutions of

n ≥ ai1 + ai2 + ..., 1 ≤ i1 < i2 < ...
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the number of summands is

(1 + o(1))C1(α, β,B)nα/(α+1) log−β/(α+1) n (n→∞).

Note that a somewhat stronger asymptotic requirement on ΦA(x) and a not
too strong lower bound on the number of solutions yield an analogous result
for

n = ai1 + ai2 + ..., 1 ≤ i1 < i2 < ...

too. [P. Erdős and P. Turán, On some general problems in the theory of partitions, I, Acta
Arith. 18 (1971), 53–62]

A result of de Bruijn was generalized by various authors concern-
ing a periodic or almost periodic term in the asymptotic behaviour
of pA(n) when lim inf log aν

ν > 0. Erdős and Richmond proved by an
example that this may happen for sequences that satisfy aν ∼ ν
and considered an analogous phenomena for partitions into primes.
They also considered corresponding results for qA(n).

[N. G. de Bruijn, On Mahler’s partition problem, Proc. Nederl. Akad. Wetensch. 51
(1948), 659–669 (Indag. Math. 10 (1948), 210–220); P. Erdős and B. Richmond, Concerning
periodicity in the asymptotic behaviour of partition functions, J. Austral. Math. Soc. Ser.
A 21 (1976), 447–456]

In the mentioned 1942 Annals of Math. paper Erdős obtained
logarithmic asymptotic results for the number of partitions of n
into summands (resp. distinct summands) relatively prime to n.
In 1978, Erdős and Richmond obtained asymptotic formulae. [P.
Erdős and B. Richmond, On partitions of N into summands coprime to N , Aequationes
Math. 18 (1978), 178–186]

We have to mention some more uncoventional partition problems
of Erdős. For an irrational number α > 1, let aν = [να] in A and
γ = α − [α]. Erdős and Richmond obtained asymptotic formulae
for pA(n) and qA(n) for almost all γ. In 1979, Erdős and Loxton
estimated the number of partitions of n of the form n = a1 + a2 +
... + ak where a1|a2|...|ak.

[P. Erdős and B. Richmond, Partitions into summands of the form [mα], Proceedings of the
Seventh Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba,
Winnipeg, Man., 1977), Congress. Numer., XX, 371–377 (Utilitas Math., Winnipeg, Man.,
1978); P. Erdős and J. H. Loxton, Some problems in partitio numerorum, J. Austral Math.
Soc. Ser. A 27 (1979), 319–331]

We can also obtain an asymptotic formula for the number of
partitions of n into unequal parts≥ m when m ≤ n3/8−ε.
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[P. Erdős, J.-L. Nicolas, and M. Szalay, Partitions into parts which are unequal and large,
in: Number Theory (Ulm, 1987), 19–30, Lecture Notes in Math. 1380, Springer, New York,
1989]

By means of partitions, it is also shown that almost all conjugacy
classes of the alternating group An contain a pair of elements which
generate An.

[L. B. Beasley, J. L. Brenner, P. Erdős, M. Szalay, and A. G. Williamson, Generation of
alternating groups by pairs of conjugates, Periodica Math. Hungar. 18 (1987), 259–269]

J. Dénes raised the following interesting problem. What is the
number of pairs (Π1,Π2) of partitions of n which do not have equal
subsums (apart from the complete subsum n)? Also the inves-
tigation of common summands led Turán to some unexpected
phenomena. He proved that almost all pairs of partitions of n
contain (√

6

4π
− o(1)

)
√
n log n

common summands at least with multiplicity. One can imagine
that this phenomenon is perhaps caused by certain summands of
great multiplicity. This is not the “real” reason. Turán proved gen-
eralizations for k-tuples of (partitions resp.) unequal partitions of
n.

[P. Turán, On some connections between combinatorics and group theory, in: Coll. Math.
Soc . J. Bolyai, 4 (Combinatorial Theory and Its Applications, Balatonfüred, 1969), 1055–
1082; P. Turán, Combinatorics, partitions, group theory, in: Colloquio Int. s. Teorie Combi-
natorie (Roma, 3–15 settembre 1973), Roma, Accademia Nazionale dei Lincei, 1976. Tomo
II, 181–200; P. Turán, On a property of partitions, J. Number Theory 6 (1974), 405–411]

Another approach to the original problem of the subsums would be — as
Turán proposed to Erdős — the investigation of the integers which can be
represented by subsums. With Erdős we proved that the number of partitions
of n which represent all integers k of the interval [1, n] as subsum is(

1− π√
6n

+O

(
log30 n

n

))
p(n),

consequently, almost all partitions of n represent all integers of [1, n] as sub-
sums. The analogue of this assertion does not hold for unequal partitions (e.g.,
it easy to see that k = 1 cannot be represented in a positive percentage of the
unequal partitions of n) but we obtained the following weaker result of similar
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type. Let k0 be an integer with 1 ≤ k0 ≤ n/2. Then the unequal partitions of
n represent all integers k of the interval [k0, n− k0] as subsums apart from(

20
(

2/
√

3
)−k0

+O
(
n−1/10

))
q(n)

unequal partitions of n at most.
[P. Erdős and M. Szalay, On some problems of J. Dénes and P. Turán, in: Studies in Pure

Mathematics, To the Memory of Paul Turán, Akadémiai Kiadó, Budapest, 1983, 187–212]

We say that a partition Π is “practical” if it represents all the integers 1, 2, ..., n
by subsums. For the number M(n) of nonpractical partitions of n we infer the
following asymptotic relation

M(n) =

(
π√
6n

+O

(
log30 n

n

))
p(n).

In 1987, Dixmier and Nicolas obtained an asymptotic expansion
for M(n)/p(n) in terms of powers of n−1/2. In 1995, Erdős and
Nicolas proved similar results for some cases when the parts are
taken from special sets.

[J. Dixmier and J.-L. Nicolas, Partitions without small parts, in: Coll. Math. Soc. J.
Bolyai, 51 (Number Theory, Budapest, 1987), 9–33; P. Erdős and J.-L. Nicolas, On practical
partitions, Collect. Math. 46 (1995), 57–76]

Dixmier, Erdős, Nicolas, and Sárközy investigated the asymptotic
behaviour of the number of partitions of n without a given subsum.
In 1992, Erdős, Nicolas, and Sárközy solved the problem of J. Dénes
from 1967 by obtaining an asymptotic expansion for the number of
pairs of partitions of n which do not have nontrivial equal subsums:

2p(n)
(

1 + α1n
−1/2 + α2n

−1 + ... + αkn
−k/2 + O

(
n−(k+1)/2

))
.

[J. Dixmier, Sur les sous-sommes d’une partition Mém. Soc. Math. France (N. S.) 35
(1988), 70 pp. (1989); P. Erdős, J.-L. Nicolas, and A. Sárközy, On the number of partitions
of n without a given subsum, I, Discrete Math. 75 (1989), 155–166; P. Erdős, J.-L. Nicolas,
and A. Sárközy, On the number of partitions of n without a given subsum, II, in: Analytic
Number Theory (Allerton Park, IL, 1989), 205–234, Progr. Math. 85, Birkhäuser Boston,
Boston, MA, 1990; P. Erdős, J.-L. Nicolas, and A. Sárközy, On the number of pairs of
partitions of n without common subsums, Colloquium Math. 63 (1992), 61–83]
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I have to mention shortly some results concerning the distribution of sum-
mands. For log6 n ≤ k ≤

√
6

2π

√
n log n− 5

√
n log log n,

λk =
(
1 +O(log−1 n)

) √6

π

√
n log

1

1− exp
(
−πk/

√
6n
)

uniformly with the exception of O(p(n)/n) partitions of n.
[M. Szalay and P. Turán, On some problems of the statistical theory of partitions with

application to characters of the symmetric group, III, Acta Math. Acad. Sci. Hungar. 32
(1978), 129–155]
For unequal partitions one can obtain analogous estimations, roughly, instead

of √
6

π

√
n log

1

1− exp
(
−πk/

√
6n
)

with √
12

π

√
n log

1

exp
(
πk/
√

12n
)
− 1

.

However, the increasing order (with µ′k = µm∗+1−k) is more interesting. With
Erdős we proved that, for ω(n)↗∞ and ω(n) ≤ k ≤

√
n/ω(n), that µ′k ∼ 2k

for almost all unequal partitions of n.
[P. Erdős and M. Szalay, On the statistical theory of partitions, in: Coll. Math. Soc J.

Bolyai, 34 (Topics in Classical Number Theory, Budapest, 1981), 397–450]

Next, consider the graphical partition problem. A partition Π
of an even integer n is said to be graphical if there exists a graph
of m vertices with degree sequence {λ1, ..., λm}. In 1982 H. Wilf
conjectured that almost all Π are not graphical. One can use the
Erdős–Gallai conditions. Erdős and Richmond, Rousseau and Ali
obtained partial results. In 1999, Pittel confirmed Wilf’s conjec-
ture.

[P. Erdős and T. Gallai, Graphs with points of prescribed degrees (in Hungarian), Mat.
Lapok 11 (1961), 264–274; P. Erdős and L. B. Richmond, On graphical partitions, Combi-
natorica 13 (1993), 57–63; C. Rousseau and F. Ali, On a conjecture concerning graphical
partitions, Congr. Numer. 104 (1994), 150–160; B. Pittel, Confirming two conjectures about
the integer partitions, J. Combin. Theory Ser. A 88 (1999), 123–135]

Finally, consider the distribution of summands in residue classes. With Dar-
tyge and Sárközy we proved, e.g., that if ω(n) ↗ ∞, d ≤ n(1/2)−ε (ε > 0),
and

ω(n)

log n
d ≤ r ≤ d
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then, for all but p(n)/ω(n) unrestricted partitions of n,∑
k

λk ≡ r(d)

1 = (1 + o(1))

√
6n

πd
log(

√
n

d
).

The condition on r can be explained by the fact that in a “random” unrestricted
partition of n the O(1) summands occur with frequency of order of magnitude√
n. But we can drop the condition ω(n)

log nd ≤ r if we don’t count the “small”
parts: ∑

k
λk ≡ r(d)
λk > r

1 = (1 + o(1))

√
6n

πd
log(

√
n

d
)

for almost all unrestricted partitions of n.
[C. Dartyge, A. Sárközy, and M. Szalay, On the distribution of the summands of partitions

in residue classes, Acta Math. Hungar. 109 (2005), 215–237]


