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Erdős Centennial 2013, Budapest

C.L. Stewart cstewart@uwaterloo.ca On the greatest prime factor of 2n − 1



For any integer m let P(m) denote the greatest prime factor of
m with the convention that P(m) = 1 when m is 1, 0 or −1.

In 1965 Erdős conjectured that

P(2n − 1)

n
→∞ as n→∞.
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Let a and b be integers with a > b > 0. Zsigmondy in 1892 and
Birkhoff and Vandiver in 1904 proved that for n > 2

P(an − bn) ≥ n + 1, (1)

while in the special case that b = 1 the result is due to Bang in
1886.

C.L. Stewart cstewart@uwaterloo.ca On the greatest prime factor of 2n − 1



For any integer n > 0 and any pair of integers a and b, we
denote the n-th cyclotomic polynomial in a and b by Φn(a,b), so

Φn(a,b) =
n∏

j=1
(j,n)=1

(a− ζ jb),

where ζ is a primitive n-th root of unity.
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The first unconditional refinement of (1) was obtained by
Schinzel in 1962. He proved that if a and b are coprime and ab
is a square or twice a square then

P(an − bn) ≥ 2n + 1

provided that one excludes the cases n = 4,6,12 when a = 2
and b = 1.

To prove this result he appealed to an Aurifeuillian factorization
of Φn.
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In 1975 Stewart proved that if κ is a positive real number with
κ < 1/ log 2 then P(an − bn)/n tends to infinity with n provided
that n runs through those integers with at most κ log log n
distinct prime factors.

Further if p is a prime then for p sufficiently large

P(ap − bp) ≥ (1/2)p(log p)1/4.
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In 1976 Erdős and Shorey proved that there is a positive
number c such that for p sufficiently large

P(ap − bp) ≥ cp log p.

Further they proved that for almost all primes p

P(ap − bp) ≥ p(log p)2/(log log p)3.
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Let f (n) be a real valued function that tends to infinity with n.
We proved in 1977 that for almost all positive integers n

P(an − bn) ≥ n(log n)2/f (n) log log n.
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Let σ(n) denote the sum of the positive divisors of n.

Then
σ(n) = n

∑
d |n

1/d .

It is easy to show that there is a positive number c0 such that

σ(n) > c0n log log n.

for infinitely many positive integers n.
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In 1971 Erdős proved that there is a positive number c1 such
that

σ(2n − 1)/(2n − 1) < c1 log log n.

In particular ∑
d |2n−1

1/d < c1 log log n.
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In addition Erdős showed that there is a positive number c2
such that ∑

p|2n−1

1/p < log log log n + c2.

Both estimates are best possible up to determination of the
constants.
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Put
g(n) =

∑
p|2n−1

1/p.

g(n) may be arbitrarily small.In 1991 Erdős Kiss and
Pomerance showed that there are infinitely many pairs of
consecutive integers for which g(n) and g(n + 1) are both
large.They showed that for infinitely many positive integers n

min(g(n),g(n + 1)) > log log log log n.
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On the other hand they showed that there is a positive number
c3 such that

min(g(n),g(n + 1)) < c3(log log log n)2/3(log log log log n)1/3

for all sufficiently large n.
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In 2009 Ford, Luca and Shparlinski proved that the series∑
n≥1

1/P(2n − 1)

is convergent.
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In 2000 Murty and Wong showed that Erdős’ conjecture is a
consequence of the abc conjecture . They proved, subject to
the abc conjecture, that if ε is a positive real number and a and
b are integers with a > b > 0 then

P(an − bn) > n2−ε,

provided that n is sufficiently large in terms of a, b and ε.
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In 2004 Murata and Pomerance proved, subject to the
Generalized Riemann Hypothesis, that

P(2n − 1) > n4/3/ log log n (2)

for a set of positive integers n of asymptotic density 1.
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For any integer n > 0 and any pair of complex numbers α and
β, recall that the n-th cyclotomic polynomial in α and β is given
by

Φn(α, β) =
n∏

j=1
(j,n)=1

(α− ζ jβ),

where ζ is a primitive n-th root of unity.

One may check that Φn(α, β) is an integer for n > 2 if (α + β)2

and αβ are integers.
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If, in addition, (α + β)2 and αβ are coprime non-zero integers,
α/β is not a root of unity and n > 4 and n is not 6 or 12 then
P(n/(3,n)) divides Φn(α, β) to at most the first power and all
other prime factors of Φn(α, β) are congruent to 1 or −1 modulo
n.

The last assertion can be strengthened to all other prime
factors of Φn(α, β) are congruent to 1 (mod n) in the case that
α and β are coprime integers.
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Since
αn − βn =

∏
d |n

Φd (α, β), (3)

an estimate from below for P(Φn(α, β)) gives an estimate from
below for the greatest prime factor of the n-th term of a Lucas
or a Lehmer sequence and in the case that α = a and β = b
are positive integers gives an estimate from below for

P(an − bn).
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Theorem

Let α and β be complex numbers such that (α+ β)2 and αβ are
non-zero integers and α/β is not a root of unity. There exists a
positive number C, which is effectively computable in terms of
ω(αβ) and the discriminant of Q(α/β), such that for n > C,

P(Φn(α, β)) > n exp(log n/104 log log n). (4)
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This proves the conjecture of Erdős. Specifically, if a and b are
integers with a > b > 0 then

P(an − bn) > n exp(log n/104 log log n), (5)

for n sufficiently large in terms of the number of distinct prime
factors of ab.

The factor 104 which occurs on the right hand side of (5) has
no arithmetical significance.
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The proof depends upon estimates for linear forms in the
logarithms of algebraic numbers in the complex and the p-adic
case. In particular it depends upon recent work of Kunrui Yu
where improvements upon the dependence on the parameter p
in the lower bounds for linear forms in p-adic logarithms of
algebraic numbers are established.

This allows us to estimate directly the order of primes dividing
Φn(α, β). The estimates are non-trivial for small primes and,
coupled with an estimate from below for |Φn(α, β)|, they allow
us to show that we must have a large prime divisor of Φn(α, β)
since otherwise the total non-archimedean contribution from
the primes does not balance that of |Φn(α, β)|.
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For any algebraic number γ let h(γ) denote the absolute
logarithmic height of γ. In particular if a0(x − γ1) · · · (x − γd ) in
Z[x ] is the minimal polynomial of γ over Z then

h(γ) =
1
d

log a0 +
d∑

j=1

log max(1, |γj |)

 .
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Let α1, . . . , αn be non-zero algebraic numbers and put
K = Q(α1, . . . , αn) and d = [K : Q]. Let ℘ be a prime ideal of
the ring OK of algebraic integers in K lying above the prime
number p. Denote by e℘ the ramification index of ℘ and by f℘
the residue class degree of ℘. For α in K with α 6= 0 let ord℘α
be the exponent to which ℘ divides the principal fractional ideal
generated by α in K and put ord℘0 =∞. For any positive
integer m let ζm = e2πi/m and put α0 = ζ2u where ζ2u ∈ K and
ζ2u+1 6∈ K .
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Suppose that α1, . . . , αn are multiplicatively independent ℘-adic
units in K . Let α0, α1, . . . , αn be the images of α0, α1, . . . , αn
respectively under the residue class map at ℘ from the ring of
℘-adic integers in K onto the residue class field K℘ at ℘. For
any set X let |X | denote its cardinality. Let 〈α0, α1, . . . , αn〉 be
the subgroup of (K℘)× generated by α0, α1, . . . , αn.
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We define δ by

δ = 1 if [K (α
1/2
0 , α

1/2
1 , . . . , α

1/2
n ) : K ] < 2n+1

and
δ = (pf℘ − 1)/|〈α0, α1, . . . , αn〉|

if
[K (α

1/2
0 , α

1/2
1 , . . . , α

1/2
n ) : K ] = 2n+1. (6)

Denote log max(x ,e) by log∗ x .
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Lemma (K. Yu)

Let p be a prime with p ≥ 5 and let ℘ be an unramified prime
ideal of OK lying above p. Let α1, . . . , αn be multiplicatively
independent ℘-adic units. Let b1, . . . ,bn be integers, not all
zero, and put

B = max(5, |b1|, . . . , |bn|).

Then

ord℘(αb1
1 · · ·α

bn
n − 1) < Ch(α1) · · · h(αn) log B

where

C = 376(n + 1)3/2
(

7e
p − 1
p − 2

)n

dn+2 log∗ d log(e4(n + 1)d)·

max
(

pf℘

δ

(
n

f℘ log p

)n

,enf℘ log p
)
.
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The key new feature is the dependence on the parameter p in
the above estimate of Kunrui Yu.
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Thank you.
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