# Six Standard Deviations Still Suffice! 

Joel Spencer

Budapest<br>July 5, 2013

Erdős Magic:

If a random object has a positive probability of being good than a good object MUST exist

Modern Erdős Magic:

If a randomized algorithm has a positive probability of producing a good object than a good object MUST exist

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

- Fan Chung

Eliminating Outliers

## Six Standard Deviations Suffice

$$
\begin{aligned}
& S_{1}, \ldots, S_{n} \subseteq\{1, \ldots, n\} \\
& \chi:\{1, \ldots, n\} \rightarrow\{-1+1\}=\{\text { red }, \text { blue }\} \\
& \left.\chi(S):=\sum_{j \in S} \chi(j), \text { disc(S }\right)=|\chi(S)|=\mid \text { red }- \text { blue } \mid
\end{aligned}
$$

Theorem (JS/1985): There exists $\chi$

$$
\operatorname{disc}\left(\mathrm{S}_{\mathrm{i}}\right) \leq 6 \sqrt{\mathrm{n}} \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}
$$

## Six Standard Deviations Suffice

$$
\begin{aligned}
& S_{1}, \ldots, S_{n} \subseteq\{1, \ldots, n\} \\
& \chi:\{1, \ldots, n\} \rightarrow\{-1+1\}=\{\text { red }, \text { blue }\} \\
& \left.\chi(S):=\sum_{j \in S} \chi(j), \text { disc(S }\right)=|\chi(S)|=\mid \text { red }- \text { blue } \mid
\end{aligned}
$$

Theorem (JS/1985): There exists $\chi$

$$
\operatorname{disc}\left(\mathrm{S}_{\mathrm{i}}\right) \leq 6 \sqrt{\mathrm{n}} \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}
$$

Conjecture (JS/1986-2009) You can't find $\chi$ in polynomial time.

## Six Standard Deviations Suffice

$$
\begin{aligned}
& S_{1}, \ldots, S_{n} \subseteq\{1, \ldots, n\} \\
& \chi:\{1, \ldots, n\} \rightarrow\{-1+1\}=\{\text { red }, \text { blue }\} \\
& \left.\chi(S):=\sum_{j \in S} \chi(j), \text { disc(S }\right)=|\chi(S)|=\mid \text { red }- \text { blue } \mid
\end{aligned}
$$

Theorem (JS/1985): There exists $\chi$

$$
\operatorname{disc}\left(\mathrm{S}_{\mathrm{i}}\right) \leq 6 \sqrt{\mathrm{n}} \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}
$$

Conjecture (JS/1986-2009) You can't find $\chi$ in polynomial time.
Theorem (Bansal/2010): Yes I can!
Theorem (Lovett, Meka/2012): We can too!

## A Vector Formulation

$\vec{r}_{i} \in R^{n}, 1 \leq i \leq n,\left|\vec{r}_{i}\right|_{\infty} \leq 1$
Initial $\vec{z} \in[-1,+1]^{n}($ e.g.: $\vec{z}=\overrightarrow{0}$. $)$

Theorem: There exists $\vec{x} \in\{-1,+1\}^{n}$ with

$$
\left|\vec{r}_{i} \cdot(\vec{x}-\vec{z})\right| \leq K \sqrt{n}
$$

for all $1 \leq i \leq n$.

## A Vector Formulation

$\vec{r}_{i} \in R^{n}, 1 \leq i \leq n,\left|\vec{r}_{i}\right|_{\infty} \leq 1$
Initial $\vec{z} \in[-1,+1]^{n}($ e.g.: $\vec{z}=\overrightarrow{0}$. $)$

Theorem: There exists $\vec{x} \in\{-1,+1\}^{n}$ with

$$
\left|\vec{r}_{i} \cdot(\vec{x}-\vec{z})\right| \leq K \sqrt{n}
$$

for all $1 \leq i \leq n$.
$\vec{z}=\overrightarrow{0}, \vec{x}$ random. Problem: OUTLIERS!

## Phase I

Find $\vec{x} \in[-1,+1]^{n}$ with all least $\frac{n}{2}$ at $\pm 1$.
Idea: Start $\vec{x} \leftarrow \vec{z}$. Move $\vec{x}$ in a Controlled Brownian Motion.

## Phase I

Find $\vec{x} \in[-1,+1]^{n}$ with all least $\frac{n}{2}$ at $\pm 1$.
Idea: Start $\vec{x} \leftarrow \vec{z}$. Move $\vec{x}$ in a Controlled Brownian Motion.

Technical: i frozen if $\left|x_{i}\right| \geq 1-\epsilon$. Each step of distance $\delta$

## Phase I

Find $\vec{x} \in[-1,+1]^{n}$ with all least $\frac{n}{2}$ at $\pm 1$.
Idea: Start $\vec{x} \leftarrow \vec{z}$. Move $\vec{x}$ in a Controlled Brownian Motion.

Technical: i frozen if $\left|x_{i}\right| \geq 1-\epsilon$. Each step of distance $\delta$
Set $L_{j}=\left[n^{-1 / 2} \vec{r}_{j}\right] \cdot[\vec{x}-\vec{z}]$

WANT: ALL $\left|L_{j}\right| \leq K$

Space $V$ of allowable moves $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$

Space $V$ of allowable moves $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$
$i$ frozen $\Rightarrow y_{i}=0$.

Space $V$ of allowable moves $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$
$i$ frozen $\Rightarrow y_{i}=0$.
$\vec{y}$ orthogonal to current $\vec{x}$

Space $V$ of allowable moves $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$
$i$ frozen $\Rightarrow y_{i}=0$.
$\vec{y}$ orthogonal to current $\vec{x}$

KEY: $\vec{y}$ orthogonal to $\overrightarrow{r_{j}}$ for $j$ with top $\frac{n}{4}\left|L_{j}\right|$

## The Random Move

$d=\operatorname{dim}(V) \geq \frac{n}{4}-1 \sim \frac{n}{4}$.

Gaussian $\vec{g}=d^{-1 / 2}\left[n_{1} \overrightarrow{b_{1}}+\ldots+n_{d} \overrightarrow{b_{d}}\right]$, orthonormal $\overrightarrow{b_{s}}$

Move $\vec{x} \leftarrow \vec{x}+\delta \vec{g}$

## Analysis

$|\vec{x}|^{2} \leftarrow|\vec{x}|^{2}+\delta^{2}$ so $T \leq n \delta^{-2}$
$L_{j}$ moves Gaussian, Variance $\leq \delta^{2} \frac{1}{d} \leq \delta^{2} \frac{4}{n}$
Total Variance $\leq 4$. Martingale
$\operatorname{Pr}\left[\left|L_{j}\right| \geq K\right] \leq 2 e^{-K^{2} / 8} \leq 0.1$
SUCCESS: Fewer than $\frac{n}{5} j$ with $\left|L_{j}\right| \geq K$.
Positive Probability of SUCCESS

## Analysis

$|\vec{x}|^{2} \leftarrow|\vec{x}|^{2}+\delta^{2}$ so $T \leq n \delta^{-2}$
$L_{j}$ moves Gaussian, Variance $\leq \delta^{2} \frac{1}{d} \leq \delta^{2} \frac{4}{n}$
Total Variance $\leq 4$. Martingale
$\operatorname{Pr}\left[\left|L_{j}\right| \geq K\right] \leq 2 e^{-K^{2} / 8} \leq 0.1$
SUCCESS: Fewer than $\frac{n}{5} j$ with $\left|L_{j}\right| \geq K$.
Positive Probability of SUCCESS
SUCCESS implies that ALL $\left|L_{j}\right| \leq K$

## Phase $s$

$m=2^{1-s} n$. Start $\vec{z}$ with $\leq m$ coordinates frozen. End $\vec{x}$ with $\leq \frac{m}{2}$ coordinates frozen.

Effectively $\left|\vec{r}_{j}\right| \leq \sqrt{m}$

Would get $K \sqrt{m}$ but still have $n=m 2^{s-1}$ vectors.
Actually get: $K \sqrt{m} \sqrt{s}=K \sqrt{n} \sqrt{s} 2^{(1-s) / 2}$

Converges!

## Thank You!

It is six in the morning.
The house is asleep.
Nice music is playing.
I prove and conjecture.

- Paul Erdős, in letter to Vera Sós

