Six Standard Deviations Still Suffice!

Joel Spencer

Budapest July 5, 2013

Erdős Magic:

If a random object has a positive probability of being good than a good object MUST exist

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Modern Erdős Magic:

If a randomized algorithm has a positive probability of producing a good object than a good object MUST exist

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go. – Fan Chung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Eliminating Outliers

<□ > < @ > < E > < E > E - のQ @

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue}| \end{split}$$

Theorem (JS/1985): There exists χ

$$\texttt{disc}(\texttt{S}_{\texttt{i}}) \leq 6\sqrt{n} \text{ for all } \texttt{1} \leq \texttt{i} \leq \texttt{n}$$

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue} \end{split}$$

Theorem (JS/1985): There exists χ

$$disc(S_i) \le 6\sqrt{n}$$
 for all $1 \le i \le n$

Conjecture (JS/1986-2009) You can't find χ in polynomial time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue}| \end{split}$$

Theorem (JS/1985): There exists χ

$$disc(S_i) \le 6\sqrt{n}$$
 for all $1 \le i \le n$

Conjecture (JS/1986-2009) You can't find χ in polynomial time.

Theorem (Bansal/2010): Yes | can!

Theorem (Lovett, Meka/2012): We can too!

A Vector Formulation

 $\vec{r_i} \in R^n$, $1 \le i \le n$, $|\vec{r_i}|_{\infty} \le 1$

Initial $\vec{z} \in [-1,+1]^n$ (e.g.: $\vec{z} = \vec{0}$.)

Theorem: There exists $\vec{x} \in \{-1, +1\}^n$ with

$$|\vec{r}_i \cdot (\vec{x} - \vec{z})| \leq K\sqrt{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for all $1 \leq i \leq n$.

A Vector Formulation

 $\vec{r_i} \in R^n$, $1 \le i \le n$, $|\vec{r_i}|_{\infty} \le 1$

Initial $\vec{z} \in [-1,+1]^n$ (e.g.: $\vec{z} = \vec{0}$.)

Theorem: There exists $\vec{x} \in \{-1, +1\}^n$ with

$$|\vec{r_i}\cdot(\vec{x}-\vec{z})|\leq K\sqrt{n}$$

for all $1 \leq i \leq n$.

 $\vec{z} = \vec{0}, \vec{x}$ random. Problem: OUTLIERS!

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Technical: *i* frozen if $|x_i| \ge 1 - \epsilon$. Each step of distance δ

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

Technical: *i* frozen if $|x_i| \ge 1 - \epsilon$. Each step of distance δ

Set
$$L_j = [n^{-1/2} \vec{r_j}] \cdot [\vec{x} - \vec{z}]$$

WANT: ALL $|L_j| \leq K$

Space V of allowable moves $\vec{y} = (y_1, \dots, y_n)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Space V of allowable moves $\vec{y} = (y_1, \dots, y_n)$

i frozen \Rightarrow $y_i = 0$.

Space V of allowable moves $\vec{y} = (y_1, \ldots, y_n)$

i frozen \Rightarrow $y_i = 0$.

 \vec{y} orthogonal to current \vec{x}

Space V of allowable moves $\vec{y} = (y_1, \ldots, y_n)$

i frozen \Rightarrow $y_i = 0$.

 \vec{y} orthogonal to current \vec{x}

KEY: \vec{y} orthogonal to $\vec{r_j}$ for j with top $\frac{n}{4} |L_j|$

The Random Move

$$d = \dim(V) \ge \frac{n}{4} - 1 \sim \frac{n}{4}.$$

Gaussian $\vec{g} = d^{-1/2}[n_1\vec{b_1} + \ldots + n_d\vec{b_d}]$, orthonormal $\vec{b_s}$
Move $\vec{x} \leftarrow \vec{x} + \delta \vec{g}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Analysis

$$ert ec{x} ert^2 \leftarrow ec{x} ert^2 + \delta^2$$
 so $T \leq n \delta^{-2}$

 L_j moves Gaussian, Variance $\leq \delta^2 \frac{1}{d} \leq \delta^2 \frac{4}{n}$

Total Variance \leq 4. Martingale

 $\Pr[|L_j| \ge K] \le 2e^{-K^2/8} \le 0.1$

SUCCESS: Fewer than $\frac{n}{5}j$ with $|L_j| \ge K$.

Positive Probability of SUCCESS

Analysis

$$ert ec{x} ert^2 \leftarrow ec{x} ert^2 + \delta^2$$
 so $T \leq n \delta^{-2}$

 L_j moves Gaussian, Variance $\leq \delta^2 \frac{1}{d} \leq \delta^2 \frac{4}{n}$

Total Variance \leq 4. Martingale

 $\Pr[|L_j| \ge K] \le 2e^{-K^2/8} \le 0.1$

SUCCESS: Fewer than $\frac{n}{5}j$ with $|L_j| \ge K$.

Positive Probability of SUCCESS

SUCCESS implies that $ALL |L_j| \leq K$

Phase s

 $m = 2^{1-s}n$. Start \vec{z} with $\leq m$ coordinates frozen. End \vec{x} with $\leq \frac{m}{2}$ coordinates frozen.

Effectively $|\vec{r_j}| \leq \sqrt{m}$

Would get $K\sqrt{m}$ but still have $n = m2^{s-1}$ vectors.

Actually get: $K\sqrt{m}\sqrt{s} = K\sqrt{n}\sqrt{s}2^{(1-s)/2}$

Converges!

Thank You!

It is six in the morning. The house is asleep. Nice music is playing. I prove and conjecture. – Paul Erdős, in letter to Vera Sós

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで