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The Sum-Product Problem

A conjecture of Erdős and Szemerédi states that if A is a finite
set of integers then the sum-set or the product-set should be
large. The sum-set of A

A + A = {a + b|a,b ∈ A},

and the product set are defined in a similar way,

A · A = {ab|a,b ∈ A}.

Erdős and Szemerédi conjectured that the sum-set or the
product set is almost quadratic in the size of A, i.e.

max(|A + A|, |A · A|) ≥ c|A|2−δ

for any positive δ.





The real case

max{|A + A|, |AA|} ≥ |A|1+δ

In a series of papers various lower bounds were find.
I δ ≥ 1/31 Nathanson (1996),
I δ ≥ 1/15 Ford (1997),
I δ ≥ 1/4 Elekes (1998),
I δ ≥ 3/11 S. (2003), and δ ≥ 1/3 S. (2009).

The last three bonds were proved for finite sets of real numbers.
For complex numbers δ ≥ 3/11 was proved by Tardos and S.
(2007) and δ ≥ 1/3 by Konyagin and Rudnev (2013).



The finite field case, Fp.

Bourgain, Katz, and Tao proved a nontrivial, |A|1+ε, lower
bound for the finite field case in 2004. Let A ⊂ Fp and
pα ≤ |A| ≤ p1−α. Then there is an ε > 0 depending on α only,
such that

max(|A + A|, |A · A|) ≥ c|A|1+ε.

(Konyagin showed that the lower bound, pα ≤ |A|, is not
needed.)
It is important that p is prime, otherwise one could select A
being a subring in which case both the product set and the sum
set are small, equal to |A|.



Effective bounds

There are good sum-product estimates for the case, |A| � p1/2.
(Iosevich, Hart, and S. (2006), Garaev (2007), Granville and
S.(2008)).

It follows from a construction by Ruzsa, that Garaev’s bound is
asymptotically the best possible for the range |A| ≥ p2/3.

Garaev’s proof uses bounds on exponential sums. We are
going to derive similar sum-product estimates using spectral
bounds for graphs.



The Sum-Product graph

The vertex set of the sum-product graph GSP is the Cartesian
product of the multiplicative subgroup and the field,

V (GSP) = F∗p × Fp.

Two vertices,

vi = (a,b), vj = (c,d) ∈ V (GSP),

are connected by and edge,

(vi , vj) ∈ E(GSP),

iff
ac = b + d .



The Sum-Product graph

The adjacency matrix of GSP - denoted by M - is symmetric, so
all p(p − 1) eigenvalues are real, we can order them,

µ0 ≥ µ1 ≥ . . . ≥ µp2−p−1.

The second largest eigenvalue, λ, is defined as

λ = max(µ1, |µp2−p−1|).

We are looking for a good upper bound on λ.



The Sum-Product graph

For any two vertices, vi = (a,b) and vj = (c,d) ∈ V (GSP), if
a 6= c and b 6= d , then the vertices have exactly one common
neighbor, N(vi , vj) = (x , y) ∈ V (GSP).

The unique solution of the system

ax = b + y
cx = d + y

is given by
x = (b − d)(a− c)−1

2y = x(a + c)− b − d .

If a = c or b = d , then the vertices, vi , vj , have no common
neighbors.



The Sum-Product graph

M2 = J + (p − 2)I − E ,

where J is the all-one matrix, I is the identity matrix, and E is
the ”error matrix”, the adjacency matrix of the graph, GE , where
for any two vertices, vi = (a,b) and vj = (c,d) ∈ V (GSP),
(vi , vj) ∈ E(GE) iff a = c or b = d .



M =



0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0





M2 =



4 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

0 4 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1

0 0 4 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1

0 0 0 4 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1

0 0 0 0 4 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 4 0 0 0 0 0 1 1 1 1 0 1 1 1 1

1 0 1 1 1 0 4 0 0 0 1 0 1 1 1 1 0 1 1 1

1 1 0 1 1 0 0 4 0 0 1 1 0 1 1 1 1 0 1 1

1 1 1 0 1 0 0 0 4 0 1 1 1 0 1 1 1 1 0 1

1 1 1 1 0 0 0 0 0 4 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 0 1 1 1 1 4 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 0 1 1 1 0 4 0 0 0 1 0 1 1 1

1 1 0 1 1 1 1 0 1 1 0 0 4 0 0 1 1 0 1 1

1 1 1 0 1 1 1 1 0 1 0 0 0 4 0 1 1 1 0 1

1 1 1 1 0 1 1 1 1 0 0 0 0 0 4 1 1 1 1 0

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 4 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 4 0 0 0

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 4 0 0

1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 4 0

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 4





E =



0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0





M2 = J + (p − 2)I − E ,

Multiply both sides of the matrix equation above by −→vλ.

(λ2 − p + 2)−→vλ = E−→vλ.

E is a 2p − 3-regular graph, so any eigenvalue of E has
magnitude at most 2p − 3.

|λ2 − p + 2| ≤ 2p − 3,

λ <
√

3p.



The discrepancy bound

S,T ⊂ V (GSP),∣∣∣∣e(S,T )− (p − 1)|S||T |
p2

∣∣∣∣ ≤ λ√|S||T |,
where e(S,T ) is the number of edges between S and T .

e(S,T ) ≤ |S||T |
p

+
√

3p|S||T |.

Set S = (AA)× (−A) and T = (A−1)× (A + A).
There is an edge between any two vertices (ab,−c) ∈ S and
(b−1,a + c) ∈ T , therefore the number of edges between S and
T is at least |A|3/2.



|A|3 ≤ e(S,T ) ≤ |S||T |
p

+
√

3p|S||T | =

=
|AA||A + A||A|2

p
+
√

3p|AA||A + A||A|2.

After rearranging the inequality we get the desired sum-product
bound.

|A + A||AA| ≥ min
{

p|A|, |A|
4

3p

}
.

In particular, if |A| ≈ p2/3, then max{|AA|, |A + A|} � |A|5/4.



Integers
One can consider the natural numbers instead of finite fields,

V (GSP) = N× N.

Two vertices,

vi = (a,b), vj = (c,d) ∈ V (GSP),

are connected by and edge,

(vi , vj) ∈ E(GSP),

iff
ac = b + d .

Based on the previous arguments we are interested about the
maximum possible number of edges between two vertex sets.
Spectral bounds or similar discrepancy techniques won’t work
here.



Here is a closely related problem;
Among n integers what is the maximum number of solutions for

xy = s + t?

The Elekes-type incidence bound works here – one can
recover his n5/4 bound – however much better bounds should
hold here.



The real case.

The best known bound is the following.

Theorem
Let A be a finite set of positive real numbers. Then

|AA||A + A|2 ≥ |A|4

4dlog |A|e
.

The inequality is sharp - up to the power of the log term in the
denominator - when A is the set of the first n natural numbers.

Corollary
Let A be a finite set of positive real numbers. Then

max{|A + A|, |AA|} ≥ |A|4/3

2dlog |A|e1/3 .



Multiplicative Energy

We are going to use the notation of multiplicative energy. The
name of this quantity comes from a paper of Tao, however its
discrete version was used earlier.

Let A be a finite set of reals. The multiplicative energy of A,
denoted by E(A), is given by

E(A) = |{(a,b, c,d) ∈ A4| ∃λ ∈ R : (a,b) = (λc, λd)}|.

In the notatation of Gowers, the quantity E(A) counts the
number of quadruples in log A. (additive energy)



Bounding the multiplicative energy

We will prove the following:

Let A be a finite set of positive real numbers. Then

E(A)
dlog |A|e

≤ 4|A + A|2.

The main theorem then follows from via the Cauchy-Schwartz
type inequality

E(A) ≥ |A|
4

|AA|
.



Proof

Another way of counting E(A) is the following:

E(A) =
∑

x∈A/A

|xA ∩ A|2. (1)

The summands on the right hand side can be partitioned into
dlog |A|e classes according to the size of xA ∩ A.

E(A) =
dlog |A|e∑

i=0

∑
x

2i≤|xA∩A|<2i+1

|xA ∩ A|2

There is an index, I, that

E(A)
dlog |A|e

≤
∑

x
2I≤|xA∩A|<2I+1

|xA ∩ A|2



Proof contd.

Let D = {s : 2I ≤ |sA ∩ A| < 2I+1}, and let s1 < s2 < . . . < sm
denote the elements of D, labeled in increasing order.

E(A)
dlog |A|e

≤
∑

x
2I≤|xA∩A|<2I+1

|xA ∩ A|2 < m22I+2. (2)

Each line lj : y = sjx , where 1 ≤ j ≤ m, is incident to at least 2I

and less than 2I+1 points of A× A.



Proof contd.

lm+1 lm

l1

lj+1

lk

lk+1

lj

a1 A

A



Proof contd.

The sums are elements of (A + A)× (A + A), so we have the
following inequality.

m22I ≤

∣∣∣∣∣
m⋃

i=1

(li ∩ A× A) + (li+1 ∩ A× A)

∣∣∣∣∣ ≤ |A + A|2.

The inequality above with inequality (2) proves the lemma.



Remark

Let A and B be finite sets of reals. The multiplicative energy,
E(A,B), is given by

E(A,B) = |{(a,b, c,d) ∈ A×B×A×B| ∃λ ∈ R : (a,b) = (λc, λd)}|.

In the proof of the lemma we did not use the fact that A = B,
the proof works for the asymmetric case as well. Suppose that
|A| ≥ |B|. With the lower bound on the multiplicative energy

E(A,B) ≥ |A|
2|B|2

|AB|
our proof gives the more general inequality

|A|2|B|2

|AB|
≤ 4dlog |B|e|A + A||B + B|.



More summands

We prove here a generalization of our bound for k -fold
sumsets. For any integer k ≥ 2 the k -fold subset of A, denoted
by kA is the set

kA = {a1 + a2 + . . .+ ak |a1, . . . ,ak ∈ A}.

Theorem
For any integer k ≥ 2 there is a function δ = δk (ε) that if
|AA| ≤ |A|1+ε then |kA| ≥ |A|2−1/k−δ, where δ → 0 if ε→ 0.



Proof

We can suppose that A has only positive elements WLOG.

Let
|AA| ≤ |A|1+ε.

By a Plünnecke type inequality we have

|A/A| ≤ |A|1+2ε.

Consider the k -fold Cartesian product A× A× . . .× A, denoted
by ×kA. It can be covered by no more than |A/A|k−1 lines going
through the origin.





Let H denotes the set of lines through the origin containing at
least |A|1−2ε(k−1)/2 points of ×kA.

With this selection, the lines in H cover at least half of the
points in ×kA, since

|A|1−2ε(k−1)

2
|A/A|k−1 =

|A|k

2|A|(1+2ε)(k−1) |A/A|
k−1 ≤ |A|

k

2
.

As no line has more than |A| points common with ×kA,
therefore |H| ≥ |A|k−1/2.



The set of lines, H, represents a set of points, P, in the
projective real space RPk−1. Point set P has full dimension
k − 1 as it has a nice symmetry.

The symmetry follows from the Cartesian product structure; if a
point with coordinates (a1, . . . ,ak ) is in P then the point
(σ(a1), . . . , σ(ak )) is also in P for any permutation σ ∈ Sk . Let
us triangulate P.

By triangulation we mean a decomposition of the convex hull of
P into non-degenarate, k − 1 dimensional, simplices such that
the intersection of any two is the empty set or a face of both
simplices and the vertex set of the triangulation is P.



Let τ(P) be a triangulation of P. We say that k lines
l1, . . . , lk ∈ H form a simplex if the corresponding points in P are
vertices of a simplex of the triangulation.

We use the following notation for this: {l1, . . . , lk} ∈ τ(P). In the
two-dimensional case we used that the sumsets of points on
consecutive lines are disjoint.

Here we are using that the interiors of the simplices are disjoint,
therefore sumsets of lines of simplices are also disjoint.



Note that we assumed that A is positive, so we are considering
convex combinations of vectors with positive coefficients. Let
{l1, . . . , lk} ∈ τ(P) and {l ′1, . . . , l ′k} ∈ τ(P) are two distinct
simplices. Then(

k∑
i=1

li ∩ ×kA

)⋂(
k∑

i=1

l ′i ∩ ×
kA

)
= ∅.

Also, since the k vectors parallel to the lines {l1, . . . , lk} ∈ τ(P)
are linearly independent, all sums are distinct,∣∣∣∣∣

k∑
i=1

li ∩ ×kA

∣∣∣∣∣ =
k∏

i=1

∣∣∣li ∩ ×kA
∣∣∣ .



|kA|k ≥
∑

{l1,...,lk}∈τ(P)

∣∣∣∣∣
k∑

i=1

li ∩ ×kA

∣∣∣∣∣ ≥ |A|k−1

2k

k∏
i=1

∣∣∣li ∩ ×kA
∣∣∣ .

Every line is is incident to at least |A|1−2ε(k−1)/2 points of ×kA,
therefore

|kA|k ≥ |A|
k−1+k(1−2ε(k−1))

2k2k =
|A|2k−1−2k(k−1)ε

k2k+1 .

Taking the k -th root of both sides we get the result we wanted
to show

|kA| ≥ ck |A|2−1/k−2(k−1)ε.


	Sum-Product

