Applications and extensions of a theorem of Gallai

Gábor Simonyi
Rényi Institute, Budapest

In a seminal paper about comparability graphs Gallai proved the following results.

Theorem (Gallai 1967): If the edges of the complete graph $\boldsymbol{K}_{\boldsymbol{n}}$ are colored so that no triangle gets $\mathbf{3}$ different colors, then at most 2 colors span a connected graph on the \boldsymbol{n} vertices.

To honour this result we call an edge-coloring a Gallai-coloring if no triangle gets $\mathbf{3}$ different colors.

The above Theorem easily implies the following statement.
Corollary (Gallai 1967): A Gallai-colored complete graph can always be obtained from a 2-edge-colored complete graph by substituting Gallai-colored complete graphs into its vertices.

Statements expressible in terms of Gallai-colorings

Thm. (Gallai 1967): If a complete graph is Gallai-colored with 3 colors and each of two colors span comparability graphs then so does their union.

Inspired by this result the following theorem was proved.
Thm. (K. Cameron, Edmonds, Lovász 1986): If a complete graph is Gallai-colored and all but one of the colors give perfect graphs, then so does the last color (or equivalently, by the Perfect Graph Theorem: their union).

Thm. (Erdős, Simonovits, T. Sós 1973): If $\boldsymbol{K}_{\boldsymbol{n}}$ is Gallaicolored, then at most $\boldsymbol{n} \mathbf{- 1}$ colors can be used.

This result was originally stated in different terms and had a very elegant proof that was independent of Gallai's theorem.
(Assume for contradiction that at least \boldsymbol{n} colors appear. Select an edge of each color. You have at least \boldsymbol{n} edges on \boldsymbol{n} vertices, so there is a cycle which is totally multicolored. Diagonals give shorter multicolored cycles, finally a multicolored triangle.)

But one can also easily prove the statement by using Gallai's theorem and induction on \boldsymbol{n}.

Graph entropy

Körner defined graph entropy in 1971 as the solution of a problem in information theory. A later found short definition is this:

$$
H(G, P):=\min _{\left(a_{1}, \ldots, a_{n}\right) \in V P(G)} \sum_{i=1}^{n} p_{i} \log \frac{1}{a_{i}}
$$

where \boldsymbol{G} is a graph on \boldsymbol{n} vertices, $\boldsymbol{P}=\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}\right)$ is a probability distribution on its vertex set, and $\operatorname{VP}(G)$ is the vertex packing polytope of G.

The vertex packing polytope is the set of points in \mathbb{R}^{n} that can be expressed as convex combinations of characteristic vectors of stable sets.

In particular,

$$
\begin{aligned}
H\left(K_{n}, P\right)= & \min _{\left(q_{1}, \ldots, q_{n}\right) \in V P\left(K_{n}\right)} \sum_{i=1}^{n} p_{i} \log \frac{1}{q_{i}}= \\
& \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}=H(P)
\end{aligned}
$$

the Shannon entropy of the probability distribution \boldsymbol{P}.

Subadditivity and additivity

An important property of $\boldsymbol{H}(\boldsymbol{G}, \boldsymbol{P})$ is its sub-additivity:
$\boldsymbol{H}(\boldsymbol{F} \cup \boldsymbol{G}, \boldsymbol{P}) \leq \boldsymbol{H}(\boldsymbol{F}, \boldsymbol{P})+\boldsymbol{H}(\boldsymbol{G}, \boldsymbol{P})$, where $\boldsymbol{V}(\boldsymbol{F})=$ $V(G)=V(F \cup G)$ and $E(F \cup G)=E(F) \cup E(G)$.

Thm. (Csiszár, Körner, Lovász, Marton, S. 1990)

$$
\forall P: \quad H(G, P)+H(\bar{G}, P)=H(P)
$$

iff G is perfect.

Q: What about equality for general (not necessarily complementary) \boldsymbol{F} and \boldsymbol{G} ?

Thm. (Körner, S., Tuza 1992): Let \boldsymbol{F} and \boldsymbol{G} be two edgedisjoint graphs on the same vertex set \boldsymbol{V}. We have

$$
\forall P: \quad H(F \cup G, P)=H(F, P)+H(G, P)
$$

iff the following two conditions are satisfied:

1. If on some $\boldsymbol{U} \subseteq \boldsymbol{V}$ all edges belong to $\boldsymbol{F} \cup \boldsymbol{G}$, then the induced subgraphs $\boldsymbol{F}[\boldsymbol{U}]$ and $G[\boldsymbol{U}]$ are perfect.
2. Considering the edges of $\boldsymbol{F}, \boldsymbol{G}$ and the rest as a $\mathbf{3}$-edge coloring, we get a Gallai-coloring.

Thm. (Körner, S. 2000): Let \boldsymbol{F} and \boldsymbol{G} be two graphs with possibly intersecting edge sets on the same vertex set \boldsymbol{V}. Assume that $\boldsymbol{F} \cup \boldsymbol{G}=\boldsymbol{K}_{|V|}$. Then
$\forall P: H(F \cup G, P)+\boldsymbol{H}(F \cap G, P) \leq \boldsymbol{H}(F, P)+\boldsymbol{H}(G, P)$
holds iff coloring the edges according to their membership in $\boldsymbol{F}-\boldsymbol{G}, \boldsymbol{G}-\boldsymbol{F}$, and $\boldsymbol{F} \cap \boldsymbol{G}$ gives a Gallai-coloring.

Remark: The proof of both of the last two theorems rely on Gallai's theorem, that makes an inductive proof possible and very natural.

Gallai-colorings generalize 2-colorings

Thm. (Burr, unpublished): Any 2-coloring of a complete graph contains a monochromatic spanning broom.
(Broom: a path with a star on one of its endpoints.)
The Gallai-colored version is the following:
Thm. (Gyárfás, S. 2004): A Gallai-colored complete graph always contains a monochromatic spanning broom.

The proof uses Burr's ideas and Gallai's theorem.

Thm. (Erdős, Fowler 1999): A 2-edge-colored complete graph on \boldsymbol{n} vertices always contains a monochromatic subgraph of diameter at most 2 with at least $\lceil 3 n / 4\rceil$ vertices.

Thm. (Gyárfás, G. Sárközy, Sebő, Selkow 2010): A Gallaicolored complete graph on \boldsymbol{n} vertices always contains a monochromatic subgraph of diameter at most 2 with at least $\lceil 3 n / 4\rceil$ vertices.

The GySSS paper cited above gives conditions that make it automatic to obtain the Gallai-colored version of a theorem for 2-colorings. These cover several cases but not all of them.

Gallai-colorings of non-complete graphs

It is natural to start exploring properties of Gallai-colored graphs that are not necessarily complete, but are edge-colored so, that no tricolored triangle occurs.

Such investigations were initiated by Gyárfás and G. Sárközy, who proved the following result.

Thm. (Gyárfás, G. Sárközy 2010): Let G be a Gallai-colored graph with independence number $\boldsymbol{\alpha}$. Then \boldsymbol{G} contains a monochromatic component of size at least $\frac{|V(G)|}{\alpha^{2}+\alpha-1}$.

For $\boldsymbol{G}=\boldsymbol{K}_{\boldsymbol{n}}$ we get that $\mathbf{1}$ color class spans the whole vertex set. For 2 -colorings this is a well-known and easy exercise.

Another result in this direction is the following.
Thm. (Gyárfás, S., Á. Tóth 2012): Let G be a Gallai-colored graph with independence number $\boldsymbol{\alpha}$. Then there is a function $\boldsymbol{g}: \mathbb{N} \rightarrow \mathbb{N}$ such that the vertices of G can be covered by $\boldsymbol{g}(\boldsymbol{\alpha})$ monochromatic components. If $\boldsymbol{\alpha}=\mathbf{2}$ then at most $\mathbf{5}$ components are enough.

Note that for $\boldsymbol{\alpha}=\mathbf{2}$ the last statement generalizes (the $\boldsymbol{\alpha}=\mathbf{2}$ special case of) the previous theorem.

A further generalization is the following.
Thm. (Fujita, Furuya, Gyárfás, Á. Tóth 2012): Let G be a Gallai-colored graph with independence number $\boldsymbol{\alpha}$. Then there is a function $\boldsymbol{g}: \mathbb{N} \rightarrow \mathbb{N}$ such that the vertices of G can be partitioned into $\boldsymbol{g}(\boldsymbol{\alpha})$ monochromatic components.

The point is that just eliminating the intersections in a covering (that exists by the previous theorem) may disconnect some of the so far monochromatic components. So this last theorem is stronger than the previous one.

Gallai-Ramsey numbers

Let $\mathrm{RG}(\boldsymbol{r}, \boldsymbol{H})$ denote the minimum m such that in every Gallai-colored \boldsymbol{K}_{m} with r colors, a monochromatic copy of \boldsymbol{H} occurs.

A sample theorem:
Thm. (Gyárfás, G. Sárközy, Sebő, Selkow 2010):
For fixed $\boldsymbol{H}, \operatorname{RG}(\boldsymbol{r}, \boldsymbol{H})$ is exponential in \boldsymbol{r} if \boldsymbol{H} is not bipartite; linear in \boldsymbol{r} if \boldsymbol{H} is bipartite but not a star; and constant (independent of \boldsymbol{r}) if \boldsymbol{H} is a star.

Open problems

One of the most interesting open problems seems to be this:
Give necessary an sufficient conditions for a true statement about 2-edge-colored complete graphs to be "automatically" true for Gallai-colored complete graphs.

Another problem is the missing cases of properties of graph entropy. In particular, when is it true for all prob. dist. \boldsymbol{P} that

$$
H(F \cup G, P)+H(F \cap G, P) \leq H(F, P)+H(G, P) ?
$$

