Distribution of Points
 on Varieties over Finite Fields

Igor Shparlinski
University of New South Wales

İntroduction

Set-up and motivation

Let \mathbb{F}_{p} be a finite field of p elements, where p is prime.

Given m polynomials $f_{j} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}\right]$ in n variables we are interested in the distribution of

1. points on the variety

$$
f_{j}\left(x_{1}, \ldots, x_{n}\right)=0, \quad j=1, \ldots, m
$$

2. points of polynomial values

$$
\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Question 2 is a special case of Question 1 if one considers the $(m+n)$-dimensional variety

$$
f_{j}\left(x_{1}, \ldots, x_{n}\right)-y_{j}=0, \quad j=1, \ldots, m
$$

3
We represent \mathbb{F}_{p} by the set $\{0, \ldots, p-1\}$.
So we can investigate the distribution of points in boxes

$$
\mathfrak{B}=\left[u_{1}+1, u_{1}+h_{1}\right] \times \ldots \times\left[u_{s}+1, u_{s}+h_{s}\right]
$$

and cubes

$$
\mathfrak{C}=\left[u_{1}+1, u_{1}+h\right] \times \ldots \times\left[u_{s}+1, u_{s}+h\right],
$$

where

- $s=n$ for the boxes containing the values of variables: (Q.1);
- $s=m$ or $s=m+n$ for the boxes containing the values of polynomials and also of variables (Q.2).

4

The classical approach is via algebraic geometry methods of Weil and Deligne:

Fouvry, Fouvry \& Katz, Luo, Shparlinski \& Skorobogatov

A natural threshold is $h_{i} \geq p^{1 / 2}$.

In almost all known results the threshold is substantially higher, e.g. $h_{i} \geq p^{3 / 4}$ or even higher.

Here we concentrate on some interesting special cases when one can go beyond the $p^{1 / 2}$-threshold.

Why is this possible?

There are tools and methods that go beyond the algebraic geometry threshold of \sqrt{p} :

- The bound of Burgess (1962) of character sums and its recent generalisation to mixed character sums due to Chang (2010)
- The bound of Ayyad, Cochrane \& Zheng (1996) on the 4th moment of short character sums
- The bound of Vinogradov of exponential sums with polynomials and its recent improvement due to Wooley (2012)
- Methods of additive combinatorics usually apply to very thin sets
- Since we work over \mathbb{F}_{p} whose elements can be lifted to \mathbb{Z}, we can sometimes switch from congruences to equations.

6
Sacrifices we are willing to make
We consider only some special varieties, usually with some multiplicative structure to enable us to use multiplicative character sums.

In many cases we

- obtain results only for cubes \mathfrak{C}
- this is enough for many applications and also for studying the distribution of solutions in arbitrary convex domains: Kerr (2012) combined such results with some ideas of Schmidt (1975)
- obtain upper bounds instead of asymptotic formulas

Additional gains

- Using multiplicative characters enables us to use the large sieve and obtain stronger results for almost all primes.

For example, sometimes one can use the bound of Heath-Brown (1995) on the mean value of real character sums

- Bounds of exponential sums rapidly lose their strength when one consider composite moduli, while bounds of character sums very often remain the same:

Burgess (1962) bound (for cube-free moduli) Pólya-Vinogradov (1916) bound
Ayyad, Cochrane \& Zheng (1996) is replaced by the bound of Friedlander \& Iwaniec (1985)

8
 Examples

Hyperbolas:

$$
x_{1} \ldots x_{n} \equiv \lambda \quad(\bmod p)
$$

Links to numerous number theoretic problems.

Markoff-Hurwitz hypersurface:

$$
x_{1}^{2}+\ldots+x_{n}^{2} \equiv x_{1} \ldots x_{n} \quad(\bmod p)
$$

Dwork hypersurface:

$$
x_{1}^{n}+\ldots+x_{n}^{n} \equiv x_{1} \ldots x_{n} \quad(\bmod p)
$$

which is an example of a Calabi-Yau variety.

Both can be generalised as

$$
f_{1}\left(x_{1}\right)+\ldots+f_{n}\left(x_{n}\right) \equiv x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} \quad(\bmod p)
$$

with some polynomials $f_{i} \in \mathbb{F}_{p}[X]$ and integers k_{i}, $i=1, \ldots, n$.

9

Erdős-Graham equation:

$$
\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}} \equiv \lambda \quad(\bmod p)
$$

Plane curves:

$$
f(x, y) \equiv 0 \quad(\bmod p)
$$

and in particular values of univariate polynomials:

$$
f(x) \equiv y \quad(\bmod p)
$$

Weierstraß equations of isomorphic elliptic curves

$$
\left(a x^{4}, b x^{6}\right)
$$

A similar question can be, and has been, also asked for hyperelliptic curves.

10
Hyperbolas

Large boxes

Let $J_{n}(\lambda ; \mathfrak{B})$ be the number of solutions of the congruence

$$
x_{1} \ldots x_{n} \equiv \lambda \quad(\bmod p), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{B}
$$

We always assume $\lambda \not \equiv 0(\bmod p)$.

Bounds of multidimensional Kloosterman sums:

$$
J_{n}(\lambda ; \mathfrak{B})=\frac{h_{1} \ldots h_{n}}{p}+O\left(p^{n / 2+o(1)}\right)
$$

Fouvry \& Katz (2001) if $\mathfrak{B}=\mathfrak{C}$ then

$$
J_{n}(\lambda ; \mathfrak{C})=\frac{h^{n}}{p}+O\left(p^{(n-1) / 2+o(1)}+h^{n-1} p^{-1 / 2+o(1)}\right)
$$

This is nontrivial for $h \geq p^{1 / 2+1 / 2 n+o(1)}$.

11

Shparlinski (2007): with multiplicative characters we can do better.

Theorem 1 For $n=3$,

$$
\begin{aligned}
J_{3}(\lambda ; \mathfrak{B})= & \frac{h_{1} h_{2} h_{3}}{p} \\
& \quad+O\left(\left(h_{1} h_{2} h_{3}\right)^{\alpha_{\nu}} p^{\beta_{\nu}+o(1)}\right)
\end{aligned}
$$

holds with $\nu=1,2, \ldots$, where

$$
\alpha_{\nu}=\frac{2 \nu-1}{3 \nu} \quad \text { and } \quad \beta_{r}=\frac{\nu+1}{4 \nu^{2}} .
$$

12

Theorem 2 For $n \geq 4$,

$$
\begin{aligned}
J_{n}(\lambda ; \mathfrak{B})= & \frac{h_{1} \ldots h_{n}}{p} \\
& \quad+O\left(\left(h_{1} \ldots h_{n}\right)^{\alpha_{n, \nu}} p^{\beta_{n, \nu}+o(1)}\right)
\end{aligned}
$$

holds with $\nu=1,2, \ldots$, where
$\alpha_{n, \nu}=1-\frac{n+2 \nu-4}{n \nu} \quad$ and $\quad \beta_{n, \nu}=\frac{(n-4)(\nu+1)}{4 \nu^{2}}$.

If $\mathfrak{B}=\mathfrak{C}$ then taking $\nu=\left\lceil n^{1 / 2}\right\rceil$ this is nontrivial for $h \geq p^{1 / 4+\varepsilon}$ provided that n is large enough.

13

Sketch of the proof

Express $J_{n}(\lambda ; \mathfrak{B})$ via sums of multiplicative characters χ modulo p

$$
\begin{aligned}
J_{n}(\lambda ; \mathfrak{B}) & =\sum_{x_{i}=u_{i}+1}^{u_{i}+h_{i}} \frac{1}{p-1} \sum_{\chi} \chi\left(\lambda^{-1} \prod_{i=1}^{n} x_{i}\right) \\
& =\frac{1}{p-1} \sum_{\chi} \prod_{i=1}^{n} \sum_{x_{i}=u_{i}+1}^{u_{i}+h_{i}} \chi\left(x_{i}\right) .
\end{aligned}
$$

- The main term comes from the principal character χ_{0} and is equal to $M=h_{1} \ldots h_{n} /(p-1)$.
- The error term, after the change of summation becomes

$$
\begin{aligned}
E & \leq \frac{1}{p-1} \sum_{\chi \neq \chi_{0}} \prod_{i=1}^{n}\left|\sum_{x_{i}=u_{i}+1}^{u_{i}+h_{i}} \chi\left(x_{i}\right)\right| \\
& \leq \frac{1}{p-1}\left(\prod_{i=1}^{n} \sum_{\chi \neq \chi_{0}}\left|\sum_{x_{i}=u_{i}+1}^{u_{i}+h_{i}} \chi\left(x_{i}\right)\right|^{n}\right)^{1 / n} .
\end{aligned}
$$

14

For sums

$$
\sum_{\chi \neq \chi_{0}}\left|\sum_{x=u+1}^{u+h} \chi\left(x_{i}\right)\right|^{n}
$$

use the Burgess bound

$$
\left|\sum_{x=u+1}^{u+h} \chi\left(x_{i}\right)\right| \leq h^{1-1 / \nu} p^{(\nu+1) / 4 \nu^{2}+o(1)}
$$

for $(n-4)$ times and then the bound of Ayyad, Cochrane \& Zheng (1996) on the 4th moment

$$
\sum_{\chi \neq \chi_{0}}\left|\sum_{x=u+1}^{u+h} \chi\left(x_{i}\right)\right|^{4} \leq h^{2} p^{1+o(1)}
$$

15
 Applications

Smooth values of shifted monomial products:

Fouvry \& Shparlinski (2011):

For positive integers a_{1}, \ldots, a_{n} and any $\varepsilon>0$ there is a positive proportion of vectors $\left(m_{1}, \ldots m_{n}\right)$ so that

$$
F=m_{1}^{a_{1}} \ldots m_{n}^{a_{n}}-1
$$

is $F^{1-n / 2 d+\varepsilon_{-} \text {smooth. }}$
This improves on $F^{1-2 / d+2 / d(n+1)+\varepsilon}$-smoothness of Fouvry (2010).

16

Small boxes

The following result of Bourgain, Garaev, Konyagin \& Shparlinski (2012):

Theorem 3 Let $n \geq 2$ be a fixed integer, $\lambda \not \equiv 0$ $(\bmod p)$. Assume that for some sufficiently large positive integer h and prime p we have

$$
h<p^{1 /\left(n^{2}-1\right)} .
$$

Then

$$
J_{n}(\lambda ; \mathfrak{C})=\exp \left(O\left(\frac{\log h}{\log \log h}\right)\right)
$$

In the case $n u=4$ this solves an open problem of Cilleruelo \& Garaev (2010).

17
Sketch of the proof
Express $J_{n}(\lambda ; \mathfrak{C})$ via characters as before and use the Hölder inequality to reduce everything to $u_{1}=$ $\ldots=u_{n}=u$.

If
$\left(u+x_{1}\right) \ldots\left(u+x_{n}\right) \equiv \lambda \quad(\bmod p), \quad 1 \leq x_{1}, \ldots, x_{n} \leq h$ has many solutions then there are many polynomials with not so large coefficients with a common root u modulo p.

18

Use the Dirichlet principle to conclude that there are two pairs of such polynomials
$\left(U+y_{j, 1}\right) \ldots\left(U+y_{j, n}\right) \quad$ and $\quad\left(U+z_{j, 1}\right) \ldots\left(U+z_{j, n}\right)$,
for which
$P_{j}(U)=\left(U+y_{j, 1}\right) \ldots\left(U+y_{j, n}\right)-\left(U+z_{j, 1}\right) \ldots\left(U+z_{j, n}\right)$, where $j=1,2$

- are nonzero co-prime polynomials over \mathbb{Z}
- have small coefficients.

Estimate [very carefully!] the resultant $R=\operatorname{Res}\left(P_{1}, P_{2}\right)$ which satisfies

$$
R \neq 0 \quad \text { and } \quad R \equiv 0 \quad(\bmod p)
$$

and obtain a contradiction.

Warning: The argument is actually more subtle.

19
Modifications

- In the symmetric case with $n \geq 3$

$$
x_{1} \ldots x_{n} \equiv y_{1} \ldots y_{n} \quad(\bmod p)
$$

with $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathfrak{C}$ one can take

$$
h<p^{1 / e_{n}}
$$

with

$$
e_{n}=\max \left\{n^{2}-2 n-2, n^{2}-3 n+4\right\}
$$

If $n=2$, Ayyad, Cochrane \& Zheng (1996) give an optimal result.

- For almost all primes p one can get a nontrivial bound for any h

20

Applications

Points on exponential curves: Improvements of bounds of Chan \& Shparlinski (2010) and Cilleruelo \& Garaev (2011) for

$$
x \equiv a g^{z} \quad(\bmod p), \quad 1 \leq x \leq h, 1 \leq z \leq H .
$$

Double character sum estimates: Improvements of bounds of Friedlander \& Iwaniec on sums

$$
\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \chi(a+b)
$$

E.g. if $\mathcal{A} \subseteq[M, M+A], A \leq p^{1 / 2}$ and $\# \mathcal{A}>p^{9 / 20+\varepsilon}$ for some $\varepsilon>0$, then for some $\delta>0$ we have

$$
\sum_{a_{1}, a_{2} \in \mathcal{A}} \chi\left(a_{1}+a_{2}\right) \ll(\# \mathcal{A})^{2} p^{-\delta} .
$$

21
Character sums with the divisor function: Improvements of bounds of Karatsuba (2000) on sums

$$
S_{a}(N)=\sum_{1 \leq n \leq N} \tau(n) \chi(a+n)
$$

Shifted power testing: Given $t \in \mathbb{F}_{p}$ and a blackbox that for every $x \in \mathbb{F}_{p}$ outputs $(x+s)^{e}$ for some hidden $s \in \mathbb{F}_{p}$ and known $e \mid p-1$ decide whether $s=t$.

W2 22 eierstraß equations

Preliminaries

Let
$E_{a, b}: \quad Y^{2}=X^{3}+a X+b, \quad a, b \in \mathbb{F}_{p}, 4 a^{3}+27 b^{2} \neq 0$.
Two curves $E_{a, b}$ and $E_{r, s}$ are isomorphic iff

$$
a x^{4} \equiv r \quad(\bmod p) \quad \text { and } \quad b x^{6} \equiv s \quad(\bmod p)
$$

for some $x \in \mathbb{F}_{p}^{*}$.
Fouvry \& Murty (1996): What is the number $T_{a, b, p}(\mathfrak{B})$ of curves
$E_{r, s}: \quad(r, s) \in \mathfrak{B}=[R+1, R+K] \times[S+1, S+L]$ that are isomorphic to a given curve $E_{a, b}$? Motivation: Lang-Trotter conjecture

23

Banks \& Shparlinski (2009): Same question "on average" over $(a, b) \in \mathbb{F}_{p}^{2}$ and primes $p \leq Q$. Motivation: Sato-Tate conjecture

Both questions are about the joint distribution of values of two very simple polynomials

$$
a X^{4} \quad \text { and } \quad b X^{6}
$$

in boxes.

24

Large boxes

Fouvry \& Marty (1996)— used exponential sums Weill bound: for any $(a, b) \in \mathbb{F}_{p}^{2}$,
$T_{a, b, p}(\mathfrak{B}) \sim \frac{K L}{p}, \quad$ if $K L \geq p^{3 / 2+\varepsilon}, \min \{K, L\} \geq p^{1 / 2+\varepsilon}$.

Banks \& Shparlinski (2009) - used character sums Burgess bound: for almost all $(a, b) \in \mathbb{F}_{p}^{2}$,
$T_{a, b, p}(\mathfrak{B}) \sim \frac{K L}{p}, \quad$ if $K L \geq p^{1+\varepsilon}, \min \{K, L\} \geq p^{1 / 4+\varepsilon}$
and
$T_{a, b, p}(\mathfrak{B}) \gg \frac{K L}{p}, \quad$ if $K L \geq p^{1+\varepsilon}, \min \{K, L\} \geq p^{1 / 4 e^{1 / 2}+\varepsilon}$.

Furthermore, together with Large Sieve, for almost all primes p and $(a, b) \in \mathbb{F}_{p}^{2}$,

$$
T_{a, b, p}(\mathfrak{B}) \sim \frac{K L}{p}, \quad \text { if } K L \geq p^{1+\varepsilon}, \min \{K, L\} \geq p^{\varepsilon} .
$$

25

Small boxes

Observation: $E_{a, b} \cong E_{r, s} \Longrightarrow r^{3} b^{2} \equiv a^{3} s^{2}(\bmod p)$. Let's estimate

$$
N_{\lambda, p}(\mathfrak{B})=\#\left\{r^{3} \equiv \lambda s^{2} \quad(\bmod p):(r, s) \in \mathfrak{B}\right\}
$$

For $f \in \mathbb{Z}[X]$ we define:

$$
I_{f}(\mathfrak{B})=\#\left\{f(r) \equiv s^{2} \quad(\bmod p):(r, s) \in \mathfrak{B}\right\}
$$

Cilleruelo, Garaev, Ostafe \& Shparlinski (2010); Cilleruelo, Shparlinski \& Zumalacárregui (2012); Chang, Cilleruelo, Garaev, Hernández, Shparlinski \& Zumalacárregui (2012): For
$\mathfrak{C}=[R+1, R+M] \times[S+1, S+M] \quad$ and $\quad \operatorname{deg} f=3$
we have

$$
I_{f}(\mathfrak{C})<M^{1+o(1)} \begin{cases}M^{-2 / 3} & \text { if } M<p^{1 / 8}, \\ \left(M^{4} / p\right)^{1 / 6} & \text { if } p^{1 / 8} \leq M<p^{5 / 23}, \\ \left(M^{3} / p\right)^{1 / 16} & \text { if } p^{5 / 23} \leq M<p^{1 / 3} .\end{cases}
$$

26

The proof uses Bombieri-Pila bound and some ideas from additive combinatorics

For $M \geq p^{1 / 2}$ exponential sums give a nontrivial bound.

Unfortunately we have no nontrivial estimate for $p^{1 / 3}<M<p^{1 / 2}$

Warning: Splitting \mathfrak{C} into smaller squares does not work as the number of squares grows quadratically.

27

Remarks:

- For higher degree polynomials other methods work, e.g. Vinogradov's Mean Value Theorem, Wooley (2012).
- Similar (and somewhat stronger) results also hold for

$$
J_{f}(\mathfrak{C})=\#\{f(r) \equiv s \quad(\bmod p):(r, s) \in \mathfrak{C}\}
$$

- Similar results also hold for Weierstraß equations of hyperelliptic curves.

28

Applications

Diameter of orbits of polynomial dynamical systems: Given a polynomial $f \in \mathbb{F}_{p}[X]$, show that a partial orbit $x_{k}=f\left(x_{k-1}\right), k=1, \ldots, N$, starting from some $x_{0} \in \mathbb{F}_{p}$, can not be contained inside of a short interval.

Visible points on curves: Given a plane curve $f(x, y) \equiv$ $0(\bmod p)$, count the number of visible points, that is, points with $\operatorname{gcd}(x, y)=1$.

29

Erdős-Graham Equation

Initial interval

Erdős-Graham (1980): Is it true that for any $\varepsilon>0$ there exists $k(\varepsilon)$ such that any λ can be represented as

$$
\frac{1}{x_{1}}+\ldots+\frac{1}{x_{k(\varepsilon)}} \equiv \lambda \quad(\bmod p)
$$

with $1 \leq x_{1}, \ldots, x_{k(\varepsilon)} \leq p^{\varepsilon}$?
Shparlinski (2002): True with $k(\varepsilon)=O\left(\varepsilon^{-3}\right)$; using bounds of bilinear sums with inverses $u^{-1} v^{-1}$. Glibichuk (2006): True with $k(\varepsilon)=O\left(\varepsilon^{-2}\right)$; using methods of additive combinatorics.
Croot (2004): Generalisation to $\sum 1 / x_{i}^{m}$; using methods of additive combinatorics.
Bourgain (2007): Generalisation to simultaneous $\sum 1 / x_{i}^{m}$; using methods of additive combinatorics.

30
Idea

Let us take two expressions

$$
\sum_{i=1}^{k} 1 / x_{i}^{m} \quad \text { and } \quad \sum_{j=1}^{\ell} 1 / y_{j}^{m}
$$

Their sum and product are of the same type.
\Downarrow
Using the Sum-Product Theorem of Bourgain, Katz \& Tao (2004), one can create a large (of cardinality at least $p^{0.500001}$) set of such sums.

After this exponential sums finish the job.

Warning: The argument is actually more subtle as the size of the terms also grows, while they must be up to p^{ε}.

31

Arbitrary intervals

Bourgain \& Garaev (2012):

A variety of bounds on the number of solutions to

$$
\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}} \equiv \lambda \quad(\bmod p), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{C}
$$

and on the cardinality of

$$
\left\{\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}}:\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{C}\right\}
$$

Generalised Erdős-Graham Problem:
Is it true that for any $\varepsilon>0$ there exists $\ell(\varepsilon)$ such that for any u, an arbitrary λ can be represented as

$$
\frac{1}{x_{1}}+\ldots+\frac{1}{x_{\ell(\varepsilon)}} \equiv \lambda \quad(\bmod p)
$$

with $u+1 \leq x_{1}, \ldots, x_{\ell(\varepsilon)} \leq u+p^{\varepsilon}$?
The case of $\varepsilon=1 / 2$ is already hard.

32
Multiplicative Analogue

Points in small subgroups

Instead of distribution of points with components in short intervals, one can consider points with components in small subgroups of \mathbb{F}_{q}^{*}.

Poonen's Conjecture, Informally

Conjecture 4 Under certain natural conditions, any point $\left(x_{1}, \ldots, x_{n}\right)$ on a variety \mathcal{V} over \mathbb{F}_{q} contains a component of multiplicative order at least q^{c}, where $c>0$ depends only on some invariants of \mathcal{V} (e.g., the dimension).

33
Voloch (2007, 2010): Some results for plane curves (quantitatively much weaker).

Chang, Kerr, Shparlinski, Zannier (2013)
Theorem 5 Assume that an absolutely irreducible over \mathbb{C} variety $\mathcal{V} \subseteq \mathbb{C}^{n}$ is defined over \mathbb{Q}. Also assume that \mathcal{V} does not contain a monomial curve:

$$
X^{r} Y^{s}-1 \quad \text { and } \quad X^{r}-Y^{s}
$$

Then there is a constant $C(\mathcal{V})$, depending only on \mathcal{V} such that for any $\varepsilon>0$, for almost all primes p, for all but at most $C(\mathcal{V})$ points $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{V}_{p}$ on the reduction $\mathcal{V}_{p} \subseteq \overline{\mathbb{F}}_{p}^{n}$ of \mathcal{V} modulo p, we have

$$
\max \left\{\operatorname{ord} x_{1}, \ldots, \operatorname{ord} x_{n}\right\} \geq p^{1 / 2 n-\varepsilon}
$$

Amongst other tools, the proof uses an effective form of Hilbert's Nullstellensatz

