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Introduction

Set-up and motivation

Let Fp be a finite field of p elements, where p is
prime.

Given m polynomials f; € Fp[X1,...,Xn] in n vari-
ables we are interested in the distribution of

1. points on the variety

fj(:cl,...,a;n)zo, j=1,...,m;
2. points of polynomial values

(fl(xlv"wwn)?'"7fm($17"'7wn))'

Question 2 is a special case of Question 1 if one
considers the (m + n)-dimensional variety

fi(z1,...,zn) —y; =0, jF=1,...,m.
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We represent Fy, by the set {0,...,p— 1}.

So we can investigate the distribution of points in
boxes

B=[u;+1,u1 +hi] x...x[us+ 1,us + hs]

and cubes

C=[u1+1,u1 +h] x...x[us+ 1,us + h],

where

e s = n for the boxes containing the values of
variables: (Q.1);

e s—=m Or s = m + n for the boxes containing
the values of polynomials and also of variables

(Q.2).



The classical approach is via algebraic geometry
methods of Weil and Deligne:

Fouvry, Fouvry & Katz, Luo, Shparlinski & Sko-
robogatov

A natural threshold is h; > pl/2.

In almost all known results the threshold is sub-
stantially higher, e.g. h; > p3/4 or even higher.

Here we concentrate on some interesting special
cases when one can go beyond the pl/2-threshold.




Why is this possible?

There are tools and methods that go beyond the
algebraic geometry threshold of ,/p:

e The bound of Burgess (1962) of character sums
and its recent generalisation to mixed charac-
ter sums due to Chang (2010)

e The bound of Ayyad, Cochrane & Zheng (1996)
on the 4th moment of short character sums

e [ he bound of Vinogradov of exponential sums
with polynomials and its recent improvement
due to Wooley (2012)

e Methods of additive combinatorics usually ap-
ply to very thin sets

e Since we work over [, whose elements can
be lifted to Z, we can sometimes switch from
congruences to equations.




§)
Sacrifices we are willing to make

We consider only some special varieties, usually
with some multiplicative structure to enable us to
use multiplicative character sums.

In many cases we

e Obtain results only for cubes ¢

— this is enough for many applications and
also for studying the distribution of solu-
tions in arbitrary convex domains: Kerr (2012)
combined such results with some ideas of
Schmidt (1975)

e Obtain upper bounds instead of asymptotic formulas




.
Additional gains

e Using multiplicative characters enables us to
use the large sieve and obtain stronger results
for almost all primes.

For example, sometimes one can use the bound
of Heath-Brown (1995) on the mean value of
real character sums

e Bounds of exponential sums rapidly lose their
strength when one consider composite mod-
uli, while bounds of character sums very often
remain the same:

Burgess (1962) bound (for cube-free moduli)
Polya—Vinogradov (1916) bound

Ayyad, Cochrane & Zheng (1996) is replaced
by the bound of Friedlander & Iwaniec (1985)
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Examples

Hyperbolas:

x1...en =X (mod p)

Links to numerous number theoretic problems.

Markoff-Hurwitz hypersurface:

:c%—l—...—I—:c?%E:cl...azn (mod p)

Dwork hypersurface:

i+ ...+ x, =x1...2n, (mMod p)

which is an example of a Calabi-Yau variety.

Both can be generalised as

fi(@1) + .. fulzn) =251 2k (mod p)

with some polynomials f; € Fp[X] and integers k;,

1=1,...,n.



Erdbs-Graham equation:

1 1
— =+ ...+4—=X (mod p)

CC]_ In

Plane curves:

f(z,y) =0 (mod p)

and in particular values of univariate polynomials:

f(x) =y (mod p)

WeierstralB equations of isomorphic elliptic curves

(az®, bx®)

A similar question can be, and has been, also asked
for hyperelliptic curves.
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Hyperbolas

Large boxes

Let Jo(X\;B) be the number of solutions of the
congruence

x1...en =X (mod p), (x1,...,zn) €DB

We always assume XA Z 0 (mod p).

Bounds of multidimensional Kloosterman sums:

Tn(X: B) = hi...hn 1+ O(pn/2Fo()
p

Fouvry & Katz (2001) if 28 = ¢ then
Jn(X\; €) = h" i O(p(n—l)/2+o(1) + hn—lp—l/Q—l—o(l))
p

This is nontrivial for h > pt/2+1/2n+o(1)



11

Shparlinski (2007): with multiplicative characters
we can do better.

Theorem 1 Forn =3,
hihoh3

p

+O0 ((h1h2h3)a” pﬂ”+0(1)>
holds with v =1,2,..., where

2v — 1 v+ 1
and = .
3v Br 412

J3(\;B) =

oy —
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Theorem 2 Forn > 4,

hi...h
Jp(\;B) =17

+ O ((ha ... hp)on pPrwtoll))
holds with v =1,2,..., where
n+2v—4 (n—4)(r+1)

Oéfn,,y = 1— and Bn,y — 41/2
nv

If B = ¢ then taking v = [nl/ﬂ this is nontrivial
for h > pl/4te provided that n is large enough.
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Sketch of the proof

Express Jn(A;B) via sums of multiplicative char-
acters xy modulo p

u;+h;
B =Y zx<xlnxz>
—uz—l—l
u;+h;

—Z H Z x (z;) -

X i=1 py=utl

e [ he main term comes from the principal char-
acter xg and is equal to M = hq...hn/(p — 1).

e [ he error term, after the change of summation

becomes
1 n | u;ith;
E<—— > 1| X x@)
p x7#xo0 =1 |z;=u;+1
wit-h n\ 1/n
(H ol DD x(x) ) :
=1 x7#xo0 |z;=u;+1
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For sums
u-+t+nh n
Dl Y x(xy)
X7X0 |[r=u+1

use the Burgess bound

u-+h

> x (=)

r=u-+1
for (n — 4) times and then the bound of Ayyad,
Cochrane & Zheng (1996) on the 4th moment

4

< hl—l/Vp(V—l—l)/4V2+O(l)

u-+h
S Y x(a)| < hZpited)
X7X0 [z=u+1
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Applications

Smooth values of shifted monomial products:

Fouvry & Shparlinski (2011):

For positive integers a1,...,an and any € > 0 there
is a positive proportion of vectors (mq,...mpn) SO
that

F=mil...mi —1

is p1—n/2d+e_smooth.

This improves on F1—=2/d+2/d(n+1)+e_gmoothness
of Fouvry (2010).
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Small boxes

The following result of Bourgain, Garaev, Konya-
gin & Shparlinski (2012):

Theorem 3 Let n > 2 be a fixed integer, A\ % 0
(mod p). Assume that for some sufficiently large
positive integer h and prime p we have

h < pl/(nQ—l).

T hen

(A €)= exp (O (loﬁg h)) |

In the case nu = 4 this solves an open problem of
Cilleruelo & Garaev (2010).
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Sketch of the proof

Express J,(\; €) via characters as before and use
the Holder inequality to reduce everything to u; =

e — Un — Uu.

If

(utz1)...(utzn) =X (Modp), 1<xq,...,2n<h

has many solutions then there are many polynomi-
als with not so large coefficients with a common
root v modulo p.
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Use the Dirichlet principle to conclude that there

are two pairs of such polynomials

(U+yj1) - (Uty;n) and (U+z1) .. (Utzjn),

for which

PiU) = (Uy;1) - - (Uyjn) ~(Utz5,0) - (U+2;0),

where 3 = 1,2

e are nonzero co-prime polynomials over Z

e have small coefficients.

Estimate [very carefully!] the resultant R = Res(Py, P»)
which satisfies

R#0 and R=0 (mod p)

and obtain a contradiction.

Warning: The argument is actually more subtle.
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Modifications

e In the symmetric case with n > 3

T1...Tn=vy1...yn (mMod p),
with (z1,...,2zn), (y1,...,yn) € € One can take
h < pl/en
with
en = Max{n? — 2n — 2,n° — 3n + 4}.

If n = 2, Ayyad, Cochrane & Zheng (1996)
give an optimal result.

e For almost all primes p one can get a nontrivial
bound for any h
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Applications

Points on exponential curves: Improvements of bounds
of Chan & Shparlinski (2010) and Cilleruelo &
Garaev (2011) for

r=ag° (modp), 1<x<h 1<z<H.

Double character sum estimates: Improvements of
bounds of Friedlander & Iwaniec on sums

> > x(a+b)
acAbeB

E.g. if AC[M,M+A], A<pl/2and #A > p9/20+¢
for some € > 0, then for some § > 0 we have

> x(a1+a2) < (#A)p~°.

al,CLQE.A
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Character sums with the divisor function: Improve-
ments of bounds of Karatsuba (2000) on sums

Sa(N) = >, 7(n)x(a+n).

1<n<N

Shifted power testing: Given t € Fp and a black-
box that for every x € F, outputs (x+ s)€ for some
hidden s € F, and known e | p — 1 decide whether

s =1.
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Welerstrald equations

Preliminaries
Let
E,p: Y?=X34aX 3 2

a,b - = aX—+b, a,beTFp 4a°4+27b° # 0.
Two curves E,;, and Ey s are isomorphic iff

az* =r (mod p) and bz® = s (mod p)

for some x € ]F;;.

Fouvry & Murty (1996): What is the number
Ty pp(B) of curves

Ers: (rs)e®B=[R+1,R4+K]x[S+1,5+ L]

that are isomorphic to a given curve E ;7 Moti-
vation: Lang-Trotter conjecture
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Banks & Shparlinski (2009): Same question “on
average” over (a,b) € F5 and primes p < Q. Moti-
vation: Sato-Tate conjecture

Both questions are about the joint distribution of
values of two very simple polynomials

aXxX? and bX©

in boxes.
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Large boxes

Fouvry & Murty (1996)— used exponential sums
Weil bound: for any (a,b) € F2,

KL
Topp(B) ~ =, if KL>p>?T¢ min{K, L} > pl/2T¢,
1) p

Banks & Shparlinski (2009) — used character sums
Burgess bound: for almost all (a,b) € F2,

KL
Ta bp(%) ~ if KL Z p1+87 min{K) L} Z p1/4+8
Y p

and

KL
Topp(B)>——, ifKL>p'te min{K,L} > pl/4et/?+e,
2 p

Furthermore, together with Large Sieve, for al-
most all primes p and (a,b) € F2,

KL
Topp(B) ~——, if KL>p'te min{K,L} > p°.
9 p
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Small boxes

Observation: E,j £ Ers = r3b? = a3s? (mod p).
Let’'s estimate

Ny ,(B) = #{r3=Xs° (modp) : (r,s) € B}
For f € Z[X] we define:

1;(B) = #{f(r) =s* (modp) : (r,s) € B}.

Cilleruelo, Garaev, Ostafe & Shparlinski (2010);
Cilleruelo, Shparlinski & Zumalacarregui (2012);
Chang, Cilleruelo, Garaev, Hernandez, Shparlinski
& Zumalacarregui (2012): For

¢ = [R+1, R+M]x[S+1, S+ M] and deg f = 3

we have
( M—2/3 it M < pl/8,

If(Qi) < Mlto(1) (M4/p)1/6 i p1/8 <M <p5/23’
\ (M3/p)1/16 i p5/23 <M <101/3.
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The proof uses Bombieri-Pila bound and some
ideas from additive combinatorics

For M > pl/2 exponential sums give a nontrivial
bound.

Unfortunately we have no nontrivial estimate for

Warning: Splitting € into smaller squares does
not work as the number of squares grows quadrat-
ically.
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Remarks:

e For higher degree polynomials other methods
work, e.g. Vinogradov’'s Mean Value Theorem,
Wooley (2012).

e Similar (and somewhat stronger) results also
hold for

Jp(€) = #{f(r)=s (modp) : (r,s) €}

e Similar results also hold for Weierstral3 equa-
tions of hyperelliptic curves.
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Applications

Diameter of orbits of polynomial dynamical systems:
Given a polynomial f € Fy[X], show that a partial
orbit zp = f(xp_1), kK = 1,...,N, starting from
some zg € Fp, can not be contained inside of a
short interval.

Visible points on curves: Given a plane curve f(x,y) =
O (mod p), count the number of visible points,
that is, points with gcd(z,y) = 1.
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ErdO0s-Graham Equation

Initial interval

Erdbs-Graham (1980): Is it true that for any e > 0
there exists k(e) such that any A can be repre-
sented as

1 1
— 4+ ...+
L1 CBk(&.)

with 1 < TLseeor Th(e) S p=7?

=) (mod p)

Shparlinski (2002): True with k(e) = O(¢~3); us-
ing bounds of bilinear sums with inverses v~ 1v—1.
Glibichuk (2006): True with k(¢) = O(¢~2); using
methods of additive combinatorics.

Croot (2004): Generalisation to > 1/z!*; using
methods of additive combinatorics.

Bourgain (2007): Generalisation to simultaneous
> 1/z™; using methods of additive combinatorics.

/L 7
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Idea

et us take two expressions

.

/
1/yi"
=1

k
> 1/z]" and
1=1

Their sum and product are of the same type.

U

Using the Sum-Product Theorem of Bourgain, Katz
& Tao (2004), one can create a large (of cardi-
nality at least p©0-500001) set of such sums.

After this exponential sums finish the job.

Warning: The argument is actually more subtle
as the size of the terms also grows, while they
must be up to p°.
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Arbitrary intervals

Bourgain & Garaev (2012):

A variety of bounds on the number of solutions to

L+ 2=) (modp), (a1,....z) €C,

1 In

and on the cardinality of

1 1
(e e

ml In

Generalised Erdb6s-Graham Problem:

Is it true that for any € > 0 there exists £(e) such
that for any w, an arbitrary A can be represented
as

1 1
— 4 ...+
L1 xg(g)

with u—l—lgxl,...,azg(s)gu—l—pe?

=) (mod p)

The case of e = 1/2 is already hard.
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Multiplicative Analogue

Points in small subgroups

Instead of distribution of points with components
in short intervals, one can consider points with
components in small subgroups of IF;.

Poonen’s Conjecture, Informally

Conjecture 4 Under certain natural conditions, any
point (x1,...,zn) On a variety ¥V over F, contains
a component of multiplicative order at least qF,
where ¢ > 0 depends only on some invariants of V
(e.g., the dimension).
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Voloch (2007, 2010): Some results for plane curves
(quantitatively much weaker).

Chang, Kerr, Shparlinski, Zannier (2013)

Theorem 5 Assume that an absolutely irreducible
over C variety V C C" js defined over Q. Also
assume that )V does not contain a monomial curve:

X"y —1 and X'—Y*®

Then there is a constant C(V), depending only on
V such that for any € > 0, for almost all primes p,
for all but at most C(V) points (xz1,...,zn) € Vp
on the reduction Vp C FZ of YV modulo p, we have

max{ordzy,...,ordz,} > pt/2"—¢.

Amongst other tools, the proof uses an effective
form of Hilbert’'s Nullstellensatz




