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Introduction

Set-up and motivation

Let Fp be a finite field of p elements, where p is

prime.

Given m polynomials fj ∈ Fp[X1, . . . , Xn] in n vari-

ables we are interested in the distribution of

1. points on the variety

fj(x1, . . . , xn) = 0, j = 1, . . . ,m;

2. points of polynomial values

(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

Question 2 is a special case of Question 1 if one

considers the (m+ n)-dimensional variety

fj(x1, . . . , xn)− yj = 0, j = 1, . . . ,m.
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We represent Fp by the set {0, . . . , p− 1}.

So we can investigate the distribution of points in

boxes

B = [u1 + 1, u1 + h1]× . . .× [us + 1, us + hs]

and cubes

C = [u1 + 1, u1 + h]× . . .× [us + 1, us + h],

where

• s = n for the boxes containing the values of

variables: (Q.1);

• s = m or s = m + n for the boxes containing

the values of polynomials and also of variables

(Q.2).
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The classical approach is via algebraic geometry

methods of Weil and Deligne:

Fouvry, Fouvry & Katz, Luo, Shparlinski & Sko-

robogatov

A natural threshold is hi ≥ p1/2.

In almost all known results the threshold is sub-

stantially higher, e.g. hi ≥ p3/4 or even higher.

Here we concentrate on some interesting special

cases when one can go beyond the p1/2-threshold.
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Why is this possible?

There are tools and methods that go beyond the

algebraic geometry threshold of
√
p:

• The bound of Burgess (1962) of character sums

and its recent generalisation to mixed charac-

ter sums due to Chang (2010)

• The bound of Ayyad, Cochrane & Zheng (1996)

on the 4th moment of short character sums

• The bound of Vinogradov of exponential sums

with polynomials and its recent improvement

due to Wooley (2012)

• Methods of additive combinatorics usually ap-

ply to very thin sets

• Since we work over Fp whose elements can

be lifted to Z, we can sometimes switch from

congruences to equations.
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Sacrifices we are willing to make

We consider only some special varieties, usually

with some multiplicative structure to enable us to

use multiplicative character sums.

In many cases we

• obtain results only for cubes C

– this is enough for many applications and

also for studying the distribution of solu-

tions in arbitrary convex domains: Kerr (2012)

combined such results with some ideas of

Schmidt (1975)

• obtain upper bounds instead of asymptotic formulas
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Additional gains

• Using multiplicative characters enables us to

use the large sieve and obtain stronger results

for almost all primes.

For example, sometimes one can use the bound

of Heath-Brown (1995) on the mean value of

real character sums

• Bounds of exponential sums rapidly lose their

strength when one consider composite mod-

uli, while bounds of character sums very often

remain the same:

Burgess (1962) bound (for cube-free moduli)

Pólya–Vinogradov (1916) bound

Ayyad, Cochrane & Zheng (1996) is replaced

by the bound of Friedlander & Iwaniec (1985)
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Examples

Hyperbolas:

x1 . . . xn ≡ λ (mod p)

Links to numerous number theoretic problems.

Markoff-Hurwitz hypersurface:

x2
1 + . . .+ x2

n ≡ x1 . . . xn (mod p)

Dwork hypersurface:

xn1 + . . .+ xnn ≡ x1 . . . xn (mod p)

which is an example of a Calabi-Yau variety.

Both can be generalised as

f1(x1) + . . .+ fn(xn) ≡ xk1
1 . . . xknn (mod p)

with some polynomials fi ∈ Fp[X] and integers ki,

i = 1, . . . , n.
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Erdős-Graham equation:

1

x1
+ . . .+

1

xn
≡ λ (mod p)

Plane curves:

f(x, y) ≡ 0 (mod p)

and in particular values of univariate polynomials:

f(x) ≡ y (mod p)

Weierstraß equations of isomorphic elliptic curves

(ax4, bx6)

A similar question can be, and has been, also asked

for hyperelliptic curves.
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Hyperbolas

Large boxes

Let Jn(λ;B) be the number of solutions of the

congruence

x1 . . . xn ≡ λ (mod p), (x1, . . . , xn) ∈ B

We always assume λ 6≡ 0 (mod p).

Bounds of multidimensional Kloosterman sums:

Jn(λ;B) =
h1 . . . hn

p
+O(pn/2+o(1))

Fouvry & Katz (2001) if B = C then

Jn(λ;C) =
hn

p
+O(p(n−1)/2+o(1) +hn−1p−1/2+o(1))

This is nontrivial for h ≥ p1/2+1/2n+o(1).
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Shparlinski (2007): with multiplicative characters

we can do better.

Theorem 1 For n = 3,

J3(λ;B) =
h1h2h3

p

+O
(
(h1h2h3)αν pβν+o(1)

)
holds with ν = 1,2, . . ., where

αν =
2ν − 1

3ν
and βr =

ν + 1

4ν2
.
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Theorem 2 For n ≥ 4,

Jn(λ;B) =
h1 . . . hn

p

+O
(
(h1 . . . hn)αn,ν pβn,ν+o(1)

)
holds with ν = 1,2, . . ., where

αn,ν = 1−
n+ 2ν − 4

nν
and βn,ν =

(n− 4)(ν + 1)

4ν2
.

If B = C then taking ν =
⌈
n1/2

⌉
this is nontrivial

for h ≥ p1/4+ε provided that n is large enough.
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Sketch of the proof

Express Jn(λ;B) via sums of multiplicative char-

acters χ modulo p

Jn(λ;B) =
ui+hi∑

xi=ui+1

1

p− 1

∑
χ
χ

λ−1
n∏
i=1

xi


=

1

p− 1

∑
χ

n∏
i=1

ui+hi∑
xi=ui+1

χ (xi) .

• The main term comes from the principal char-

acter χ0 and is equal to M = h1 . . . hn/(p− 1).

• The error term, after the change of summation

becomes

E ≤
1

p− 1

∑
χ 6=χ0

n∏
i=1

∣∣∣∣∣∣
ui+hi∑

xi=ui+1

χ (xi)

∣∣∣∣∣∣
≤

1

p− 1

 n∏
i=1

∑
χ 6=χ0

∣∣∣∣∣∣
ui+hi∑

xi=ui+1

χ (xi)

∣∣∣∣∣∣
n1/n

.
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For sums ∑
χ 6=χ0

∣∣∣∣∣∣
u+h∑

x=u+1

χ (xi)

∣∣∣∣∣∣
n

use the Burgess bound∣∣∣∣∣∣
u+h∑

x=u+1

χ (xi)

∣∣∣∣∣∣ ≤ h1−1/νp(ν+1)/4ν2+o(1)

for (n − 4) times and then the bound of Ayyad,

Cochrane & Zheng (1996) on the 4th moment

∑
χ 6=χ0

∣∣∣∣∣∣
u+h∑

x=u+1

χ (xi)

∣∣∣∣∣∣
4

≤ h2p1+o(1).
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Applications

Smooth values of shifted monomial products:

Fouvry & Shparlinski (2011):

For positive integers a1, . . . , an and any ε > 0 there

is a positive proportion of vectors (m1, . . .mn) so

that

F = m
a1
1 . . .man

n − 1

is F1−n/2d+ε-smooth.

This improves on F1−2/d+2/d(n+1)+ε–smoothness

of Fouvry (2010).
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Small boxes

The following result of Bourgain, Garaev, Konya-

gin & Shparlinski (2012):

Theorem 3 Let n ≥ 2 be a fixed integer, λ 6≡ 0

(mod p). Assume that for some sufficiently large

positive integer h and prime p we have

h < p1/(n2−1).

Then

Jn(λ;C) = exp
(
O

(
logh

log logh

))
.

In the case nu = 4 this solves an open problem of

Cilleruelo & Garaev (2010).
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Sketch of the proof

Express Jn(λ;C) via characters as before and use

the Hölder inequality to reduce everything to u1 =

. . . = un = u.

If

(u+x1) . . . (u+xn) ≡ λ (mod p), 1 ≤ x1, . . . , xn ≤ h

has many solutions then there are many polynomi-

als with not so large coefficients with a common

root u modulo p.
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Use the Dirichlet principle to conclude that there

are two pairs of such polynomials

(U+yj,1) . . . (U+yj,n) and (U+zj,1) . . . (U+zj,n), j = 1,2

for which

Pj(U) = (U+yj,1) . . . (U+yj,n)−(U+zj,1) . . . (U+zj,n),

where j = 1,2

• are nonzero co-prime polynomials over Z

• have small coefficients.

Estimate [very carefully!] the resultant R = Res(P1, P2)

which satisfies

R 6= 0 and R ≡ 0 (mod p)

and obtain a contradiction.

Warning: The argument is actually more subtle.
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Modifications

• In the symmetric case with n ≥ 3

x1 . . . xn ≡ y1 . . . yn (mod p),

with (x1, . . . , xn), (y1, . . . , yn) ∈ C one can take

h < p1/en

with

en = max{n2 − 2n− 2, n2 − 3n+ 4}.

If n = 2, Ayyad, Cochrane & Zheng (1996)

give an optimal result.

• For almost all primes p one can get a nontrivial

bound for any h
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Applications

Points on exponential curves: Improvements of bounds

of Chan & Shparlinski (2010) and Cilleruelo &

Garaev (2011) for

x ≡ agz (mod p), 1 ≤ x ≤ h, 1 ≤ z ≤ H.

Double character sum estimates: Improvements of

bounds of Friedlander & Iwaniec on sums∑
a∈A

∑
b∈B

χ(a+ b)

E.g. if A ⊆ [M,M+A], A ≤ p1/2 and #A > p9/20+ε

for some ε > 0, then for some δ > 0 we have∑
a1,a2∈A

χ(a1 + a2)� (#A)2p−δ.
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Character sums with the divisor function: Improve-

ments of bounds of Karatsuba (2000) on sums

Sa(N) =
∑

1≤n≤N
τ(n)χ(a+ n).

Shifted power testing: Given t ∈ Fp and a black-

box that for every x ∈ Fp outputs (x+s)e for some

hidden s ∈ Fp and known e | p− 1 decide whether

s = t.
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Weierstraß equations

Preliminaries

Let

Ea,b : Y 2 = X3+aX+b, a, b ∈ Fp, 4a3+27b2 6= 0.

Two curves Ea,b and Er,s are isomorphic iff

ax4 ≡ r (mod p) and bx6 ≡ s (mod p)

for some x ∈ F∗p.

Fouvry & Murty (1996): What is the number

Ta,b,p(B) of curves

Er,s : (r, s) ∈ B = [R+ 1, R+K]× [S + 1, S + L]

that are isomorphic to a given curve Ea,b? Moti-

vation: Lang-Trotter conjecture
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Banks & Shparlinski (2009): Same question “on

average” over (a, b) ∈ F2
p and primes p ≤ Q. Moti-

vation: Sato-Tate conjecture

Both questions are about the joint distribution of

values of two very simple polynomials

aX4 and bX6

in boxes.
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Large boxes

Fouvry & Murty (1996)— used exponential sums

Weil bound: for any (a, b) ∈ F2
p,

Ta,b,p(B) ∼
KL

p
, if KL ≥ p3/2+ε, min{K,L} ≥ p1/2+ε.

Banks & Shparlinski (2009) — used character sums

Burgess bound: for almost all (a, b) ∈ F2
p,

Ta,b,p(B) ∼
KL

p
, if KL ≥ p1+ε, min{K,L} ≥ p1/4+ε

and

Ta,b,p(B)�
KL

p
, if KL ≥ p1+ε, min{K,L} ≥ p1/4e1/2+ε.

Furthermore, together with Large Sieve, for al-

most all primes p and (a, b) ∈ F2
p,

Ta,b,p(B) ∼
KL

p
, if KL ≥ p1+ε, min{K,L} ≥ pε.
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Small boxes

Observation: Ea,b
∼= Er,s =⇒ r3b2 ≡ a3s2 (mod p).

Let’s estimate

Nλ,p(B) = #{r3 ≡ λs2 (mod p) : (r, s) ∈ B}.

For f ∈ Z[X] we define:

If(B) = #{f(r) ≡ s2 (mod p) : (r, s) ∈ B}.

Cilleruelo,Garaev, Ostafe & Shparlinski (2010);

Cilleruelo, Shparlinski & Zumalacárregui (2012);

Chang, Cilleruelo, Garaev, Hernández, Shparlinski

& Zumalacárregui (2012): For

C = [R+1, R+M ]×[S+1, S+M ] and deg f = 3

we have

If(C) < M1+o(1)



M−2/3 if M < p1/8,

(M4/p)1/6 if p1/8 ≤M < p5/23,

(M3/p)1/16 if p5/23 ≤M < p1/3.
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The proof uses Bombieri-Pila bound and some

ideas from additive combinatorics

For M ≥ p1/2 exponential sums give a nontrivial

bound.

Unfortunately we have no nontrivial estimate for

p1/3 < M < p1/2

Warning: Splitting C into smaller squares does

not work as the number of squares grows quadrat-

ically.



27

Remarks:

• For higher degree polynomials other methods

work, e.g. Vinogradov’s Mean Value Theorem,

Wooley (2012).

• Similar (and somewhat stronger) results also

hold for

Jf(C) = #{f(r) ≡ s (mod p) : (r, s) ∈ C}.

• Similar results also hold for Weierstraß equa-

tions of hyperelliptic curves.
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Applications

Diameter of orbits of polynomial dynamical systems:

Given a polynomial f ∈ Fp[X], show that a partial

orbit xk = f(xk−1), k = 1, . . . , N , starting from

some x0 ∈ Fp, can not be contained inside of a

short interval.

Visible points on curves: Given a plane curve f(x, y) ≡
0 (mod p), count the number of visible points,

that is, points with gcd(x, y) = 1.
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Erdős-Graham Equation

Initial interval

Erdős-Graham (1980): Is it true that for any ε > 0

there exists k(ε) such that any λ can be repre-

sented as

1

x1
+ . . .+

1

xk(ε)
≡ λ (mod p)

with 1 ≤ x1, . . . , xk(ε) ≤ pε?

Shparlinski (2002): True with k(ε) = O(ε−3); us-

ing bounds of bilinear sums with inverses u−1v−1.

Glibichuk (2006): True with k(ε) = O(ε−2); using

methods of additive combinatorics.

Croot (2004): Generalisation to
∑

1/xmi ; using

methods of additive combinatorics.

Bourgain (2007): Generalisation to simultaneous∑
1/xmi ; using methods of additive combinatorics.
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Idea

Let us take two expressions

k∑
i=1

1/xmi and
∑̀
j=1

1/ymj

Their sum and product are of the same type.

⇓

Using the Sum-Product Theorem of Bourgain, Katz

& Tao (2004), one can create a large (of cardi-

nality at least p0.500001) set of such sums.

After this exponential sums finish the job.

Warning: The argument is actually more subtle

as the size of the terms also grows, while they

must be up to pε.
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Arbitrary intervals

Bourgain & Garaev (2012):

A variety of bounds on the number of solutions to

1

x1
+ . . .+

1

xn
≡ λ (mod p), (x1, . . . , xn) ∈ C,

and on the cardinality of{
1

x1
+ . . .+

1

xn
: (x1, . . . , xn) ∈ C

}

Generalised Erdős-Graham Problem:

Is it true that for any ε > 0 there exists `(ε) such

that for any u, an arbitrary λ can be represented

as
1

x1
+ . . .+

1

x`(ε)
≡ λ (mod p)

with u+ 1 ≤ x1, . . . , x`(ε) ≤ u+ pε?

The case of ε = 1/2 is already hard.
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Multiplicative Analogue

Points in small subgroups

Instead of distribution of points with components

in short intervals, one can consider points with

components in small subgroups of F∗q.

Poonen’s Conjecture, Informally

Conjecture 4 Under certain natural conditions, any

point (x1, . . . , xn) on a variety V over Fq contains

a component of multiplicative order at least qc,

where c > 0 depends only on some invariants of V
(e.g., the dimension).
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Voloch (2007, 2010): Some results for plane curves

(quantitatively much weaker).

Chang, Kerr, Shparlinski, Zannier (2013)

Theorem 5 Assume that an absolutely irreducible

over C variety V ⊆ Cn is defined over Q. Also

assume that V does not contain a monomial curve:

XrY s − 1 and Xr − Y s

Then there is a constant C(V), depending only on

V such that for any ε > 0, for almost all primes p,

for all but at most C(V) points (x1, . . . , xn) ∈ Vp
on the reduction Vp ⊆ Fnp of V modulo p, we have

max{ordx1, . . . ,ordxn} ≥ p1/2n−ε.

Amongst other tools, the proof uses an effective

form of Hilbert’s Nullstellensatz


