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Simple random walk on Z

(Xn, n ≥ 0) = simple random walk on Z with X0 = 0.

Local time Ln(x) := #{i : 0 ≤ i ≤ n, Xi = x}.

Set of favorite sites An := {x ∈ Z : Ln(x) = max
y∈Z

Ln(y )}.

Conjecture 1 (Erdős & Révész 1984):

almost surely, 0 ∈ An for infinitely many n.

Conjecture 2 (Erdős & Révész 1984):

a.s., #An ≤ 2 for all sufficiently large n.
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local time Ln(x) := #{i : 0 ≤ i ≤ n, Xi = x},
favourite sites An := {x ∈ Z : Ln(x) = max

y∈Z

Ln(y)}.

[Conjecture 2: a.s., #An ≤ 2 for all sufficiently large n.]

Tóth (2001): a.s., #An ≤ 3 for all sufficiently large n.
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local time Ln(x) := #{i : 0 ≤ i ≤ n, Xi = x},
favourite sites An := {x ∈ Z : Ln(x) = max

y∈Z

Ln(y)}.

[Conjecture 1: a.s., 0 ∈ An for infinitely many n.]

Bass & Griffin (1986): a.s.,

liminf
n→∞

(log n)a

n1/2
min
x∈An

|x | is 0 if a < 1, and is ∞ if a > 11.

In particular, min
x∈An

|x | → ∞ a.s.

Bass (2013+): a.s.,

liminf
n→∞

(log n)a

n1/2
min
x∈An

|x | is 0 if a ≤ 1, and is ∞ otherwise.
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Assumption: (wrong numerical values!)
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(Useless) remark:

Our walk = random walk in random environment.

Our assumption says :

E[
∑

x : |x |=1 e
−V (x)] = 1, E[

∑

x : |x |=1 V (x)e−V (x)] = 0.

V = potential associated with the random environment.
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E

(

∑

|x|=1

e
−V (x)

)

= 1, E

(

∑

|x|=1

V (x)e−V (x)
)

= 0.

Under our assumption,

Lyons & Pemantle (1992): the walk is recurrent.

Faraud, Hu & S. (2012): the walk is very slow.

1
(log n)3

max
k: 0≤k≤n

|Xk | → const ∈ (0, ∞), a.s.

Open problem: prove that |Xn|
(log n)2

converges (at least) weakly.

Open problem: prove/disprove the Erdős-Révész conjecture 1.

Open problem: asymptotics of max
x : x∈T

Ln(x)?

Zhan Shi Random walks on trees



E

(

∑

|x|=1

e
−V (x)

)

= 1, E

(

∑

|x|=1

V (x)e−V (x)
)

= 0.

Ln(∅) := #{i : 0 ≤ i ≤ n, Xi = ∅}.

Theorem: Ln(∅)
n/ ln n

→ L , in probability.

Remark. 0 < L < ∞ a.s. More precisely,

L := 1
2

σ2

D∞

,

σ2 := E[
∑

|x |=1 V (x)2e−V (x)] ∈ (0, ∞),

D∞ > 0, = a.s. limit of the “derivative martingale”.
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E

(

∑

|x|=1

e
−V (x)

)

= 1, E

(

∑

|x|=1

V (x)e−V (x)
)

= 0.

Proof: (Relatively) elementary, via

• spinal decompositions for branching random walk,

• study of excursions. �

Explanation of the limit L = 1
2

σ2

D∞

:

• σ
2 and D∞: from spinal decompositions.

• 1
2
: equals 1

2

√

π
2

1
cm
,

cm := E( 1
η
), η := sup

s∈[0, 1]

(ms −ms),

ms := sup
u∈[0, s]

mu,

m = Brownian meander

= “ (Bs , s ∈ [0, 1]) |B ≥ 0 on [0, 1] ”.
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