Local time of random walks on trees

Zhan Shi

Université Paris VI
joint work with Yueyun Hu (Université Paris XIII)

Erdős Centennial, Budapest, July 1st, 2013

Simple random walk on \mathbb{Z}

$\left(X_{n}, n \geq 0\right)=$ simple random walk on \mathbb{Z} with $X_{0}=0$.

Local time $L_{n}(x):=\#\left\{i: 0 \leq i \leq n, X_{i}=x\right\}$.
Set of favorite sites $A_{n}:=\left\{x \in \mathbb{Z}: L_{n}(x)=\max _{y \in \mathbb{Z}} L_{n}(y)\right\}$.
Conjecture 1 (Erdős \& Révész 1984): almost surely, $0 \in A_{n}$ for infinitely many n.

Conjecture 2 (Erdős \& Révész 1984):
a.s., $\# A_{n} \leq 2$ for all sufficiently large n.
local time $L_{n}(x):=\#\left\{i: 0 \leq i \leq n, X_{i}=x\right\}$, favourite sites $A_{n}:=\left\{x \in \mathbb{Z}: L_{n}(x)=\max _{y \in \mathbb{Z}} L_{n}(y)\right\}$.
[Conjecture 2: a.s., $\# A_{n} \leq 2$ for all sufficiently large n.]

Tóth (2001): a.s., $\# A_{n} \leq 3$ for all sufficiently large n.
local time $L_{n}(x):=\#\left\{i: 0 \leq i \leq n, X_{i}=x\right\}$, favourite sites $A_{n}:=\left\{x \in \mathbb{Z}: L_{n}(x)=\max _{y \in \mathbb{Z}} L_{n}(y)\right\}$.
[Conjecture 1: a.s., $0 \in A_{n}$ for infinitely many n.]

Bass \& Griffin (1986): a.s.,
$\liminf _{n \rightarrow \infty} \frac{(\log n)^{a}}{n^{1 / 2}} \min _{x \in A_{n}}|x|$ is 0 if $a<1$, and is ∞ if $a>11$.
In particular, $\min _{x \in A_{n}}|x| \rightarrow \infty$ a.s.
Bass (2013+): a.s.,
$\liminf _{n \rightarrow \infty} \frac{(\log n)^{a}}{n^{1 / 2}} \min _{x \in A_{n}}|x|$ is 0 if $a \leq 1$, and is ∞ otherwise.

Random walks on trees

Random walks on trees

$$
\begin{aligned}
& \mathbb{P}(\bullet)=0.6 \\
& \mathbb{P}(\bullet)=0.4
\end{aligned}
$$

Assumption: (wrong numerical values!)

$$
\begin{gathered}
\left(\frac{0.3}{0.2}+\frac{0.5}{0.2}\right) \times 0.6+\left(\frac{0.2}{0.7}+\frac{0.1}{0.7}\right) \times 0.4=1, \\
\left(\frac{0.3}{0.2} \ln \frac{0.3}{0.2}+\frac{0.5}{0.2} \ln \frac{0.5}{0.2}\right) \times 0.6+\left(\frac{0.2}{0.7} \ln \frac{0.2}{0.7}+\frac{0.1}{0.7} \ln \frac{0.1}{0.7}\right) \times 0.4=0 .
\end{gathered}
$$

Random walks on trees

(Useless) remark:
Our walk $=$ random walk in random environment.
Our assumption says:

$$
\mathbf{E}\left[\sum_{x:|x|=1} \mathrm{e}^{-V(x)}\right]=1, \mathbf{E}\left[\sum_{x:|x|=1} V(x) \mathrm{e}^{-V(x)}\right]=0 .
$$

$V=$ potential associated with the random environment.

$$
E\left(\sum_{k=1}^{e^{-v_{0}}(0)}\right)=1, \quad E\left(\sum_{M=1}^{\left.v_{(x)} e^{-v_{0}}\right)}\right)=0 .
$$

Under our assumption,

Lyons \& Pemantle (1992): the walk is recurrent.
Faraud, Hu \& S. (2012): the walk is very slow.

$$
\frac{1}{(\log n)^{3}} \max _{k: 0 \leq k \leq n}\left|X_{k}\right| \rightarrow \text { const } \in(0, \infty), \text { a.s. }
$$

Open problem: prove that $\frac{\left|X_{n}\right|}{(\log n)^{2}}$ converges (at least) weakly.
Open problem: prove/disprove the Erdős-Révész conjecture 1.
Open problem: asymptotics of $\max _{x: x \in \mathbb{T}} L_{n}(x)$?

$$
E\left(\sum_{|x|=1} \mathrm{e}^{-V(x)}\right)=1, \quad E\left(\sum_{|x|=1} V(x) \mathrm{e}^{-V(x)}\right)=0
$$

$$
L_{n}(\varnothing):=\#\left\{i: 0 \leq i \leq n, X_{i}=\varnothing\right\} .
$$

Theorem: $\frac{L_{n}(\varnothing)}{n / \ln n} \rightarrow \mathscr{L}$, in probability.
Remark. $0<\mathscr{L}<\infty$ a.s. More precisely,

$$
\begin{aligned}
& \mathscr{L}:=\frac{1}{2} \frac{\sigma^{2}}{D_{\infty}}, \\
& \sigma^{2}:=\mathbf{E}\left[\sum_{|x|=1} V(x)^{2} \mathrm{e}^{-V(x)}\right] \in(0, \infty), \\
& D_{\infty}>0, \quad=\text { a.s. limit of the "derivative martingale". }
\end{aligned}
$$

$$
E\left(\sum_{k=1}^{e^{-v_{0}}(0)}\right)=1, \quad E\left(\sum_{M=1}^{\left.v_{(x)} e^{-v_{0}}\right)}\right)=0 .
$$

Proof: (Relatively) elementary, via

- spinal decompositions for branching random walk,
- study of excursions.

Explanation of the limit $\mathscr{L}=\frac{1}{2} \frac{\sigma^{2}}{D_{\infty}}$:

- σ^{2} and D_{∞} : from spinal decompositions.
- $\frac{1}{2}$: equals $\frac{1}{2} \sqrt{\frac{\pi}{2}} \frac{1}{c_{\mathrm{m}}}$,

$$
\begin{aligned}
c_{\mathfrak{m}} & :=\mathbf{E}\left(\frac{1}{\eta}\right), \quad \eta:=\sup _{s \in[0,1]}\left(\overline{\mathfrak{m}}_{s}-\mathfrak{m}_{s}\right) \\
\overline{\mathfrak{m}}_{s} & :=\sup _{u \in[0, s]} \mathfrak{m}_{u} \\
\mathfrak{m} & =\text { Brownian meander } \\
& ="\left(B_{s}, s \in[0,1]\right) \mid B \geq 0 \text { on }[0,1] " .
\end{aligned}
$$

